
FORMALIZED MATHEMATICS

Vol. 16, No. 2, Pages 177–194, 2008
DOI: 10.2478/v10037-008-0024-0

Mizar Analysis of Algorithms: Algorithms
over Integers1

Grzegorz Bancerek
Białystok Technical University

Poland

Summary. This paper is a continuation of [5] and concerns if-while alge-
bras over integers. In these algebras the only elementary instructions are assign-
ment instructions. The instruction assigns to a (program) variable a value which
is calculated for the current state according to some arithmetic expression. The
expression may include variables, constants, and a limited number of arithme-
tic operations. States are functions from a given set of locations into integers.
A variable is a function from the states into the locations and an expression
is a function from the states into integers. Additional conditions (computabili-
ty) limit the set of variables and expressions and, simultaneously, allow to write
algorithms in a natural way (and to prove their correctness).
As examples the proofs of full correctness of two Euclid algorithms (with

modulo operation and subtraction) and algorithm of exponentiation by squaring
are given.

MML identifier: AOFA I00, version: 7.8.10 4.100.1011

The terminology and notation used in this paper are introduced in the following
papers: [16], [30], [2], [31], [12], [32], [15], [13], [17], [11], [1], [3], [28], [7], [24],
[29], [21], [20], [25], [9], [27], [14], [8], [18], [26], [22], [19], [10], [23], [4], [6], and
[5].

1. Preliminaries

One can prove the following proposition

1This work has been partially supported by the Białystok Technical University grant
W/WI/1/06.

177
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://ftp.mizar.org/
http://fm.mizar.org/miz/aofa_i00.miz


178 grzegorz bancerek

(1) Let x, y, z, a, b, c be sets. Suppose a 6= b 6= c 6= a. Then there exists a
function f such that f(a) = x and f(b) = y and f(c) = z.

Let F be a non empty functional set, let x be a set, and let f be a set. The
functor F �x6=f yields a subset of F and is defined by:

(Def. 1) F �x6=f = {g ∈ F : g(x) 6= f}.
One can prove the following proposition

(2) Let F be a non empty functional set, x, y be sets, and g be an element
of F . Then g ∈ F �x6=y if and only if g(x) 6= y.
Let X be a set, let Y , Z be sets, and let f be a function from ZX × Y into

Z.

(Def. 2) An element of X is called a variable in f .

Let f be a real-yielding function and let x be a real number. We introduce
f · x as a synonym of x f.
Let t1, t2 be integer-yielding functions. The functors: t1 ÷ t2, t1 mod t2,

leq(t1, t2), gt(t1, t2), and eq(t1, t2) yield integer-yielding functions and are defi-
ned as follows:

(Def. 3) dom(t1÷t2) = dom t1∩dom t2 and for every set s such that s ∈ dom(t1÷
t2) holds (t1 ÷ t2)(s) = t1(s)÷ t2(s).

(Def. 4) dom(t1 mod t2) = dom t1 ∩ dom t2 and for every set s such that s ∈
dom(t1 mod t2) holds (t1 mod t2)(s) = t1(s) mod t2(s).

(Def. 5) dom leq(t1, t2) = dom t1 ∩ dom t2 and for every set s such that s ∈
dom leq(t1, t2) holds (leq(t1, t2))(s) = (t1(s) > t2(s)→ 0, 1).

(Def. 6) domgt(t1, t2) = dom t1 ∩ dom t2 and for every set s such that s ∈
domgt(t1, t2) holds (gt(t1, t2))(s) = (t1(s) > t2(s)→ 1, 0).

(Def. 7) dom eq(t1, t2) = dom t1 ∩ dom t2 and for every set s such that s ∈
domeq(t1, t2) holds (eq(t1, t2))(s) = (t1(s) = t2(s)→ 1, 0).
Let X be a non empty set, let f be a function from X into Z, and let x be

an integer number. Then f + x, f − x, and f · x are functions from X into Z
and they can be characterized by the conditions:

(Def. 8) For every element s of X holds (f + x)(s) = f(s) + x.

(Def. 9) For every element s of X holds (f − x)(s) = f(s)− x.
(Def. 10) For every element s of X holds (f · x)(s) = f(s) · x.

Let X be a set and let f , g be functions from X into Z. Then f÷g, f mod g,
leq(f, g), gt(f, g), and eq(f, g) are functions from X into Z.
Let X be a non empty set and let t1, t2 be functions from X into Z. Then

t1 − t2 and t1 + t2 are functions from X into Z and they can be characterized
by the conditions:

(Def. 11) For every element s of X holds (t1 − t2)(s) = t1(s)− t2(s).
(Def. 12) For every element s of X holds (t1 + t2)(s) = t1(s) + t2(s).



mizar analysis of algorithms: algorithms . . . 179

Let A be a non empty set and let B be an infinite set. Note that BA is
infinite.
Let N be a set, let v be a function, and let f be a function. The functor

v ◦N f yields a function and is defined by the conditions (Def. 13).
(Def. 13)(i) There exists a set Y such that for every set y holds y ∈ Y iff there

exists a function h such that h ∈ dom v and y ∈ rng h and for every set a
holds a ∈ dom(v ◦N f) iff a ∈ Y N and there exists a function g such that
a = g and g · f ∈ dom v, and

(ii) for every function g such that g ∈ dom(v ◦N f) holds (v ◦N f)(g) =
v(g · f).
Let X, Y , Z, N be non empty sets, let v be an element of ZY

X
, and let f

be a function from X into N . Then v ◦N f is an element of ZY
N
.

