Inverse Trigonometric Functions Arcsec and Arccosec

Bing Xie
Qingdao University of Science and Technology China

Xiquan Liang
Qingdao University of Science
and Technology
China

Fuguo Ge
Qingdao University of Science
and Technology
China

Summary. This article describes definitions of inverse trigonometric functions arcsec and arccosec, as well as their main properties.

MML identifier: $\underline{\text { SINCOS10 }}$, version: $\underline{7.8 .104 .100 .1011}$

The papers [1], [2], [16], [3], [12], [17], [13], [5], [8], [11], [14], [4], [6], [7], [10], [15], and [9] provide the notation and terminology for this paper.

In this paper x, r denote real numbers.
The following propositions are true:
(1) $\left[0, \frac{\pi}{2}[\subseteq \operatorname{dom}\right.$ (the function sec).
(2) $\left.] \frac{\pi}{2}, \pi\right] \subseteq \operatorname{dom}$ (the function sec).
(3) $\left[-\frac{\pi}{2}, 0[\subseteq \operatorname{dom}\right.$ (the function cosec).
(4) $\left.] 0, \frac{\pi}{2}\right] \subseteq \operatorname{dom}$ (the function cosec).
(5) The function sec is differentiable on $] 0, \frac{\pi}{2}[$ and for every x such that $x \in] 0, \frac{\pi}{2}[\text { holds (the function sec) })^{\prime}(x)=\frac{\sin x}{(\cos x)^{2}}$.
(6) The function sec is differentiable on $] \frac{\pi}{2}, \pi[$ and for every x such that $x \in] \frac{\pi}{2}, \pi\left[\right.$ holds (the function sec) ${ }^{\prime}(x)=\frac{\sin x}{(\cos x)^{2}}$.
(7)(i) The function cosec is differentiable on $]-\frac{\pi}{2}, 0[$, and
(ii) for every x such that $x \in]-\frac{\pi}{2}, 0[\text { holds (the function } \operatorname{cosec})^{\prime}(x)=$ $-\frac{\cos x}{(\sin x)^{2}}$.
(8)(i) The function cosec is differentiable on $] 0, \frac{\pi}{2}[$, and
(ii) for every x such that $x \in] 0, \frac{\pi}{2}[\text { holds (the function } \operatorname{cosec})^{\prime}(x)=$ $-\frac{\cos x}{(\sin x)^{2}}$.
(9) The function sec is continuous on $] 0, \frac{\pi}{2}[$.
(10) The function sec is continuous on $] \frac{\pi}{2}, \pi[$.
(11) The function cosec is continuous on $]-\frac{\pi}{2}, 0[$.
(12) The function cosec is continuous on $] 0, \frac{\pi}{2}[$.
(13) The function sec is increasing on $] 0, \frac{\pi}{2}[$.
(14) The function sec is increasing on $] \frac{\pi}{2}, \pi[$.
(15) The function cosec is decreasing on $]-\frac{\pi}{2}, 0[$.
(16) The function cosec is decreasing on $] 0, \frac{\pi}{2}[$.
(17) The function sec is increasing on $\left[0, \frac{\pi}{2}[\right.$.
(18) The function sec is increasing on $\left.] \frac{\pi}{2}, \pi\right]$.
(19) The function cosec is decreasing on $\left[-\frac{\pi}{2}, 0[\right.$.
(20) The function cosec is decreasing on $\left.] 0, \frac{\pi}{2}\right]$.
(21) (The function sec) $\upharpoonright\left[0, \frac{\pi}{2}[\right.$ is one-to-one.
(22) (The function sec) $\left\rceil \frac{\pi}{2}, \pi\right]$ is one-to-one.
(23) (The function cosec) $\upharpoonright\left[-\frac{\pi}{2}, 0[\right.$ is one-to-one.
(24) (The function cosec) $\left.\upharpoonright] 0, \frac{\pi}{2}\right]$ is one-to-one.

