Invertibility of Matrices of Field Elements

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Kunio Oniumi
Shinshu University
Nagano, Japan

Wenpai Chang
Nan Kai Institute of Technology
Nantou County, Taiwan

Abstract

Summary. In this paper the theory of invertibility of matrices of field elements (see e.g. [5], [6]) is developed. The main purpose of this article is to prove that the left invertibility and the right invertibility are equivalent for a matrix of field elements. To prove this, we introduced a special transformation of matrix to some canonical forms. Other concepts as zero vector and base vectors of field elements are also introduced as a preparation.

MML identifier: MATRIX14, version: $\underline{7.9 .014 .101 .1015}$

The papers [14], [3], [7], [17], [4], [13], [15], [10], [1], [12], [18], [16], [9], [8], [2], and [11] provide the terminology and notation for this paper.

1. Preliminaries

We use the following convention: x, y denote sets, n, m, i, j denote elements of \mathbb{N}, and K denotes a field.

Let K be a non empty zero structure and let us consider n. The functor 0_{K}^{n} yields a finite sequence of elements of K and is defined by:
(Def. 1) $0_{K}^{n}=n \mapsto 0_{K}$.
Let K be a non empty zero structure and let us consider n. Then 0_{K}^{n} is an element of (the carrier of $K)^{n}$.

In the sequel L denotes a non empty additive loop structure.
The following three propositions are true:
(1) Every finite sequence x of elements of L is an element of (the carrier of $L)^{\operatorname{len} x}$.
(2) For all finite sequences x_{1}, x_{2} of elements of L such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}+x_{2}\right)=\operatorname{len} x_{1}$.
(3) For all finite sequences x_{1}, x_{2} of elements of L such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}-x_{2}\right)=\operatorname{len} x_{1}$.
In the sequel G is a non empty multiplicative loop structure.
Next we state four propositions:
(4) Let x_{1}, x_{2} be finite sequences of elements of G and given i. If $i \in \operatorname{dom}\left(x_{1} \bullet\right.$ $\left.x_{2}\right)$, then $\left(x_{1} \bullet x_{2}\right)(i)=\left(x_{1}\right)_{i} \cdot\left(x_{2}\right)_{i}$ and $\left(x_{1} \bullet x_{2}\right)_{i}=\left(x_{1}\right)_{i} \cdot\left(x_{2}\right)_{i}$.
(5) Let x_{1}, x_{2} be finite sequences of elements of L and i be a natural number. If len $x_{1}=\operatorname{len} x_{2}$ and $1 \leq i \leq \operatorname{len} x_{1}$, then $\left(x_{1}+x_{2}\right)(i)=\left(x_{1}\right)_{i}+\left(x_{2}\right)_{i}$ and $\left(x_{1}-x_{2}\right)(i)=\left(x_{1}\right)_{i}-\left(x_{2}\right)_{i}$.
(6) For every element a of K and for every finite sequence x of elements of K holds $-a \cdot x=(-a) \cdot x$ and $-a \cdot x=a \cdot-x$.
(7) For all finite sequences $x_{1}, x_{2}, y_{1}, y_{2}$ of elements of G such that len $x_{1}=$ len x_{2} and len $y_{1}=$ len y_{2} holds $x_{1} \curvearrowleft y_{1} \bullet x_{2}{ }^{\wedge} y_{2}=\left(x_{1} \bullet x_{2}\right)^{\wedge}\left(y_{1} \bullet y_{2}\right)$.
Let us consider K and let e_{1}, e_{2} be finite sequences of elements of K. We introduce $\left|\left(e_{1}, e_{2}\right)\right|$ as a synonym of $e_{1} \cdot e_{2}$.