The following three propositions are true:

(3) For all functions f1, f2, g such that rng g ⊆ dom f2 holds (f1+·f2) · g =
f2 · g.

(4) Let X, N , I be non empty sets, s be a function from X into I, and c be
a function from X into N . Suppose c is one-to-one. Let n be an element
of I. Then (N 7−→ n)+·s · c−1 is a function from N into I.

(5) LetN ,X, I be non empty sets and v1, v2 be functions. Suppose dom v1 =
dom v2 = IX . Let f be a function from X into N . If f is one-to-one and
v1 ◦N f = v2 ◦N f, then v1 = v2.
Let X be a set. Observe that there exists a function from X into X which

is one-to-one and onto and there exists a function from X into X which is
one-to-one and onto.
Let X be a set. An enumeration of X is an one-to-one onto function from X

into X . A denumeration of X is an one-to-one onto function from X into X.
One can prove the following propositions:

(6) Let X be a set and f be a function. Then f is an enumeration of X if
and only if dom f = X and rng f = X and f is one-to-one.

(7) Let X be a set and f be a function. Then f is a denumeration of X if
and only if dom f = X and rng f = X and f is one-to-one.

(8) Let X be a non empty set, x, y be elements of X, and f be an enume-
ration of X. Then f +· (x, f(y)) +· (y, f(x)) is an enumeration of X.

(9) For every non empty set X and for every element x of X there exists an
enumeration f of X such that f(x) = 0.

(10) For every non empty set X and for every denumeration f of X holds
f(0) ∈ X.

(11) For every countable set X and for every enumeration f of X holds
rng f ⊆ N.



180 grzegorz bancerek

LetX be a set and let f be an enumeration ofX. Then f−1 is a denumeration
of X.
LetX be a set and let f be a denumeration ofX. Then f−1 is an enumeration

of X.
We now state two propositions:

(12) For all natural numbers n, m holds 0n+m = 0n · 0m.
(13) For every real number x and for all natural numbers n, m holds (xn)m =
xn·m.

2. If-while Algebra over Integers

Let X be a non empty set. A Z-variable of X is a function from ZX into X.
A Z-expression of X is a function from ZX into Z. A Z-array of X is a function
from Z into X.
In the sequel A is a pre-if-while algebra.
Let us consider A, let I be an element of A, let X be a non empty set, let

T be a subset of ZX , and let f be an execution function of A over ZX and T .
We say that I is an assignment w.r.t. A, X, and f if and only if the conditions
(Def. 14) are satisfied.

(Def. 14)(i) I ∈ ElementaryInstructionsA, and
(ii) there exists a Z-variable v of X and there exists a Z-expression t of X
such that for every element s of ZX holds f(s, I) = s+· (v(s), t(s)).
Let us consider A, let X be a non empty set, let T be a subset of ZX , let f

be an execution function of A over ZX and T , let v be a Z-variable of X, and
let t be a Z-expression of X. We say that v and t form an assignment w.r.t. f
if and only if:

(Def. 15) There exists an element I of A such that I ∈ ElementaryInstructionsA
and for every element s of ZX holds f(s, I) = s+· (v(s), t(s)).
Let us consider A, let X be a non empty set, let T be a subset of ZX , and

let f be an execution function of A over ZX and T . Let us assume that there
exists an element of A which is an assignment w.r.t. A, X, and f . A Z-variable
of X is said to be a Z-variable of A w.r.t. f if:

(Def. 16) There exists a Z-expression t of X such that it and t form an assignment
w.r.t. f .

Let us consider A, let X be a non empty set, let T be a subset of ZX , and let
f be an execution function of A over ZX and T . Let us assume that there exists
an element of A which is an assignment w.r.t. A, X, and f . A Z-expression of
X is said to be a Z-expression of A w.r.t. f if:

(Def. 17) There exists a Z-variable v of X such that v and it form an assignment
w.r.t. f .



mizar analysis of algorithms: algorithms . . . 181

Let X, Y be non empty sets, let f be an element of Y X , and let x be an
element of X. Then f(x) is an element of Y .
Let X be a non empty set and let x be an element of X. The functor ẋ

yielding a Z-expression of X is defined as follows:
(Def. 18) For every element s of ZX holds (ẋ)(s) = s(x).

Let X be a non empty set and let v be a Z-variable of X. The functor v̇
yielding a Z-expression of X is defined by:

(Def. 19) For every element s of ZX holds (v̇)(s) = s(v(s)).
Let X be a non empty set and let x be an element of X. The functor x̂ yields

a Z-variable of X and is defined by:
(Def. 20) x̂ = ZX 7−→ x.

The following proposition is true

(14) For every non empty set X and for every element x of X holds ẋ = ˙̂x.

Let X be a non empty set and let i be an integer number. The functor iX
yields a Z-expression of X and is defined by:

(Def. 21) iX = ZX 7−→ i.
One can prove the following proposition

(15) For every non empty set X and for every Z-expression t of X holds
t+ 0X = t and t 1X = t.

Let us consider A, let X be a non empty set, let T be a subset of ZX , and
let f be an execution function of A over ZX and T . We say that f is Euclidean
if and only if the conditions (Def. 22) are satisfied.