One can verify the following observations:

* (the function sec) $\upharpoonright\left[0, \frac{\pi}{2}[\right.$ is one-to-one,
* (the function sec) $\left.\upharpoonright] \frac{\pi}{2}, \pi\right]$ is one-to-one,
* (the function cosec) $\upharpoonright\left[-\frac{\pi}{2}, 0[\right.$ is one-to-one, and
* (the function cosec) $\left.\upharpoonright] 0, \frac{\pi}{2}\right]$ is one-to-one.

The partial function the 1 st part of arcsec from \mathbb{R} to \mathbb{R} is defined as follows:
(Def. 1) The 1st part of arcsec $=\left((\right.$ the function sec $) \upharpoonright\left[0, \frac{\pi}{2}[)^{-1}\right.$.
The partial function the 2 nd part of arcsec from \mathbb{R} to \mathbb{R} is defined as follows: (Def. 2) The 2nd part of $\operatorname{arcsec}=\left((\right.$ the function sec $\left.\left.) \upharpoonright \frac{\pi}{2}, \pi\right]\right)^{-1}$.

The partial function the 1 st part of arccosec from \mathbb{R} to \mathbb{R} is defined by:
$\left(\right.$ Def. 3) The 1st part of arccosec $=\left((\right.$ the function $\operatorname{cosec}) \upharpoonright\left[-\frac{\pi}{2}, 0[)^{-1}\right.$.
The partial function the 2 nd part of arccosec from \mathbb{R} to \mathbb{R} is defined by:
$\left(\text { Def. 4) The 2nd part of arccosec }=\left((\text { the function cosec }) \upharpoonright j 0, \frac{\pi}{2}\right]\right)^{-1}$.
Let r be a real number. The functor $\operatorname{arcsec}_{1} r$ is defined by:
(Def. 5) $\quad \operatorname{arcsec}_{1} r=($ the 1st part of $\operatorname{arcsec})(r)$.
The functor $\operatorname{arcsec}_{2} r$ is defined as follows:
(Def. 6) $\quad \operatorname{arcsec}_{2} r=$ (the 2nd part of $\left.\operatorname{arcsec}\right)(r)$.
The functor $\operatorname{arccosec}_{1} r$ is defined as follows:
(Def. 7) $\operatorname{arccosec}_{1} r=($ the 1st part of $\operatorname{arccosec})(r)$.
The functor $\operatorname{arccosec}_{2} r$ is defined by:
(Def. 8) $\quad \operatorname{arccosec}_{2} r=($ the 2 nd part of $\operatorname{arccosec})(r)$.
Let r be a real number. Then $\operatorname{arcsec}_{1} r$ is a real number. Then $\operatorname{arcsec}_{2} r$ is a real number. Then $\operatorname{arccosec}_{1} r$ is a real number. Then $\operatorname{arccosec}_{2} r$ is a real number.

We now state four propositions:
(25) $\quad \mathrm{rng}($ the 1 st part of $\operatorname{arcsec})=\left[0, \frac{\pi}{2}[\right.$.
(26) $\quad \operatorname{rng}($ the 2 nd part of $\left.\operatorname{arcsec})=] \frac{\pi}{2}, \pi\right]$.
(27) $\quad \operatorname{rng}($ the 1 st part of $\operatorname{arccosec})=\left[-\frac{\pi}{2}, 0[\right.$.
(28) $\quad \operatorname{rng}($ the 2 nd part of $\left.\operatorname{arccosec})=] 0, \frac{\pi}{2}\right]$.

One can check the following observations:

* the 1st part of arcsec is one-to-one,
* the 2nd part of arcsec is one-to-one,
* the 1st part of arccosec is one-to-one, and
* the 2nd part of arccosec is one-to-one.

Let t_{1} be a real number. Then $\sec t_{1}$ is a real number. Then $\operatorname{cosec} t_{1}$ is a real number.