Next we state several propositions:
(8) Let x, y be finite sequences of elements of K and a be an element of K. If len $x=\operatorname{len} y$, then $a \cdot x \bullet y=a \cdot(x \bullet y)$ and $x \bullet a \cdot y=a \cdot(x \bullet y)$.
(9) For all finite sequences x, y of elements of K and for every element a of K such that len $x=\operatorname{len} y$ holds $|(a \cdot x, y)|=a \cdot|(x, y)|$.
(10) For all finite sequences x, y of elements of K and for every element a of K such that len $x=\operatorname{len} y$ holds $|(x, a \cdot y)|=a \cdot|(x, y)|$.
(11) Let x, y_{1}, y_{2} be finite sequences of elements of K and a be an element of K. If len $x=\operatorname{len} y_{1}$ and len $x=\operatorname{len} y_{2}$, then $\left|\left(x, y_{1}+y_{2}\right)\right|=\left|\left(x, y_{1}\right)\right|+$ $\left|\left(x, y_{2}\right)\right|$.
(12) For all finite sequences $x_{1}, x_{2}, y_{1}, y_{2}$ of elements of K such that len $x_{1}=$ len x_{2} and len $y_{1}=$ len y_{2} holds $\left|\left(x_{1} \frown y_{1}, x_{2} \frown y_{2}\right)\right|=\left|\left(x_{1}, x_{2}\right)\right|+\left|\left(y_{1}, y_{2}\right)\right|$.
(13) For every element p_{1} of (the carrier of $\left.K\right)^{n}$ holds $p_{1} \bullet n \mapsto 0_{K}=n \mapsto 0_{K}$.

Let us consider n, let us consider K, and let A be a square matrix over K of dimension n. We introduce $\operatorname{Inv} A$ as a synonym of A^{\smile}.

2. Zero Vector and Base Vectors of Field Elements

Next we state several propositions:

$$
\begin{equation*}
I_{K}^{0 \times 0}=0_{K}^{0 \times 0} \text { and } I_{K}^{0 \times 0}=\emptyset \tag{14}
\end{equation*}
$$

(15) For every square matrix A over K of dimension 0 holds $A=\emptyset$ and $A=I_{K}^{0 \times 0}$ and $A=0_{K}^{0 \times 0}$.
(16) Every square matrix over K of dimension 0 is invertible.
(17) For all square matrices A, B, C over K of dimension n holds $(A \cdot B) \cdot C=$ $A \cdot(B \cdot C)$.
(18) Let A, B be square matrices over K of dimension n. Then A is invertible and $B=A^{\smile}$ if and only if $B \cdot A=I_{K}^{n \times n}$ and $A \cdot B=I_{K}^{n \times n}$.
(19) Let A be a square matrix over K of dimension n. Then A is invertible if and only if there exists a square matrix B over K of dimension n such that $B \cdot A=I_{K}^{n \times n}$ and $A \cdot B=I_{K}^{n \times n}$.
(20) For every finite sequence x of elements of K holds $\left|\left(x, 0_{K}^{\operatorname{len} x}\right)\right|=0_{K}$.
(21) For every finite sequence x of elements of K holds $\left|\left(0_{K}^{\ln x}, x\right)\right|=0_{K}$.
(22) For every element a of K holds $\left|\left(\left\langle 0_{K}\right\rangle,\langle a\rangle\right)\right|=0_{K}$.

Let K be a non empty set, let n be a natural number, and let a be an element of K. Then $n \mapsto a$ is a finite sequence of elements of K.

Let us consider K and let n, i be natural numbers. The i-versor in K^{n} yields a finite sequence of elements of K and is defined by:
(Def. 2) The i-versor in $K^{n}=\operatorname{Replace}\left(n \mapsto 0_{K}, i, 1_{K}\right)$.
Next we state several propositions:
(23) For all natural numbers n, i holds len (the i-versor in K^{n}) $=n$.
(24) For all natural numbers i, n such that $1 \leq i \leq n$ holds (the i-versor in $\left.K^{n}\right)(i)=1_{K}$.
(25) Let i, j, n be natural numbers. Suppose $1 \leq i \leq n$ and $1 \leq j \leq n$ and $i \neq j$. Then (the i-versor in $\left.K^{n}\right)(j)=0_{K}$.
(26) For all natural numbers i, n such that $1 \leq i \leq n$ holds $I_{K}^{n \times n}(i)=$ the i-versor in K^{n}.
(27) For all i, j such that $1 \leq i \leq n$ and $1 \leq j \leq n$ holds $I_{K}^{n \times n}{ }_{i, j}=$ (the i-versor in $\left.K^{n}\right)(j)$.
(28) Let A be a square matrix over K of dimension n. Then $A=0_{K}^{n \times n}$ if and only if for all elements i, j of \mathbb{N} such that $1 \leq i \leq n$ and $1 \leq j \leq n$ holds $A_{i, j}=0_{K}$.
(29) Let A be a square matrix over K of dimension n. Then $A=I_{K}^{n \times n}$ if and only if for all elements i, j of \mathbb{N} such that $1 \leq i \leq n$ and $1 \leq j \leq n$ holds $A_{i, j}=\left(i=j \rightarrow 1_{K}, 0_{K}\right)$.