(Def. 22) For every Z-variable v of A w.r.t. f and for every Z-expression t of A
w.r.t. f holds v and t form an assignment w.r.t. f and for every integer
number i holds iX is a Z-expression of A w.r.t. f and for every Z-variable
v of A w.r.t. f holds v̇ is a Z-expression of A w.r.t. f and for every element
x of X holds x̂ is a Z-variable of A w.r.t. f and there exists a Z-array a
of X such that a�X is one-to-one and for every Z-expression t of A w.r.t.
f holds a · t is a Z-variable of A w.r.t. f and for every Z-expression t of A
w.r.t. f holds −t is a Z-expression of A w.r.t. f and for all Z-expressions
t1, t2 of A w.r.t. f holds t1 t2 is a Z-expression of A w.r.t. f and t1 + t2 is
a Z-expression of A w.r.t. f and t1÷ t2 is a Z-expression of A w.r.t. f and
t1 mod t2 is a Z-expression of A w.r.t. f and leq(t1, t2) is a Z-expression
of A w.r.t. f and gt(t1, t2) is a Z-expression of A w.r.t. f .
Let us consider A. We say that A is Euclidean if and only if:

(Def. 23) For every non empty countable set X and for every subset T of ZX holds
there exists an execution function of A over ZX and T which is Euclidean.
The infinite missing N set Z-ElemIns is defined by:

(Def. 24) Z-ElemIns = NZN × ZZN
.



182 grzegorz bancerek

An execution function of F(S,Z-ElemIns) over ZN and ZN�06=0 is said to be
a Z-execution if it satisfies the condition (Def. 25).

(Def. 25) Let s be an element of ZN, v be an element of NZN
, and e be an element

of ZZN
. Then it(s, the root tree of 〈〈v, e〉〉) = s+· (v(s), e(s)).

Let X be a non empty set. The functor Z-ElemInsX yielding an infinite
missing N set is defined as follows:

(Def. 26) Z-ElemInsX = XZX × ZZX .

Let X be a non empty set and let x be an element of X. An execution
function of F(S,Z-ElemInsX) over ZX and ZX�x6=0 is said to be a Z-execution
with x if it satisfies the condition (Def. 27).

(Def. 27) Let s be an element of ZX , v be an element of XZX , and e be an element
of ZZX . Then it(s, the root tree of 〈〈v, e〉〉) = s+· (v(s), e(s)).
Let X be a non empty set, let T be a subset of ZX , and let c be an

enumeration of X. Let us assume that rng c ⊆ N. An execution function of
F(S,Z-ElemIns) over ZX and T is said to be a Z-execution with c over T if it
satisfies the condition (Def. 28).

(Def. 28) Let s be an element of ZX , v be an element of XZX , and e be an element
of ZZX . Then it(s, the root tree of 〈〈c · v ◦N c, e ◦N c〉〉) = s+· (v(s), e(s)).
We now state three propositions:

(16) Let f be a Z-execution, v be a Z-variable of N, and t be a Z-expression
of N. Then v and t form an assignment w.r.t. f .

(17) For every Z-execution f holds every Z-variable of N is a Z-variable of
F(S,Z-ElemIns) w.r.t. f .

(18) For every Z-execution f holds every Z-expression of N is a Z-expression
of F(S,Z-ElemIns) w.r.t. f .
Let us mention that every Z-execution is Euclidean.
One can prove the following three propositions:

(19) Let X be a non empty countable set, T be a subset of ZX , c be an
enumeration of X, f be a Z-execution with c over T , v be a Z-variable of
X, and t be a Z-expression of X. Then v and t form an assignment w.r.t.
f .

(20) Let X be a non empty countable set, T be a subset of ZX , c be an
enumeration of X, and f be a Z-execution with c over T . Then every
Z-variable of X is a Z-variable of F(S,Z-ElemIns) w.r.t. f .

(21) Let X be a non empty countable set, T be a subset of ZX , c be an
enumeration of X, and f be a Z-execution with c over T . Then every
Z-expression of X is a Z-expression of F(S,Z-ElemIns) w.r.t. f .
Let X be a countable non empty set, let T be a subset of ZX , and let c be an

enumeration of X. Observe that every Z-execution with c over T is Euclidean.



mizar analysis of algorithms: algorithms . . . 183

Let us observe that F(S,Z-ElemIns) is Euclidean.
One can check that there exists a pre-if-while algebra which is Euclidean

and non degenerated.
Let A be an Euclidean pre-if-while algebra, let X be a non empty countable

set, and let T be a subset of ZX . Observe that there exists an execution function
of A over ZX and T which is Euclidean.
In the sequel A is an Euclidean pre-if-while algebra, X is a non empty

countable set, T is a subset of ZX , and f is an Euclidean execution function of
A over ZX and T .
Let us consider A, X, T , f and let t be a Z-expression of A w.r.t. f . Then

−t is a Z-expression of A w.r.t. f .
Let us consider A, X, T , f , let t be a Z-expression of A w.r.t. f , and let i

be an integer number. Then t+ i, t− i, and t · i are Z-expressions of A w.r.t. f .
Let us consider A, X, T , f and let t1, t2 be Z-expressions of A w.r.t. f .