We now state a number of propositions:
(29) $\quad \sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ and $\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$.
(30) $\sin \left(-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$ and $\cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ and $\sin \left(\frac{3}{4} \cdot \pi\right)=\frac{1}{\sqrt{2}}$ and $\cos \left(\frac{3}{4} \cdot \pi\right)=$ $-\frac{1}{\sqrt{2}}$.
(31) $\sec 0=1$ and $\sec \left(\frac{\pi}{4}\right)=\sqrt{2}$ and $\sec \left(\frac{3}{4} \cdot \pi\right)=-\sqrt{2}$ and $\sec \pi=-1$.
(32) $\operatorname{cosec}\left(-\frac{\pi}{2}\right)=-1$ and $\operatorname{cosec}\left(-\frac{\pi}{4}\right)=-\sqrt{2}$ and $\operatorname{cosec}\left(\frac{\pi}{4}\right)=\sqrt{2}$ and $\operatorname{cosec}\left(\frac{\pi}{2}\right)=1$
(33) For every set x such that $x \in\left[0, \frac{\pi}{4}\right]$ holds $\sec x \in[1, \sqrt{2}]$.
(34) For every set x such that $x \in\left[\frac{3}{4} \cdot \pi, \pi\right]$ holds $\sec x \in[-\sqrt{2},-1]$.
(35) For every set x such that $x \in\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]$ holds $\operatorname{cosec} x \in[-\sqrt{2},-1]$.
(36) For every set x such that $x \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ holds $\operatorname{cosec} x \in[1, \sqrt{2}]$.
(37) The function sec is continuous on $\left[0, \frac{\pi}{2}[\right.$.
(38) The function sec is continuous on $\left.] \frac{\pi}{2}, \pi\right]$.
(39) The function cosec is continuous on $\left[-\frac{\pi}{2}, 0[\right.$.
(40) The function cosec is continuous on $\left.] 0, \frac{\pi}{2}\right]$.
(41) $\operatorname{rng}\left((\right.$ the function $\left.\sec) \upharpoonright\left[0, \frac{\pi}{4}\right]\right)=[1, \sqrt{2}]$.
(42) $\quad \operatorname{rng}\left((\right.$ the function $\left.\sec) \upharpoonright\left[\frac{3}{4} \cdot \pi, \pi\right]\right)=[-\sqrt{2},-1]$.
(43) $\operatorname{rng}\left((\right.$ the function $\left.\operatorname{cosec}) \upharpoonright\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]\right)=[-\sqrt{2},-1]$.
(44) $\quad \operatorname{rng}\left((\right.$ the function $\left.\operatorname{cosec}) \upharpoonright\left[\frac{\pi}{4}, \frac{\pi}{2}\right]\right)=[1, \sqrt{2}]$.
(45) $[1, \sqrt{2}] \subseteq \operatorname{dom}($ the 1 st part of arcsec).
(46) $[-\sqrt{2},-1] \subseteq \operatorname{dom}$ (the 2 nd part of arcsec).
(47) $[-\sqrt{2},-1] \subseteq \operatorname{dom}($ the 1 st part of arccosec).
(48) $[1, \sqrt{2}] \subseteq$ dom (the 2nd part of arccosec).

One can check the following observations:

* (the function sec) $\upharpoonright\left[0, \frac{\pi}{4}\right]$ is one-to-one,
* (the function sec) $\upharpoonright\left[\frac{3}{4} \cdot \pi, \pi\right]$ is one-to-one,
* (the function cosec) $\upharpoonright\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]$ is one-to-one, and
* (the function cosec) $\upharpoonright\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ is one-to-one.