3. Conditions of Invertibility

One can prove the following propositions:
(30) For all square matrices A, B over K of dimension n holds $(A \cdot B)^{\mathrm{T}}=$ $B^{\mathrm{T}} \cdot A^{\mathrm{T}}$.
(31) For every square matrix A over K of dimension n such that A is invertible holds A^{T} is invertible and $\left(A^{\mathrm{T}}\right)^{\smile}=\left(A^{\smile}\right)^{\mathrm{T}}$.
(32) Let x be a finite sequence of elements of K and a be an element of K. Given i such that $1 \leq i \leq \operatorname{len} x$ and $x(i)=a$ and for every j such that $j \neq i$ and $1 \leq j \leq \operatorname{len} x$ holds $x(j)=0_{K}$. Then $\sum x=a$.
(33) Let f_{1}, f_{2} be finite sequences of elements of K. Then $\operatorname{dom}\left(f_{1} \bullet f_{2}\right)=$ $\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every i such that $i \in \operatorname{dom}\left(f_{1} \bullet f_{2}\right)$ holds $\left(f_{1} \bullet f_{2}\right)(i)=$ $\left(f_{1}\right)_{i} \cdot\left(f_{2}\right)_{i}$.
(34) Let x, y be finite sequences of elements of K and given i. Suppose len $x=$ m and $y=x \bullet$ the i-versor in K^{m} and $1 \leq i \leq m$. Then $y(i)=x(i)$ and for every j such that $j \neq i$ and $1 \leq j \leq m$ holds $y(j)=0_{K}$.
(35) Let x be a finite sequence of elements of K. Suppose len $x=m$ and $1 \leq i \leq m$. Then $\mid\left(x\right.$, the i-versor in $\left.K^{m}\right) \mid=x(i)$ and $\mid(x$, the i-versor in $\left.K^{m}\right) \mid=x_{i}$.
(36) For all m, i such that $1 \leq i \leq m$ holds |(the i-versor in K^{m}, the i-versor in $\left.K^{m}\right) \mid=1_{K}$.
(37) Let a be an element of K and P, Q be square matrices over K of dimension n. Suppose that $n>0$ and $a \neq 0_{K}$ and $P_{1,1}=a^{-1}$ and for every i such that $1<i \leq n$ holds $P(i)=$ the i-versor in K^{n} and $Q_{1,1}=a$ and for every j such that $1<j \leq n$ holds $Q_{1, j}=-a \cdot P_{1, j}$ and for every i such that $1<i \leq n$ holds $Q(i)=$ the i-versor in K^{n}. Then P is invertible and $Q=P^{\smile}$.
(38) Let a be an element of K and P be a square matrix over K of dimension n. Suppose $n>0$ and $a \neq 0_{K}$ and $P_{1,1}=a^{-1}$ and for every i such that $1<i \leq n$ holds $P(i)=$ the i-versor in K^{n}. Then P is invertible.
(39) Let A be a square matrix over K of dimension n. Suppose $n>0$ and $A_{1,1} \neq 0_{K}$. Then there exists a square matrix P over K of dimension n such that
(i) P is invertible,
(ii) $(A \cdot P)_{1,1}=1_{K}$,
(iii) for every j such that $1<j \leq n$ holds $(A \cdot P)_{1, j}=0_{K}$, and
(iv) for every i such that $1<i \leq n$ and $A_{i, 1}=0_{K}$ holds $(A \cdot P)_{i, 1}=0_{K}$.
(40) Let A be a square matrix over K of dimension n. Suppose $n>0$ and $A_{1,1} \neq 0_{K}$. Then there exists a square matrix P over K of dimension n such that
(i) P is invertible,
(ii) $(P \cdot A)_{1,1}=1_{K}$,
(iii) for every i such that $1<i \leq n$ holds $(P \cdot A)_{i, 1}=0_{K}$, and
(iv) for every j such that $1<j \leq n$ and $A_{1, j}=0_{K}$ holds $(P \cdot A)_{1, j}=0_{K}$.
(41) Let A be a square matrix over K of dimension n. Suppose $n>0$ and $A_{1,1} \neq 0_{K}$. Then there exist square matrices P, Q over K of dimension n such that
(i) P is invertible,
(ii) Q is invertible,
(iii) $(P \cdot A \cdot Q)_{1,1}=1_{K}$,
(iv) for every i such that $1<i \leq n$ holds $(P \cdot A \cdot Q)_{i, 1}=0_{K}$, and
(v) for every j such that $1<j \leq n$ holds $(P \cdot A \cdot Q)_{1, j}=0_{K}$.