Then t1− t2, t1+ t2, and t1 t2 are Z-expressions of A w.r.t. f . Moreover, t1÷ t2,
t1 mod t2, leq(t1, t2), and gt(t1, t2) are also Z-expressions of A w.r.t. f and they
can be characterized by the conditions:

(Def. 29) For every element s of ZX holds (t1 ÷ t2)(s) = t1(s)÷ t2(s).
(Def. 30) For every element s of ZX holds (t1 mod t2)(s) = t1(s) mod t2(s).
(Def. 31) For every element s of ZX holds (leq(t1, t2))(s) = (t1(s) > t2(s)→ 0, 1).
(Def. 32) For every element s of ZX holds (gt(t1, t2))(s) = (t1(s) > t2(s)→ 1, 0).

Let us consider A, X, T , f and let t1, t2 be Z-expressions of A w.r.t. f .
Then eq(t1, t2) is a Z-expression of A w.r.t. f and it can be characterized by the
condition:

(Def. 33) For every element s of ZX holds (eq(t1, t2))(s) = (t1(s) = t2(s)→ 1, 0).
Let us consider A, X, T , f and let v be a Z-variable of A w.r.t. f . The

functor v̇ yields a Z-expression of A w.r.t. f and is defined by:
(Def. 34) v̇ = ẋ where x = v qua Z-variable of X.

Let us consider A, X, T , f and let x be an element of X. The functor x̂A,f
yields a Z-variable of A w.r.t. f and is defined as follows:

(Def. 35) x̂A,f = x̂.

Let us consider A, X, T , f and let x be a variable in f . We introduce x̂ as
a synonym of x̂A,f .
Let us consider A, X, T , f and let x be a variable in f . The functor ẋ

yielding a Z-expression of A w.r.t. f is defined as follows:
(Def. 36) ẋ = ˙̂x.

The following proposition is true

(22) For every variable x in f and for every element s of ZX holds (ẋ)(s) =
s(x).



184 grzegorz bancerek

Let us consider A, X, T , f and let i be an integer number. The functor iA,f
yields a Z-expression of A w.r.t. f and is defined as follows:

(Def. 37) iA,f = iX .

Let us consider A, X, T , f , let v be a Z-variable of A w.r.t. f , and let t be a
Z-expression of A w.r.t. f . The functor v:= t yielding an element of A is defined
as follows:

(Def. 38) v:= t = choose({I ∈ A: I ∈ ElementaryInstructionsA ∧∧
s : element of ZX f(s, I) = s+· (v(s), t(s))}).

One can prove the following proposition

(23) Let v be a Z-variable of A w.r.t. f and t be a Z-expression of A w.r.t.
f . Then v:= t ∈ ElementaryInstructionsA .
Let us consider A, X, T , f , let v be a Z-variable of A w.r.t. f , and let t be

a Z-expression of A w.r.t. f . Observe that v:= t is absolutely-terminating.
Let us consider A, X, T , f , let v be a Z-variable of A w.r.t. f , and let t be

a Z-expression of A w.r.t. f . The functors v+= t and v*= t yielding absolutely-
terminating elements of A are defined by:

(Def. 39) v+= t = v:= (v̇ + t).

(Def. 40) v*= t = v:= (v̇ t).

Let us consider A, X, T , f , let x be an element of X, and let t be a Z-
expression of A w.r.t. f . The functor x:= t yielding an absolutely-terminating
element of A is defined as follows:

(Def. 41) x:= t = x̂A,f:= t.

Let us consider A, X, T , f , let x be an element of X, and let y be a variable
in f . The functor x:= y yields an absolutely-terminating element of A and is
defined by:

(Def. 42) x:= y = x:= ẏ.

Let us consider A,X, T , f , let x be an element ofX, and let v be a Z-variable
of A w.r.t. f . The functor x:= v yields an absolutely-terminating element of A
and is defined by:

(Def. 43) x:= v = x:= v̇.

Let us consider A, X, T , f and let v, w be Z-variables of A w.r.t. f . The
functor v:=w yielding an absolutely-terminating element of A is defined as
follows:

(Def. 44) v:=w = v:= ẇ.

Let us consider A, X, T , f , let x be a variable in f , and let i be an integer
number. The functor x:= i yielding an absolutely-terminating element of A is
defined by:

(Def. 45) x:= i = x:= (iA,f ).



mizar analysis of algorithms: algorithms . . . 185

Let us consider A, X, T , f , let v1, v2 be Z-variables of A w.r.t. f , and let x
be a variable in f . The functor swap(v1, x, v2) yields an absolutely-terminating
element of A and is defined by:

(Def. 46) swap(v1, x, v2) = x:= v1; v1:= v2; v2:= ẋ.

Let us consider A, X, T , f , let x be a variable in f , and let t be a Z-
expression of A w.r.t. f . The functors x+= t, x*= t, x%= t, and x/= t yielding
absolutely-terminating elements of A are defined by:

(Def. 47) x+= t = x:= (ẋ+ t).

(Def. 48) x*= t = x:= (ẋ t).

(Def. 49) x%= t = x:= (ẋ mod t).

(Def. 50) x/= t = x:= (ẋ÷ t).
Let us consider A, X, T , f , let x be a variable in f , and let i be an integer

number. The functor x+= i, x*= i, x%= i, and x/= i yield absolutely-terminating
elements of A and are defined as follows:

(Def. 51) x+= i = x:= (ẋ+ i).