One can prove the following propositions:
(49) (The 1st part of arcsec) $\upharpoonright[1, \sqrt{2}]=\left((\text { the function sec }) \upharpoonright\left[0, \frac{\pi}{4}\right]\right)^{-1}$.
(50) (The 2nd part of $\operatorname{arcsec}) \upharpoonright[-\sqrt{2},-1]=\left((\text { the function } \sec) \upharpoonright\left[\frac{3}{4} \cdot \pi, \pi\right]\right)^{-1}$.
(51) (The 1st part of arccosec) $\upharpoonright[-\sqrt{2},-1]=\left((\text { the function cosec }) \upharpoonright\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]\right)^{-1}$.
(52) (The 2nd part of arccosec) $\upharpoonright[1, \sqrt{2}]=\left((\text { the function cosec }) \upharpoonright\left[\frac{\pi}{4}, \frac{\pi}{2}\right]\right)^{-1}$.
(53) $\quad\left((\right.$ The function $\sec) \upharpoonright\left[0, \frac{\pi}{4}\right]$ qua function $) \cdot(($ the 1 st part of $\operatorname{arcsec}) \upharpoonright[1, \sqrt{2}])=$ $\operatorname{id}_{[1, \sqrt{2}]}$.
(54) ((The function sec) $\upharpoonright\left[\frac{3}{4} \cdot \pi, \pi\right]$ qua function) $\cdot(($ the 2 nd part of $\operatorname{arcsec}) \upharpoonright[-\sqrt{2},-1])=\operatorname{id}_{[-\sqrt{2},-1]}$.
(55) ((The function cosec) $\upharpoonright\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]$ qua function) $\cdot(($ the 1 st part of $\operatorname{arccosec}) \upharpoonright[-\sqrt{2},-1])=\operatorname{id}_{[-\sqrt{2},-1]}$.
(56) ((The function cosec) $) \uparrow\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ qua function) $\cdot(($ the 2 nd part of $\operatorname{arccosec}) \upharpoonright[1, \sqrt{2}])=\mathrm{id}_{[1, \sqrt{2}]}$.
(57) $\quad\left((\right.$ The function sec $\left.) \upharpoonright\left[0, \frac{\pi}{4}\right]\right) \cdot(($ the 1 st part of $\operatorname{arcsec}) \upharpoonright[1, \sqrt{2}])=\mathrm{id}_{[1, \sqrt{2}]}$.
(58) $\quad\left((\right.$ The function $\left.\sec) \upharpoonright\left[\frac{3}{4} \cdot \pi, \pi\right]\right) \cdot(($ the 2 nd part of $\operatorname{arcsec}) \upharpoonright[-\sqrt{2},-1])=$ $\mathrm{id}_{[-\sqrt{2},-1]}$.
(59) $\quad\left((\right.$ The function cosec $\left.) \upharpoonright\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]\right) \cdot(($ the 1 st part of arccosec $) \upharpoonright[-\sqrt{2},-1])=$ $\mathrm{id}_{[-\sqrt{2},-1]}$.
(60) ((The function cosec) $\left.\upharpoonright\left[\frac{\pi}{4}, \frac{\pi}{2}\right]\right) \cdot(($ the 2 nd part of $\operatorname{arccosec}) \upharpoonright[1, \sqrt{2}])=$ $\mathrm{id}_{[1, \sqrt{2}]}$.
(61) (The 1st part of arcsec qua function) $\cdot\left((\right.$ the function sec $) \upharpoonright\left[0, \frac{\pi}{2}[)=\right.$ $\mathrm{id}_{\left[0, \frac{\pi}{2}[\right.}$.
(62) (The 2nd part of arcsec qua function) $\cdot(($ the function sec $\left.\left.) \upharpoonright] \frac{\pi}{2}, \pi\right]\right)=$ $\mathrm{id}_{\left.] \frac{\pi}{2}, \pi\right]}$.