4. A Transformation of Matrix to Some Canonical Form

We now state the proposition
(42) Let D be a non empty set, m, n, i, j be elements of \mathbb{N}, and A be a matrix over D of dimension $m \times n$. Then $\operatorname{Swap}(A, i, j)$ is a matrix over D of dimension $m \times n$.
Let us consider K, let n be an element of \mathbb{N}, and let i_{0} be a natural number. The functor $\operatorname{SwapDiagonal}\left(K, n, i_{0}\right)$ yields a square matrix over K of dimension n and is defined as follows:
(Def. 3) $\quad \operatorname{SwapDiagonal}\left(K, n, i_{0}\right)=\operatorname{Swap}\left(I_{K}^{n \times n}, 1, i_{0}\right)$.
Next we state a number of propositions:
(43) Let n be an element of \mathbb{N}, i_{0} be a natural number, and A be a square matrix over K of dimension n. Suppose $1 \leq i_{0} \leq n$ and $A=$ SwapDiagonal $\left(K, n, i_{0}\right)$. Let i, j be natural numbers. Suppose $1 \leq i \leq n$ and $1 \leq j \leq n$. Suppose $i_{0} \neq 1$. Then
(i) if $i=1$ and $j=i_{0}$, then $A_{i, j}=1_{K}$,
(ii) if $i=i_{0}$ and $j=1$, then $A_{i, j}=1_{K}$,
(iii) if $i=1$ and $j=1$, then $A_{i, j}=0_{K}$,
(iv) if $i=i_{0}$ and $j=i_{0}$, then $A_{i, j}=0_{K}$, and
(v) if $i \neq 1$ and $i \neq i_{0}$ or $j \neq 1$ and $j \neq i_{0}$, then if $i=j$, then $A_{i, j}=1_{K}$ and if $i \neq j$, then $A_{i, j}=0_{K}$.
(44) Let n be an element of \mathbb{N}, A be a square matrix over K of dimension n, and i be a natural number. If $1 \leq i \leq n$, then $(\operatorname{SwapDiagonal}(K, n, 1))_{i, i}=$ 1_{K}.
(45) Let n be an element of \mathbb{N}, A be a square matrix over K of dimension n, and i, j be natural numbers. If $1 \leq i \leq n$ and $1 \leq j \leq n$, then if $i \neq j$, then $(\operatorname{SwapDiagonal}(K, n, 1))_{i, j}=0_{K}$.
(46) Let given K, n, i_{0} be elements of \mathbb{N}, and A be a square matrix over K of dimension n. Suppose that
(i) $1 \leq i_{0}$,
(ii) $i_{0} \leq n$,
(iii) $i_{0}=1$, and
(iv) for all natural numbers i, j such that $1 \leq i \leq n$ and $1 \leq j \leq n$ holds if $i=j$, then $A_{i, j}=1_{K}$ and if $i \neq j$, then $A_{i, j}=0_{K}$.
Then $A=\operatorname{SwapDiagonal}\left(K, n, i_{0}\right)$.
(47) Let given K, n, i_{0} be elements of \mathbb{N}, and A be a square matrix over K of dimension n. Suppose that
(i) $1 \leq i_{0}$,
(ii) $i_{0} \leq n$,
(iii) $i_{0} \neq 1$, and
(iv) for all natural numbers i, j such that $1 \leq i \leq n$ and $1 \leq j \leq n$ holds if $i=1$ and $j=i_{0}$, then $A_{i, j}=1_{K}$ and if $i=i_{0}$ and $j=1$, then $A_{i, j}=1_{K}$ and if $i=1$ and $j=1$, then $A_{i, j}=0_{K}$ and if $i=i_{0}$ and $j=i_{0}$, then $A_{i, j}=0_{K}$ and if $i \neq 1$ and $i \neq i_{0}$ or $j \neq 1$ and $j \neq i_{0}$, then if $i=j$, then $A_{i, j}=1_{K}$ and if $i \neq j$, then $A_{i, j}=0_{K}$.
Then $A=\operatorname{SwapDiagonal}\left(K, n, i_{0}\right)$.
(48) Let A be a square matrix over K of dimension n and i_{0} be an element of \mathbb{N}. Suppose $1 \leq i_{0} \leq n$. Then
(i) for every j such that $1 \leq j \leq n$ holds (SwapDiagonal $\left.\left(K, n, i_{0}\right) \cdot A\right)_{i_{0}, j}=$ $A_{1, j}$ and $\left(S w a p D i a g o n a l\left(K, n, i_{0}\right) \cdot A\right)_{1, j}=A_{i_{0}, j}$, and
(ii) for all i, j such that $i \neq 1$ and $i \neq i_{0}$ and $1 \leq i \leq n$ and $1 \leq j \leq n$ holds $\left(\operatorname{SwapDiagonal}\left(K, n, i_{0}\right) \cdot A\right)_{i, j}=A_{i, j}$.
(49) For every element i_{0} of \mathbb{N} such that $1 \leq i_{0} \leq n$ holds SwapDiagonal $\left(K, n, i_{0}\right)$ is invertible and $\left(S w a p D i a g o n a l\left(K, n, i_{0}\right)\right)^{\smile}=$ SwapDiagonal $\left(K, n, i_{0}\right)$.
(50) For every element i_{0} of \mathbb{N} such that $1 \leq i_{0} \leq n$ holds (SwapDiagonal $\left.\left(K, n, i_{0}\right)\right)^{\mathrm{T}}=\operatorname{SwapDiagonal}\left(K, n, i_{0}\right)$.
(51) Let A be a square matrix over K of dimension n and j_{0} be an element of \mathbb{N}. Suppose $1 \leq j_{0} \leq n$. Then
(i) for every i such that $1 \leq i \leq n$ holds $\left(A \cdot \operatorname{SwapDiagonal}\left(K, n, j_{0}\right)\right)_{i, j_{0}}=$ $A_{i, 1}$ and $\left(A \cdot \operatorname{SwapDiagonal}\left(K, n, j_{0}\right)\right)_{i, 1}=A_{i, j_{0}}$, and
(ii) for all i, j such that $j \neq 1$ and $j \neq j_{0}$ and $1 \leq i \leq n$ and $1 \leq j \leq n$ holds $\left(A \cdot \operatorname{SwapDiagonal}\left(K, n, j_{0}\right)\right)_{i, j}=A_{i, j}$.
(52) Let A be a square matrix over K of dimension n. Then $A=0_{K}^{n \times n}$ if and only if for all i, j such that $1 \leq i \leq n$ and $1 \leq j \leq n$ holds $A_{i, j}=0_{K}$.