(Def. 52) x*= i = x:= (ẋ · i).
(Def. 53) x%= i = x:= (ẋ mod iA,f ).

(Def. 54) x/= i = x:= (ẋ÷ iA,f ).
The functor x÷ i yields a Z-expression of A w.r.t. f and is defined as follows:

(Def. 55) x÷ i = ẋ÷ iA,f .
Let us consider A, X, T , f , let v be a Z-variable of A w.r.t. f , and let i be an

integer number. The functors v:= i, v+= i, and v*= i yield absolutely-terminating
elements of A and are defined by:

(Def. 56) v:= i = v:= (iA,f ).

(Def. 57) v+= i = v:= (v̇ + i).

(Def. 58) v*= i = v:= (v̇ · i).
Let us consider A, X, let b be an element of X, let g be an Euclidean

execution function of A over ZX and ZX�b6=0, and let t1 be a Z-expression of A
w.r.t. g. Absolutely-terminating elements “t1 is odd” and “t1 is even” of A are
defined by:

(Def. 59) t1 is odd = b:= (t1 mod 2A,g).

(Def. 60) t1 is even = b:= ((t1 + 1) mod 2A,g).

Let t2 be a Z-expression of A w.r.t. g. The functors t1 leq t2, t1 gt t2, and t1 eq t2
yield absolutely-terminating elements of A and are defined as follows:

(Def. 61) t1 leq t2 = b:= leq(t1, t2).

The functor t1 gt t2 yields an absolutely-terminating element of A and is defined
as follows:

(Def. 62) t1 gt t2 = b:= gt(t1, t2).



186 grzegorz bancerek

(Def. 63) t1 eq t2 = b:= eq(t1, t2).

Let us consider A, X, let b be an element of X, let g be an Euclidean
execution function of A over ZX and ZX�b6=0, and let t1, t2 be Z-expressions of A
w.r.t. g. We introduce t2 geq t1 as a synonym of t1 leq t2 and t2 lt t1 as a synonym
of t1 gt t2.
Let us consider A, X, let b be an element of X, let g be an Euclidean

execution function of A over ZX and ZX�b6=0, and let v1, v2 be Z-variables of A
w.r.t. g. The functors v1 leq v2 and v1 gt v2 yield absolutely-terminating elements
of A and are defined as follows:

(Def. 64) v1 leq v2 = v̇1 leq v̇2.

(Def. 65) v1 gt v2 = v̇1 gt v̇2.

Let us consider A, X, let b be an element of X, let g be an Euclidean
execution function of A over ZX and ZX�b6=0, and let v1, v2 be Z-variables of
A w.r.t. g. We introduce v2 geq v1 as a synonym of v1 leq v2 and v2 lt v1 as a
synonym of v1 gt v2.
Let us consider A, X, let b be an element of X, let g be an Euclidean

execution function of A over ZX and ZX�b6=0, and let x1 be a variable in g.
Absolutely-terminating elements “x1 is odd” and “x1 is even” of A are defined
by:

(Def. 66) x1 is odd = (ẋ1) is odd.

(Def. 67) x1 is even = (ẋ1) is even.

Let x2 be a variable in g. The functors x1 leqx2 and x1 gtx2 yield absolutely-
terminating elements of A and are defined by:

(Def. 68) x1 leqx2 = ẋ1 leq ẋ2.

(Def. 69) x1 gtx2 = ẋ1 gt ẋ2.

Let us consider A, X, let b be an element of X, let g be an Euclidean
execution function of A over ZX and ZX�b6=0, and let x1, x2 be variables in g.
We introduce x2 geqx1 as a synonym of x1 leqx2 and x2 ltx1 as a synonym of
x1 gtx2.
Let us consider A, X, let b be an element of X, let g be an Euclidean

execution function of A over ZX and ZX�b6=0, let x be a variable in g, and let
i be an integer number. The functors x leq i, x geq i, x gt i, and x lt i yielding
absolutely-terminating elements of A are defined as follows:

(Def. 70) x leq i = ẋ leq iA,g.

(Def. 71) x geq i = ẋ geq iA,g.

(Def. 72) x gt i = ẋ gt iA,g.

(Def. 73) x lt i = ẋ lt iA,g.

The functor xi yielding a Z-expression of A w.r.t. g is defined as follows:
(Def. 74) x

i = ẋ÷ iA,g.



mizar analysis of algorithms: algorithms . . . 187

Let us consider A, X, T , f and let x1, x2 be variables in f . The functors
x1+=x2, x1*=x2, x1%=x2, and x1/=x2 yielding absolutely-terminating elements
of A are defined as follows:

(Def. 75) x1+=x2 = x1+= ẋ2.

(Def. 76) x1*=x2 = x1*= ẋ2.

(Def. 77) x1%=x2 = x1:= (ẋ1 mod ẋ2).

(Def. 78) x1/=x2 = x1:= (ẋ1 ÷ ẋ2).
The functors x1 + x2, x1 · x2, x1 mod x2, and x1 ÷ x2 yield Z-expressions of A
w.r.t. f and are defined as follows:

(Def. 79) x1 + x2 = ẋ1 + ẋ2.

(Def. 80) x1 · x2 = ẋ1 ẋ2.
(Def. 81) x1 mod x2 = ẋ1 mod ẋ2.