(63) (The 1st part of arccosec qua function) $\cdot\left((\right.$ the function $\operatorname{cosec}) \upharpoonright\left[-\frac{\pi}{2}, 0[)=\right.$ $\operatorname{id}_{\left[-\frac{\pi}{2}, 0[\right.}$.
(64) (The 2nd part of arccosec qua function) $\cdot(($ the function cosec) $\left.\left.) \upharpoonright] 0, \frac{\pi}{2}\right]\right)=$ $\mathrm{id}_{\left.j 0, \frac{\pi}{2}\right]}$.
(65) (The 1st part of arcsec) $\cdot\left((\right.$ the function sec) $)\left\lceil\left[0, \frac{\pi}{2}[)=\mathrm{id}_{\left[0, \frac{\pi}{2}[\right.}[\right.\right.$.
(66) (The 2nd part of arcsec) $\cdot\left((\right.$ the function sec $\left.\left.\left.) \upharpoonright \frac{\pi}{2}, \pi\right]\right)=\mathrm{id}_{j \frac{\pi}{2}}, \pi\right]$.
(67) (The 1st part of arccosec) $\cdot\left((\right.$ the function $\operatorname{cosec}) \upharpoonright\left[-\frac{\pi}{2}, 0[)=\mathrm{id}_{\left[-\frac{\pi}{2}, 0[\right.}\right.$.
(68) (The 2nd part of arccosec) $\cdot\left((\right.$ the function cosec $\left.\left.) \upharpoonright\left[0, \frac{\pi}{2}\right]\right)=\mathrm{id}_{j 0, \frac{\pi}{2}}\right]$.
(69) If $0 \leq r<\frac{\pi}{2}$, then $\operatorname{arcsec}_{1} \sec r=r$.
(70) If $\frac{\pi}{2}<r \leq \pi$, then $\operatorname{arcsec}_{2} \sec r=r$.
(71) If $-\frac{\pi}{2} \leq r<0$, then $\operatorname{arccosec}_{1} \operatorname{cosec} r=r$.
(72) If $0<r \leq \frac{\pi}{2}$, then $\operatorname{arccosec}_{2} \operatorname{cosec} r=r$.
(73) $\operatorname{arcsec}_{1} 1=0$ and $\operatorname{arcsec}_{1} \sqrt{2}=\frac{\pi}{4}$.
(74) $\operatorname{arcsec}_{2}(-\sqrt{2})=\frac{3}{4} \cdot \pi$ and $\operatorname{arcsec}_{2}(-1)=\pi$.
(75) $\operatorname{arccosec}_{1}(-1)=-\frac{\pi}{2}$ and $\operatorname{arccosec}_{1}(-\sqrt{2})=-\frac{\pi}{4}$.
(76) $\operatorname{arccosec}_{2} \sqrt{2}=\frac{\pi}{4}$ and $\operatorname{arccosec}_{2} 1=\frac{\pi}{2}$.
(77) The 1st part of arcsec is increasing on (the function sec) ${ }^{\circ}\left[0, \frac{\pi}{2}[\right.$.
(78) The 2nd part of arcsec is increasing on (the function sec) $\left.\left.{ }^{\circ}\right] \frac{\pi}{2}, \pi\right]$.
(79) The 1st part of arccosec is decreasing on (the function cosec) ${ }^{\circ}\left[-\frac{\pi}{2}, 0[\right.$.
(80) The 2 nd part of arccosec is decreasing on (the function cosec) $\left.\left.{ }^{\circ}\right] 0, \frac{\pi}{2}\right]$.
(81) The 1st part of arcsec is increasing on $[1, \sqrt{2}]$.
(82) The 2nd part of arcsec is increasing on $[-\sqrt{2},-1]$.
(83) The 1st part of arccosec is decreasing on $[-\sqrt{2},-1]$.
(84) The 2 nd part of arccosec is decreasing on $[1, \sqrt{2}]$.
(85) For every set x such that $x \in[1, \sqrt{2}]$ holds $\operatorname{arcsec}_{1} x \in\left[0, \frac{\pi}{4}\right]$.
