Ramsey's Theorem

Marco Riccardi
Casella Postale 49
54038 Montignoso, Italy

Abstract

Summary. The goal of this article is to formalize two versions of Ramsey's theorem. The theorems are not phrased in the usually pictorial representation of a coloured graph but use a set-theoretic terminology. After some useful lemma, the second section presents a generalization of Ramsey's theorem on infinite set closely following the book [9]. The last section includes the formalization of the theorem in a more known version (see [1]).

MML identifier: RAMSEY_1, version: $\underline{7.9 .014 .101 .1015}$

The notation and terminology used here are introduced in the following papers: [15], [16], [17], [4], [3], [6], [12], [7], [2], [5], [8], [14], [13], [10], and [11].

1. Preliminaries

For simplicity, we adopt the following convention: n, m, k are natural numbers, X, Y, Z are sets, f is a function from X into Y, and H is a subset of X.

Let us consider X, Y, H and let P be a partition of $[X]^{Y}$. We say that H is homogeneous for P if and only if:
(Def. 1) There exists an element p of P such that $[H]^{Y} \subseteq p$.
Let us consider n and let X be an infinite set. One can check that $[X]^{n}$ is non empty.

Let us consider n, X, Y, f. Let us assume that f is one-to-one and $\overline{\bar{n}} \subseteq \overline{\bar{X}}$ and X is non empty and Y is non empty. The functor $f \|^{n}$ yields a function from $[X]^{n}$ into $[Y]^{n}$ and is defined by:
(Def. 2) For every element x of $[X]^{n}$ holds $\left(f \|^{n}\right)(x)=f^{0} x$.
Next we state four propositions:
(1) If f is one-to-one and $\overline{\bar{n}} \subseteq \overline{\bar{X}}$ and X is non empty and Y is non empty, then $\left[f^{\circ} H\right]^{n}=\left(f \|^{n}\right)^{\circ}\left([H]^{n}\right)$.
(2) If X is infinite and $X \subseteq \omega$, then $\overline{\bar{X}}=\omega$.
(3) If X is infinite, then $X \cup Y$ is infinite.
(4) If X is infinite and Y is finite, then $X \backslash Y$ is infinite.

Let X be an infinite set and let Y be a set. Note that $X \cup Y$ is infinite.
Let X be an infinite set and let Y be a finite set. One can verify that $X \backslash Y$ is infinite.

The following propositions are true:
(5) $[X]^{0}=\{0\}$.
(6) For every finite set X such that card $X<n$ holds $[X]^{n}$ is empty.
(7) If $X \subseteq Y$, then $[X]^{Z} \subseteq[Y]^{Z}$.
(8) If X is finite and Y is finite and $\overline{\bar{Y}}=X$, then $[Y]^{X}=\{Y\}$.
(9) If X is non empty and Y is non empty, then f is constant iff there exists an element y of Y such that $\operatorname{rng} f=\{y\}$.
(10) For every finite set X such that $k \leq \operatorname{card} X$ there exists a subset Y of X such that card $Y=k$.
(11) If $m \geq 1$, then $n+1 \leq\binom{ n+m}{m}$.
(12) If $m \geq 1$ and $n \geq 1$, then $m+1 \leq\binom{ n+m}{m}$.
(13) Let X be a non empty set, p_{1}, p_{2} be elements of X, P be a partition of X, and A be an element of P. Suppose $p_{1} \in A$ and (the projection onto $P)\left(p_{1}\right)=($ the projection onto $P)\left(p_{2}\right)$. Then $p_{2} \in A$.

2. Infinite Ramsey Theorem

We now state two propositions:
(14) Let F be a function from $[X]^{n}$ into k. Suppose $k \neq 0$ and X is infinite. Then there exists H such that H is infinite and $F \upharpoonright[H]^{n}$ is constant.
(15) Let X be an infinite set and P be a partition of $[X]^{n}$. If $\overline{\bar{P}}=k$, then there exists a subset of X which is infinite and homogeneous for P.

3. Ramsey's Theorem

The scheme BinInd2 concerns a binary predicate \mathcal{P}, and states that:

$$
\mathcal{P}[m, n]
$$

provided the following conditions are satisfied:

- $\mathcal{P}[0, n]$ and $\mathcal{P}[n, 0]$, and
- If $\mathcal{P}[m+1, n]$ and $\mathcal{P}[m, n+1]$, then $\mathcal{P}[m+1, n+1]$.

We now state two propositions:
(16) Suppose $m \geq 2$ and $n \geq 2$. Then there exists a natural number r such that
(i) $r \leq\binom{(m+n)-^{\prime} 2}{m-^{\prime} 1}$,
(ii) $r \geq 2$, and
(iii) for every finite set X and for every function F from $[X]^{2}$ into Seg 2 such that card $X \geq r$ there exists a subset S of X such that card $S \geq m$ and $\operatorname{rng}\left(F \upharpoonright[S]^{2}\right)=\{1\}$ or card $S \geq n$ and $\operatorname{rng}\left(F \upharpoonright[S]^{2}\right)=\{2\}$.
(17) Let m be a natural number. Then there exists a natural number r such that for every finite set X and for every partition P of $[X]^{2}$ if card $X \geq r$ and $\overline{\bar{P}}=2$, then there exists a subset S of X such that card $S \geq m$ and S is homogeneous for P.

References

[1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin Heidelberg New York, 2004.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] T. J. Jech. Set Theory. Springer-Verlag, Berlin Heidelberg New York, 2002.
[10] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[11] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[12] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[13] Marco Riccardi. The sylow theorems. Formalized Mathematics, 15(3):159-165, 2007.
[14] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