(Def. 82) x1 ÷ x2 = ẋ1 ÷ ẋ2.
For simplicity, we follow the rules: A denotes an Euclidean pre-if-while al-

gebra, X denotes a non empty countable set, x, y, z denote elements of X, s
denotes an element of ZX , T denotes a subset of ZX , f denotes an Euclidean
execution function of A over ZX and T , v denotes a Z-variable of A w.r.t. f , t
denotes a Z-expression of A w.r.t. f , and i denotes an integer number.
Next we state a number of propositions:

(24) f(s, v:= t)(v(s)) = t(s) and for every z such that z 6= v(s) holds f(s,
v:= t)(z) = s(z).

(25) Let x be a variable in f and i be an integer number. Then f(s,
x:= i)(x) = i and for every z such that z 6= x holds f(s, x:= i)(z) = s(z).

(26) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then f(s,
x:= t)(x) = t(s) and for every z such that z 6= x holds f(s, x:= t)(z) =
s(z).

(27) For all variables x, y in f holds f(s, x:= y)(x) = s(y) and for every z
such that z 6= x holds f(s, x:= y)(z) = s(z).

(28) For every variable x in f holds f(s, x+= i)(x) = s(x) + i and for every z
such that z 6= x holds f(s, x+= i)(z) = s(z).

(29) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then
f(s, x+= t)(x) = s(x) + t(s) and for every z such that z 6= x holds f(s,
x+= t)(z) = s(z).

(30) For all variables x, y in f holds f(s, x+= y)(x) = s(x) + s(y) and for
every z such that z 6= x holds f(s, x+= y)(z) = s(z).

(31) For every variable x in f holds f(s, x*= i)(x) = s(x) · i and for every z
such that z 6= x holds f(s, x*= i)(z) = s(z).

(32) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then
f(s, x*= t)(x) = s(x) · t(s) and for every z such that z 6= x holds f(s,



188 grzegorz bancerek

x*= t)(z) = s(z).

(33) For all variables x, y in f holds f(s, x*= y)(x) = s(x) ·s(y) and for every
z such that z 6= x holds f(s, x*= y)(z) = s(z).

(34) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, x be a variable in g, and i be an integer number.
Then
(i) if s(x) ≤ i, then g(s, x leq i)(b) = 1,
(ii) if s(x) > i, then g(s, x leq i)(b) = 0,
(iii) if s(x) ≥ i, then g(s, x geq i)(b) = 1,
(iv) if s(x) < i, then g(s, x geq i)(b) = 0, and
(v) for every z such that z 6= b holds g(s, x leq i)(z) = s(z) and g(s,
x geq i)(z) = s(z).

(35) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x, y be variables in g. Then if s(x) ≤ s(y), then
g(s, x leq y)(b) = 1 and if s(x) > s(y), then g(s, x leq y)(b) = 0 and for
every z such that z 6= b holds g(s, x leq y)(z) = s(z).

(36) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, x be a variable in g, and i be an integer number.
Then
(i) s(x) ≤ i iff g(s, x leq i) ∈ ZX�b6=0, and
(ii) s(x) ≥ i iff g(s, x geq i) ∈ ZX�b6=0.

(37) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x, y be variables in g. Then
(i) s(x) ≤ s(y) iff g(s, x leq y) ∈ ZX�b6=0, and
(ii) s(x) ≥ s(y) iff g(s, x geq y) ∈ ZX�b6=0.

(38) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, x be a variable in g, and i be an integer number.
Then
(i) if s(x) > i, then g(s, x gt i)(b) = 1,
(ii) if s(x) ≤ i, then g(s, x gt i)(b) = 0,
(iii) if s(x) < i, then g(s, x lt i)(b) = 1,
(iv) if s(x) ≥ i, then g(s, x lt i)(b) = 0, and
(v) for every z such that z 6= b holds g(s, x gt i)(z) = s(z) and g(s,
x lt i)(z) = s(z).

(39) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x, y be variables in g. Then
(i) if s(x) > s(y), then g(s, x gt y)(b) = 1,
(ii) if s(x) ≤ s(y), then g(s, x gt y)(b) = 0,
(iii) if s(x) < s(y), then g(s, x lt y)(b) = 1,
(iv) if s(x) ≥ s(y), then g(s, x lt y)(b) = 0, and



mizar analysis of algorithms: algorithms . . . 189

(v) for every z such that z 6= b holds g(s, x gt y)(z) = s(z) and g(s,
x lt y)(z) = s(z).

(40) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, x be a variable in g, and i be an integer number.
Then
(i) s(x) > i iff g(s, x gt i) ∈ ZX�b6=0, and
(ii) s(x) < i iff g(s, x lt i) ∈ ZX�b6=0.

(41) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x, y be variables in g. Then
(i) s(x) > s(y) iff g(s, x gt y) ∈ ZX�b6=0, and
(ii) s(x) < s(y) iff g(s, x lt y) ∈ ZX�b6=0.

(42) For every variable x in f holds f(s, x%= i)(x) = s(x) mod i and for every
z such that z 6= x holds f(s, x%= i)(z) = s(z).

(43) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then
f(s, x%= t)(x) = s(x) mod t(s) and for every z such that z 6= x holds f(s,
x%= t)(z) = s(z).

(44) For all variables x, y in f holds f(s, x%= y)(x) = s(x) mod s(y) and for
every z such that z 6= x holds f(s, x%= y)(z) = s(z).