(86) For every set x such that $x \in[-\sqrt{2},-1]$ holds $\operatorname{arcsec}_{2} x \in\left[\frac{3}{4} \cdot \pi, \pi\right]$.
(87) For every set x such that $x \in[-\sqrt{2},-1]$ holds $\operatorname{arccosec}_{1} x \in\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]$.
(88) For every set x such that $x \in[1, \sqrt{2}]$ holds $\operatorname{arccosec}_{2} x \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.
(89) If $1 \leq r \leq \sqrt{2}$, then sec $\operatorname{arcsec}_{1} r=r$.
(90) If $-\sqrt{2} \leq r \leq-1$, then sec $\operatorname{arcsec}_{2} r=r$.
(91) If $-\sqrt{2} \leq r \leq-1$, then cosec $\operatorname{arccosec}_{1} r=r$.
(92) If $1 \leq r \leq \sqrt{2}$, then cosec $\operatorname{arccosec}_{2} r=r$.
(93) The 1st part of arcsec is continuous on $[1, \sqrt{2}]$.
(94) The 2 nd part of arcsec is continuous on $[-\sqrt{2},-1]$.
(95) The 1st part of arccosec is continuous on $[-\sqrt{2},-1]$.
(96) The 2nd part of arccosec is continuous on $[1, \sqrt{2}]$.
(97) $\operatorname{rng}(($ the 1st part of arcsec $) \upharpoonright[1, \sqrt{2}])=\left[0, \frac{\pi}{4}\right]$.
(98) $\quad \operatorname{rng}(($ the 2 nd part of $\operatorname{arcsec}) \upharpoonright[-\sqrt{2},-1])=\left[\frac{3}{4} \cdot \pi, \pi\right]$.
(99) $\quad \operatorname{rng}(($ the 1st part of $\operatorname{arccosec}) \upharpoonright[-\sqrt{2},-1])=\left[-\frac{\pi}{2},-\frac{\pi}{4}\right]$.
(100) $\operatorname{rng}(($ the 2 nd part of arccosec $) \upharpoonright[1, \sqrt{2}])=\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.
(101) If $1 \leq r \leq \sqrt{2}$ and $\operatorname{arcsec}_{1} r=0$, then $r=1$ and if $1 \leq r \leq \sqrt{2}$ and $\operatorname{arcsec}_{1} r=\frac{\pi}{4}$, then $r=\sqrt{2}$.
(102) If $-\sqrt{2} \leq r \leq-1$ and $\operatorname{arcsec}_{2} r=\frac{3}{4} \cdot \pi$, then $r=-\sqrt{2}$ and if $-\sqrt{2} \leq$ $r \leq-1$ and $\operatorname{arcsec}_{2} r=\pi$, then $r=-1$.
(103) If $-\sqrt{2} \leq r \leq-1$ and $\operatorname{arccosec}_{1} r=-\frac{\pi}{2}$, then $r=-1$ and if $-\sqrt{2} \leq r \leq$ -1 and $\operatorname{arccosec}_{1} r=-\frac{\pi}{4}$, then $r=-\sqrt{2}$.
(104) If $1 \leq r \leq \sqrt{2}$ and $\operatorname{arccosec}_{2} r=\frac{\pi}{4}$, then $r=\sqrt{2}$ and if $1 \leq r \leq \sqrt{2}$ and $\operatorname{arccosec}_{2} r=\frac{\pi}{2}$, then $r=1$.
(105) If $1 \leq r \leq \sqrt{2}$, then $0 \leq \operatorname{arcsec}_{1} r \leq \frac{\pi}{4}$.
(106) If $-\sqrt{2} \leq r \leq-1$, then $\frac{3}{4} \cdot \pi \leq \operatorname{arcsec}_{2} r \leq \pi$.
(107) If $-\sqrt{2} \leq r \leq-1$, then $-\frac{\pi}{2} \leq \operatorname{arccosec}_{1} r \leq-\frac{\pi}{4}$.
(108) If $1 \leq r \leq \sqrt{2}$, then $\frac{\pi}{4} \leq \operatorname{arccosec}_{2} r \leq \frac{\pi}{2}$.
