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Summary. In this paper the theory of invertibility of matrices of field
elements (see e.g. [5], [6]) is developed. The main purpose of this article is to
prove that the left invertibility and the right invertibility are equivalent for a
matrix of field elements. To prove this, we introduced a special transformation of
matrix to some canonical forms. Other concepts as zero vector and base vectors
of field elements are also introduced as a preparation.
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The papers [14], [3], [7], [17], [4], [13], [15], [10], [1], [12], [18], [16], [9], [8], [2],
and [11] provide the terminology and notation for this paper.

1. Preliminaries

We use the following convention: x, y denote sets, n, m, i, j denote elements
of N, and K denotes a field.
Let K be a non empty zero structure and let us consider n. The functor 0nK

yields a finite sequence of elements of K and is defined by:

(Def. 1) 0nK = n 7→ 0K .
Let K be a non empty zero structure and let us consider n. Then 0nK is an

element of (the carrier of K)n.
In the sequel L denotes a non empty additive loop structure.
The following three propositions are true:
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(1) Every finite sequence x of elements of L is an element of (the carrier of
L)lenx.

(2) For all finite sequences x1, x2 of elements of L such that lenx1 = lenx2
holds len(x1 + x2) = lenx1.

(3) For all finite sequences x1, x2 of elements of L such that lenx1 = lenx2
holds len(x1 − x2) = lenx1.
In the sequel G is a non empty multiplicative loop structure.
Next we state four propositions:

(4) Let x1, x2 be finite sequences of elements of G and given i. If i ∈ dom(x1•
x2), then (x1 • x2)(i) = (x1)i · (x2)i and (x1 • x2)i = (x1)i · (x2)i.

(5) Let x1, x2 be finite sequences of elements of L and i be a natural number.
If lenx1 = lenx2 and 1 ≤ i ≤ lenx1, then (x1 + x2)(i) = (x1)i + (x2)i and
(x1 − x2)(i) = (x1)i − (x2)i.

(6) For every element a of K and for every finite sequence x of elements of
K holds −a · x = (−a) · x and −a · x = a · −x.

(7) For all finite sequences x1, x2, y1, y2 of elements of G such that lenx1 =
lenx2 and len y1 = len y2 holds x1 a y1 • x2 a y2 = (x1 • x2) a (y1 • y2).
Let us consider K and let e1, e2 be finite sequences of elements of K. We

introduce |(e1, e2)| as a synonym of e1 · e2.
Next we state several propositions:

(8) Let x, y be finite sequences of elements of K and a be an element of K.
If lenx = len y, then a · x • y = a · (x • y) and x • a · y = a · (x • y).

(9) For all finite sequences x, y of elements of K and for every element a of
K such that lenx = len y holds |(a · x, y)| = a · |(x, y)|.

(10) For all finite sequences x, y of elements of K and for every element a of
K such that lenx = len y holds |(x, a · y)| = a · |(x, y)|.

(11) Let x, y1, y2 be finite sequences of elements of K and a be an element
of K. If lenx = len y1 and lenx = len y2, then |(x, y1 + y2)| = |(x, y1)| +
|(x, y2)|.

(12) For all finite sequences x1, x2, y1, y2 of elements of K such that lenx1 =
lenx2 and len y1 = len y2 holds |(x1 a y1, x2

a y2)| = |(x1, x2)|+ |(y1, y2)|.
(13) For every element p1 of (the carrier of K)n holds p1 •n 7→ 0K = n 7→ 0K .
Let us consider n, let us consider K, and let A be a square matrix over K

of dimension n. We introduce InvA as a synonym of A`.

2. Zero Vector and Base Vectors of Field Elements

Next we state several propositions:

(14) I0×0K = 00×0K and I0×0K = ∅.
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(15) For every square matrix A over K of dimension 0 holds A = ∅ and
A = I0×0K and A = 00×0K .

(16) Every square matrix over K of dimension 0 is invertible.

(17) For all square matrices A, B, C over K of dimension n holds (A ·B) ·C =
A · (B · C).

(18) Let A, B be square matrices over K of dimension n. Then A is invertible
and B = A` if and only if B ·A = In×nK and A ·B = In×nK .

(19) Let A be a square matrix over K of dimension n. Then A is invertible
if and only if there exists a square matrix B over K of dimension n such
that B ·A = In×nK and A ·B = In×nK .

(20) For every finite sequence x of elements of K holds |(x, 0lenxK )| = 0K .
(21) For every finite sequence x of elements of K holds |(0lenxK , x)| = 0K .
(22) For every element a of K holds |(〈0K〉, 〈a〉)| = 0K .
LetK be a non empty set, let n be a natural number, and let a be an element

of K. Then n 7→ a is a finite sequence of elements of K.
Let us consider K and let n, i be natural numbers. The i-versor in Kn yields

a finite sequence of elements of K and is defined by:

(Def. 2) The i-versor in Kn = Replace(n 7→ 0K , i, 1K).
Next we state several propositions:

(23) For all natural numbers n, i holds len (the i-versor in Kn) = n.