(45) For every variable x in f holds f(s, x/= i)(x) = s(x)÷ i and for every z
such that z 6= x holds f(s, x/= i)(z) = s(z).

(46) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then
f(s, x/= t)(x) = s(x) ÷ t(s) and for every z such that z 6= x holds f(s,
x/= t)(z) = s(z).

(47) For all variables x, y in f holds f(s, x/= y)(x) = s(x) ÷ s(y) and for
every z such that z 6= x holds f(s, x/= y)(z) = s(z).

(48) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and t be a Z-expression of A w.r.t. g. Then
(i) g(s, t is odd)(b) = t(s) mod 2,
(ii) g(s, t is even)(b) = (t(s) + 1) mod 2, and
(iii) for every z such that z 6= b holds g(s, t is odd)(z) = s(z) and g(s, t is
even)(z) = s(z).

(49) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x be a variable in g. Then
(i) g(s, x is odd)(b) = s(x) mod 2,
(ii) g(s, x is even)(b) = (s(x) + 1) mod 2, and
(iii) for every z such that z 6= b holds g(s, x is odd)(z) = s(z).
(50) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and t be a Z-expression of A w.r.t. g. Then
(i) t(s) is odd iff g(s, t is odd) ∈ ZX�b6=0, and
(ii) t(s) is even iff g(s, t is even) ∈ ZX�b6=0.



190 grzegorz bancerek

(51) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x be a variable in g. Then
(i) s(x) is odd iff g(s, x is odd) ∈ ZX�b6=0, and
(ii) s(x) is even iff g(s, x is even) ∈ ZX�b6=0.

In this article we present several logical schemes. The scheme ForToIteration
deals with an Euclidean pre-if-while algebra A, a countable non empty set B,
an element C of B, elements D, E of A, an Euclidean execution function F of A
over ZB and ZB�C6=0, variables G, H in F , an element I of ZB, a Z-expression J
of A w.r.t. F , and a unary predicate P, and states that:

P[F(I, E)] and if J (I) ≤ I(H), then F(I, E)(G) = I(H) + 1
and if J (I) > I(H), then F(I, E)(G) = J (I) and F(I, E)(H) =
I(H)

provided the following conditions are met:
• E = forG:=J until G leqH step G+= 1 do D done,
• P[F(I, G:=J )],
• For every element s of ZB such that P[s] holds P[F(s, D;G+= 1)]
and P[F(s, G leqH)],

• For every element s of ZB such that P[s] holds F(s, D)(G) = s(G)
and F(s, D)(H) = s(H), and

• H 6= G and H 6= C and G 6= C.
The scheme ForDowntoIteration deals with an Euclidean pre-if-while algebra

A, a countable non empty set B, an element C of B, elements D, E of A, an
Euclidean execution function F of A over ZB and ZB�C6=0, variables G, H in F ,
an element I of ZB, a Z-expression J of A w.r.t. F , and a unary predicate P,
and states that:

P[F(I, E)] and if J (I) ≥ I(H), then F(I, E)(G) = I(H) − 1
and if J (I) < I(H), then F(I, E)(G) = J (I) and F(I, E)(H) =
I(H)

provided the following conditions are satisfied:
• E = forG:=J until Ḣ leq Ġ step G+= (−1) do D done,
• P[F(I, G:=J )],
• For every element s of ZB such that P[s] holds P[F(s, D;G+= (−1))]
and P[F(s, H leqG)],

• For every element s of ZB such that P[s] holds F(s, D)(G) = s(G)
and F(s, D)(H) = s(H), and

• H 6= G and H 6= C and G 6= C.

3. Termination in If-while Algebras over Integers

In the sequel b denotes an element ofX and g denotes an Euclidean execution
function of A over ZX and ZX�b6=0.



mizar analysis of algorithms: algorithms . . . 191

One can prove the following four propositions:

(52) Let I be an element of A and i, n be variables in g. Suppose there exists
a function d such that d(b) = 0 and d(n) = 1 and d(i) = 2 and for every s
holds g(s, I)(n) = s(n) and g(s, I)(i) = s(i). Then iteration of g started
in I; i+= 1; i leqn terminates w.r.t. g(s, i leqn).

(53) Let P be a set, I be an element of A, and i, n be variables in g. Suppose
that
(i) there exists a function d such that d(b) = 0 and d(n) = 1 and d(i) = 2,
and

(ii) for every s such that s ∈ P holds g(s, I)(n) = s(n) and g(s, I)(i) = s(i)
and g(s, I), g(s, i leqn), g(s, i+= 1) ∈ P.
Suppose s ∈ P. Then iteration of g started in I; i+= 1; i leqn terminates
w.r.t. g(s, i leqn).

(54) Let I be an element of A. Suppose I is terminating w.r.t. g. Let i, n
be variables in g. Suppose there exists a function d such that d(b) = 0
and d(n) = 1 and d(i) = 2 and for every s holds g(s, I)(n) = s(n) and
g(s, I)(i) = s(i). Then for i:= t until i leqn step i+= 1 do I done is
terminating w.r.t. g.