5. Left/Right Invertibility and Invertibility

The following four propositions are true:
(53) Let A be a square matrix over K of dimension n. Suppose $A \neq 0_{K}^{n \times n}$. Then there exist square matrices B, C over K of dimension n such that
(i) B is invertible,
(ii) C is invertible,
(iii) $(B \cdot A \cdot C)_{1,1}=1_{K}$,
(iv) for every i such that $1<i \leq n$ holds $(B \cdot A \cdot C)_{i, 1}=0_{K}$, and
(v) for every j such that $1<j \leq n$ holds $(B \cdot A \cdot C)_{1, j}=0_{K}$.
(54) Let A, B be square matrices over K of dimension n. Suppose $B \cdot A=$ $I_{K}^{n \times n}$. Then there exists a square matrix B_{2} over K of dimension n such that $A \cdot B_{2}=I_{K}^{n \times n}$.
(55) Let A be a square matrix over K of dimension n. Then the following statements are equivalent
(i) there exists a square matrix B_{1} over K of dimension n such that $B_{1} \cdot A=$ $I_{K}^{n \times n}$,
(ii) there exists a square matrix B_{2} over K of dimension n such that $A \cdot B_{2}=$ $I_{K}^{n \times n}$.
(56) For all square matrices A, B over K of dimension n such that $A \cdot B=$ $I_{K}^{n \times n}$ holds A is invertible and B is invertible.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Shigeru Furuya. Matrix and Determinant. Baifuukan (in Japanese), 1957.
[6] Felix R. Gantmacher. The Theory of Matrices. AMS Chelsea Publishing, 1959.
[7] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[9] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[11] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[12] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[13] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.
[16] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.
[17] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[18] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received April 2, 2008