(24) For all natural numbers i, n such that 1 ≤ i ≤ n holds (the i-versor in
Kn)(i) = 1K .

(25) Let i, j, n be natural numbers. Suppose 1 ≤ i ≤ n and 1 ≤ j ≤ n and
i 6= j. Then (the i-versor in Kn)(j) = 0K .

(26) For all natural numbers i, n such that 1 ≤ i ≤ n holds In×nK (i) = the
i-versor in Kn.

(27) For all i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds In×nK i,j = (the
i-versor in Kn)(j).

(28) Let A be a square matrix over K of dimension n. Then A = 0n×nK if and
only if for all elements i, j of N such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds
Ai,j = 0K .

(29) Let A be a square matrix over K of dimension n. Then A = In×nK if and
only if for all elements i, j of N such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds
Ai,j = (i = j → 1K , 0K).
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3. Conditions of Invertibility

One can prove the following propositions:

(30) For all square matrices A, B over K of dimension n holds (A · B)T =
BT ·AT.

(31) For every square matrix A overK of dimension n such that A is invertible
holds AT is invertible and (AT)` = (A`)T.

(32) Let x be a finite sequence of elements of K and a be an element of K.
Given i such that 1 ≤ i ≤ lenx and x(i) = a and for every j such that
j 6= i and 1 ≤ j ≤ lenx holds x(j) = 0K . Then

∑
x = a.

(33) Let f1, f2 be finite sequences of elements of K. Then dom(f1 • f2) =
dom f1∩dom f2 and for every i such that i ∈ dom(f1•f2) holds (f1•f2)(i) =
(f1)i · (f2)i.

(34) Let x, y be finite sequences of elements ofK and given i. Suppose lenx =
m and y = x • the i-versor in Km and 1 ≤ i ≤ m. Then y(i) = x(i) and
for every j such that j 6= i and 1 ≤ j ≤ m holds y(j) = 0K .

(35) Let x be a finite sequence of elements of K. Suppose lenx = m and
1 ≤ i ≤ m. Then |(x, the i-versor in Km)| = x(i) and |(x, the i-versor in
Km)| = xi.

(36) For all m, i such that 1 ≤ i ≤ m holds |(the i-versor in Km, the i-versor
in Km)| = 1K .

(37) Let a be an element of K and P , Q be square matrices over K of di-
mension n. Suppose that n > 0 and a 6= 0K and P1,1 = a−1 and for every
i such that 1 < i ≤ n holds P (i) = the i-versor in Kn and Q1,1 = a and
for every j such that 1 < j ≤ n holds Q1,j = −a · P1,j and for every i such
that 1 < i ≤ n holds Q(i) = the i-versor in Kn. Then P is invertible and
Q = P`.

(38) Let a be an element of K and P be a square matrix over K of dimension
n. Suppose n > 0 and a 6= 0K and P1,1 = a−1 and for every i such that
1 < i ≤ n holds P (i) = the i-versor in Kn. Then P is invertible.

(39) Let A be a square matrix over K of dimension n. Suppose n > 0 and
A1,1 6= 0K . Then there exists a square matrix P over K of dimension n
such that
(i) P is invertible,
(ii) (A · P )1,1 = 1K ,
(iii) for every j such that 1 < j ≤ n holds (A · P )1,j = 0K , and
(iv) for every i such that 1 < i ≤ n and Ai,1 = 0K holds (A · P )i,1 = 0K .
(40) Let A be a square matrix over K of dimension n. Suppose n > 0 and
A1,1 6= 0K . Then there exists a square matrix P over K of dimension n
such that
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(i) P is invertible,
(ii) (P ·A)1,1 = 1K ,
(iii) for every i such that 1 < i ≤ n holds (P ·A)i,1 = 0K , and
(iv) for every j such that 1 < j ≤ n and A1,j = 0K holds (P ·A)1,j = 0K .
(41) Let A be a square matrix over K of dimension n. Suppose n > 0 and
A1,1 6= 0K . Then there exist square matrices P , Q over K of dimension n
such that
(i) P is invertible,
(ii) Q is invertible,
(iii) (P ·A ·Q)1,1 = 1K ,
(iv) for every i such that 1 < i ≤ n holds (P ·A ·Q)i,1 = 0K , and
(v) for every j such that 1 < j ≤ n holds (P ·A ·Q)1,j = 0K .

4. A Transformation of Matrix to Some Canonical Form

We now state the proposition

(42) Let D be a non empty set, m, n, i, j be elements of N, and A be a
matrix over D of dimension m × n. Then Swap(A, i, j) is a matrix over
D of dimension m × n.
Let us consider K, let n be an element of N, and let i0 be a natural number.

The functor SwapDiagonal(K,n, i0) yields a square matrix over K of dimension
n and is defined as follows:

(Def. 3) SwapDiagonal(K,n, i0) = Swap(In×nK , 1, i0).