(55) Let P be a set and I be an element of A. Suppose I is terminating w.r.t.
g and P . Let i, n be variables in g. Suppose that
(i) there exists a function d such that d(b) = 0 and d(n) = 1 and d(i) = 2,
(ii) for every s such that s ∈ P holds g(s, I)(n) = s(n) and g(s, I)(i) = s(i),
and

(iii) P is invariant w.r.t. i:= t and g, invariant w.r.t. I and g, invariant w.r.t.
i leqn and g, and invariant w.r.t. i+= 1 and g.
Then for i:= t until i leqn step i+= 1 do I done is terminating w.r.t. g
and P .

4. Examples

Let us consider X, A, T , f , s and let I be an element of A. Then f(s, I) is
an element of ZX .
One can prove the following propositions. Let F denotes the program:
s:= 1;
for i:= 2 until i leqn step i+= 1 do
s*= i
done

(56) Let n, s, i be variables in g. Given a function d such that d(n) = 1 and
d(s) = 2 and d(i) = 3 and d(b) = 4. Then F is terminating w.r.t. g.



192 grzegorz bancerek

(57) Let n, s, i be variables in g. Given a function d such that d(n) = 1 and
d(s) = 2 and d(i) = 3 and d(b) = 4. Let q be an element of ZX and N be
a natural number. If N = q(n), then g(q, F )(s) = N !.

Let P0 denotes the program:
s:= 1;
for i:= 1 until i leqn step i+= 1 do
s*=x
done

(58) Let x, n, s, i be variables in g. Given a function d such that d(x) = 0 and
d(n) = 1 and d(s) = 2 and d(i) = 3 and d(b) = 4. Then P0 is terminating
w.r.t. g.

(59) Let x, n, s, i be variables in g. Given a function d such that d(x) = 0
and d(n) = 1 and d(s) = 2 and d(i) = 3 and d(b) = 4. Let q be an element
of ZX and N be a natural number. If N = q(n), then g(q, P0)(s) = q(x)N .

Let Fib denotes the program:
x:= 0;
y:= 1;
for i:= 1 until i leqn step i+= 1 do
z:=x;x:= y; y+= z
done

(60) Let n, x, y, z, i be variables in g. Given a function d such that d(b) = 0
and d(n) = 1 and d(x) = 2 and d(y) = 3 and d(z) = 4 and d(i) = 5. Then
Fib is terminating w.r.t. g.

(61) Let n, x, y, z, i be variables in g. Given a function d such that d(b) = 0
and d(n) = 1 and d(x) = 2 and d(y) = 3 and d(z) = 4 and d(i) = 5.
Let s be an element of ZX and N be an element of N. If N = s(n), then
g(s, F ib)(x) = Fib(N).

Let GCD1 denotes the program:
while y gt 0 do
z:=x; z%= y;
x:= y; y:= z
done

(62) Let x, y, z be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(z) = 3. Then GCD1 is terminating w.r.t. g
and {s : s(x) > s(y) ∧ s(y) ≥ 0}.

(63) Let x, y, z be variables in g. Given a function d such that d(b) = 0
and d(x) = 1 and d(y) = 2 and d(z) = 3. Let s be an element of ZX
and n, m be elements of N. If n = s(x) and m = s(y) and n > m, then
g(s,GCD1)(x) = gcd(n,m).

Let GCD2 denotes the program:



mizar analysis of algorithms: algorithms . . . 193

while y gt 0 do
z:= (ẋ− ẏ);
if z lt 0 then z*=−1 fi;
x:= y;
y:= z
done

(64) Let x, y, z be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(z) = 3. Then GCD2 is terminating w.r.t. g
and {s : s(x) ≥ 0 ∧ s(y) ≥ 0}.

(65) Let x, y, z be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(z) = 3. Let s be an element of ZX and n,
m be elements of N. Suppose n = s(x) and m = s(y) and n > 0. Then
g(s,GCD2)(x) = gcd(n,m).

Let P1 denotes the program:
y:= 1;
whilem gt 0 do
ifm is odd then y*=x fi;
m/= 2;
x*=x
done

(66) Let x, y, m be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(m) = 3. Then P1 is terminating w.r.t. g and
{s : s(m) ≥ 0}.

(67) Let x, y, m be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(m) = 3. Let s be an element of ZX and n be
a natural number. If n = s(m), then g(s, P1)(y) = s(x)

n.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65–69, 1991.

[4] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82,
1993.

[5] Grzegorz Bancerek. Mizar analysis of algorithms: Preliminaries. Formalized Mathematics,
15(3):87–110, 2007.

[6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Ma-
thematics, 4(1):91–101, 1993.

[7] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I – preliminaries.
Formalized Mathematics, 4(1):69–72, 1993.

[8] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[9] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. For-
malized Mathematics, 2(1):163–171, 1991.

[10] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Forma-
lized Mathematics, 4(1):23–27, 1993.



194 grzegorz bancerek

[11] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[14] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[15] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[16] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[18] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties
of measurable functions. Formalized Mathematics, 9(3):495–500, 2001.

[19] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of uni-
versal algebra. Formalized Mathematics, 3(2):251–253, 1992.

[20] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,
1990.

[21] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes.
Formalized Mathematics, 1(5):829–832, 1990.

[22] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[23] Beata Perkowska. Free universal algebra construction. Formalized Mathematics, 4(1):115–
120, 1993.

[24] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized
Mathematics, 2(2):213–216, 1991.

[25] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[26] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number
of variables. Formalized Mathematics, 9(1):95–110, 2001.

[27] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[28] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,
1(3):495–500, 1990.

[29] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[32] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received March 18, 2008