(109) If $1<r<\sqrt{2}$, then $0<\operatorname{arcsec}_{1} r<\frac{\pi}{4}$.
(110) If $-\sqrt{2}<r<-1$, then $\frac{3}{4} \cdot \pi<\operatorname{arcsec}_{2} r<\pi$.
(111) If $-\sqrt{2}<r<-1$, then $-\frac{\pi}{2}<\operatorname{arccosec}_{1} r<-\frac{\pi}{4}$.
(112) If $1<r<\sqrt{2}$, then $\frac{\pi}{4}<\operatorname{arccosec}_{2} r<\frac{\pi}{2}$.
(113) If $1 \leq r \leq \sqrt{2}$, then sin $\operatorname{arcsec}_{1} r=\frac{\sqrt{r^{2}-1}}{r}$ and $\cos \operatorname{arcsec}_{1} r=\frac{1}{r}$.
(114) If $-\sqrt{2} \leq r \leq-1$, then $\sin \operatorname{arcsec}_{2} r=-\frac{\sqrt{r^{2}-1}}{r}$ and $\cos \operatorname{arcsec}_{2} r=\frac{1}{r}$.
(115) If $-\sqrt{2} \leq r \leq-1$, then $\sin \operatorname{arccosec}_{1} r=\frac{1}{r}$ and $\cos \operatorname{arccosec}_{1} r=$ $-\frac{\sqrt{r^{2}-1}}{r}$.
(116) If $1 \leq r \leq \sqrt{2}$, then $\sin \operatorname{arccosec}_{2} r=\frac{1}{r}$ and $\cos \operatorname{arccosec}_{2} r=\frac{\sqrt{r^{2}-1}}{r}$.
(117) If $1<r<\sqrt{2}$, then cosec $\operatorname{arcsec}_{1} r=\frac{r}{\sqrt{r^{2}-1}}$.
(118) If $-\sqrt{2}<r<-1$, then cosec $\operatorname{arcsec}_{2} r=-\frac{r}{\sqrt{r^{2}-1}}$.
(119) If $-\sqrt{2}<r<-1$, then sec $\operatorname{arccosec}_{1} r=-\frac{r}{\sqrt{r^{2}-1}}$.
(120) If $1<r<\sqrt{2}$, then sec $\operatorname{arccosec}_{2} r=\frac{r}{\sqrt{r^{2}-1}}$.
(121) The 1st part of arcsec is differentiable on (the function sec) $\left.{ }^{\circ}\right] 0, \frac{\pi}{2}[$.
(122) The 2nd part of arcsec is differentiable on (the function sec) $\left.{ }^{\circ}\right] \frac{\pi}{2}, \pi[$.
(123) The 1st part of arccosec is differentiable on (the function cosec) $\left.{ }^{\circ}\right]-\frac{\pi}{2}, 0[$.
(124) The 2nd part of arccosec is differentiable on (the function cosec) $\left.{ }^{\circ}\right] 0, \frac{\pi}{2}[$.
(125) (The function sec) $\left.{ }^{\circ}\right] 0, \frac{\pi}{2}[$ is open.
(126) (The function sec) $\left.{ }^{\circ}\right] \frac{\pi}{2}, \pi[$ is open.
(127) (The function cosec) $\left.{ }^{\circ}\right]-\frac{\pi}{2}, 0[$ is open.
(128) (The function cosec) $\left.{ }^{\circ}\right] 0, \frac{\pi}{2}[$ is open.
(129) The 1st part of arcsec is continuous on (the function sec) $\left.{ }^{\circ}\right] 0, \frac{\pi}{2}[$.
(130) The 2 nd part of arcsec is continuous on (the function sec) $\left.{ }^{\circ}\right] \frac{\pi}{2}, \pi[$.
(131) The 1st part of arccosec is continuous on (the function cosec) $\left.{ }^{\circ}\right]-\frac{\pi}{2}, 0[$.
(132) The 2nd part of arccosec is continuous on (the function cosec) $\left.{ }^{\circ}\right] 0, \frac{\pi}{2}[$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002.
[10] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[11] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[15] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