Next we state a number of propositions:

(43) Let n be an element of N, i0 be a natural number, and A be a squ-
are matrix over K of dimension n. Suppose 1 ≤ i0 ≤ n and A =
SwapDiagonal(K,n, i0). Let i, j be natural numbers. Suppose 1 ≤ i ≤ n
and 1 ≤ j ≤ n. Suppose i0 6= 1. Then
(i) if i = 1 and j = i0, then Ai,j = 1K ,
(ii) if i = i0 and j = 1, then Ai,j = 1K ,
(iii) if i = 1 and j = 1, then Ai,j = 0K ,
(iv) if i = i0 and j = i0, then Ai,j = 0K , and
(v) if i 6= 1 and i 6= i0 or j 6= 1 and j 6= i0, then if i = j, then Ai,j = 1K
and if i 6= j, then Ai,j = 0K .

(44) Let n be an element of N, A be a square matrix over K of dimension n,
and i be a natural number. If 1 ≤ i ≤ n, then (SwapDiagonal(K,n, 1))i,i =
1K .

(45) Let n be an element of N, A be a square matrix over K of dimension n,
and i, j be natural numbers. If 1 ≤ i ≤ n and 1 ≤ j ≤ n, then if i 6= j,
then (SwapDiagonal(K,n, 1))i,j = 0K .
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(46) Let given K, n, i0 be elements of N, and A be a square matrix over K
of dimension n. Suppose that
(i) 1 ≤ i0,
(ii) i0 ≤ n,
(iii) i0 = 1, and
(iv) for all natural numbers i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds if
i = j, then Ai,j = 1K and if i 6= j, then Ai,j = 0K .
Then A = SwapDiagonal(K,n, i0).

(47) Let given K, n, i0 be elements of N, and A be a square matrix over K
of dimension n. Suppose that
(i) 1 ≤ i0,
(ii) i0 ≤ n,
(iii) i0 6= 1, and
(iv) for all natural numbers i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds if
i = 1 and j = i0, then Ai,j = 1K and if i = i0 and j = 1, then Ai,j = 1K
and if i = 1 and j = 1, then Ai,j = 0K and if i = i0 and j = i0, then
Ai,j = 0K and if i 6= 1 and i 6= i0 or j 6= 1 and j 6= i0, then if i = j, then
Ai,j = 1K and if i 6= j, then Ai,j = 0K .
Then A = SwapDiagonal(K,n, i0).

(48) Let A be a square matrix over K of dimension n and i0 be an element
of N. Suppose 1 ≤ i0 ≤ n. Then
(i) for every j such that 1 ≤ j ≤ n holds (SwapDiagonal(K,n, i0) ·A)i0,j =
A1,j and (SwapDiagonal(K,n, i0) ·A)1,j = Ai0,j , and

(ii) for all i, j such that i 6= 1 and i 6= i0 and 1 ≤ i ≤ n and 1 ≤ j ≤ n
holds (SwapDiagonal(K,n, i0) ·A)i,j = Ai,j .

(49) For every element i0 of N such that 1 ≤ i0 ≤ n holds
SwapDiagonal(K,n, i0) is invertible and (SwapDiagonal(K,n, i0))` =
SwapDiagonal(K,n, i0).

(50) For every element i0 of N such that 1 ≤ i0 ≤ n holds
(SwapDiagonal(K,n, i0))T = SwapDiagonal(K,n, i0).

(51) Let A be a square matrix over K of dimension n and j0 be an element
of N. Suppose 1 ≤ j0 ≤ n. Then
(i) for every i such that 1 ≤ i ≤ n holds (A · SwapDiagonal(K,n, j0))i,j0 =
Ai,1 and (A · SwapDiagonal(K,n, j0))i,1 = Ai,j0 , and

(ii) for all i, j such that j 6= 1 and j 6= j0 and 1 ≤ i ≤ n and 1 ≤ j ≤ n
holds (A · SwapDiagonal(K,n, j0))i,j = Ai,j .

(52) Let A be a square matrix over K of dimension n. Then A = 0n×nK if and
only if for all i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds Ai,j = 0K .
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5. Left/Right Invertibility and Invertibility

The following four propositions are true:

(53) Let A be a square matrix over K of dimension n. Suppose A 6= 0n×nK .
Then there exist square matrices B, C over K of dimension n such that
(i) B is invertible,
(ii) C is invertible,
(iii) (B ·A · C)1,1 = 1K ,
(iv) for every i such that 1 < i ≤ n holds (B ·A · C)i,1 = 0K , and
(v) for every j such that 1 < j ≤ n holds (B ·A · C)1,j = 0K .
(54) Let A, B be square matrices over K of dimension n. Suppose B · A =
In×nK . Then there exists a square matrix B2 over K of dimension n such
that A ·B2 = In×nK .

(55) Let A be a square matrix over K of dimension n. Then the following
statements are equivalent
(i) there exists a square matrix B1 overK of dimension n such that B1·A =
In×nK ,

(ii) there exists a square matrix B2 overK of dimension n such that A·B2 =
In×nK .

(56) For all square matrices A, B over K of dimension n such that A · B =
In×nK holds A is invertible and B is invertible.
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