Inverse Trigonometric Functions Arctan and Arccot

Xiquan Liang
Qingdao University of Science and Technology
China

Bing Xie
Qingdao University of Science
and Technology
China

Summary. This article describes definitions of inverse trigonometric functions arctan, arccot and their main properties, as well as several differentiation formulas of arctan and arccot.

MML identifier: SIN_COS9, version: $\underline{7.8 .104 .100 .1011}$

The articles [17], [1], [2], [18], [3], [13], [19], [7], [15], [5], [9], [12], [16], [4], [6], [8], [11], [14], and [10] provide the notation and terminology for this paper.

1. Function Arctan and Arccot

For simplicity, we adopt the following convention: x, r, s, h denote real numbers, n denotes an element of \mathbb{N}, Z denotes an open subset of \mathbb{R}, and f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathbb{R}.

The following propositions are true:
(1) $]-\frac{\pi}{2}, \frac{\pi}{2}[\subseteq \operatorname{dom}($ the function $\tan)$.
(2) $] 0, \pi[\subseteq$ dom (the function cot).
(3)(i) The function \tan is differentiable on $]-\frac{\pi}{2}, \frac{\pi}{2}[$, and
(ii) for every x such that $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\text { holds (the function } \tan)^{\prime}(x)=\frac{1}{(\cos x)^{2}}$.
(4) The function cot is differentiable on $] 0, \pi[$ and for every x such that $x \in] 0, \pi\left[\right.$ holds $(\text { the function } \cot)^{\prime}(x)=-\frac{1}{(\sin x)^{2}}$.
(5) The function \tan is continuous on $]-\frac{\pi}{2}, \frac{\pi}{2}[$.
(6) The function cot is continuous on $] 0, \pi[$.
(7) The function \tan is increasing on $]-\frac{\pi}{2}, \frac{\pi}{2}[$.
(8) The function cot is decreasing on $] 0, \pi[$.
(9) (The function tan) $\upharpoonright]-\frac{\pi}{2}, \frac{\pi}{2}[$ is one-to-one.
(10) (The function cot) $\upharpoonright] 0, \pi[$ is one-to-one.

Let us mention that (the function tan) $!]-\frac{\pi}{2}, \frac{\pi}{2}[$ is one-to-one and (the function cot) $\upharpoonright] 0, \pi[$ is one-to-one.

The partial function the function arctan from \mathbb{R} to \mathbb{R} is defined as follows:
$\left(\right.$ Def. 1) \quad The function $\arctan =(($ the function tan $) \Gamma]-\frac{\pi}{2}, \frac{\pi}{2}[)^{-1}$.
The partial function the function arccot from \mathbb{R} to \mathbb{R} is defined by:
(Def. 2) The function arccot $=(($ the function cot $) \upharpoonright] 0, \pi[)^{-1}$.
Let r be a real number. The functor $\arctan r$ is defined by:
(Def. 3) $\arctan r=($ the function $\arctan)(r)$.
The functor $\operatorname{arccot} r$ is defined by:
(Def. 4) $\operatorname{arccot} r=($ the function $\operatorname{arccot})(r)$.
Let r be a real number. Then $\arctan r$ is a real number. Then $\operatorname{arccot} r$ is a real number.

We now state two propositions:
(11) $\operatorname{rng}($ the function $\arctan)=]-\frac{\pi}{2}, \frac{\pi}{2}[$.
(12) $\operatorname{rng}($ the function arccot $)=] 0, \pi[$.

Let us mention that the function arctan is one-to-one and the function arccot is one-to-one.

Let r be a real number. Then $\tan r$ is a real number. Then $\cot r$ is a real number.

Next we state a number of propositions:
(13) For every real number x such that $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ holds (the function $\tan)(x)=\tan x$.
(14) For every real number x such that $x \in] 0, \pi[$ holds $($ the function $\cot)(x)=$ $\cot x$.
(15) For every real number x such that $\cos x \neq 0$ holds (the function $\tan)(x)=$ $\tan x$.
(16) For every real number x such that (the function $\sin)(x) \neq 0$ holds (the function $\cot)(x)=\cot x$.
(17) $\tan \left(-\frac{\pi}{4}\right)=-1$.
(18) $\cot \left(\frac{\pi}{4}\right)=1$ and $\cot \left(\frac{3}{4} \cdot \pi\right)=-1$.
(19) For every real number x such that $x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ holds $\tan x \in[-1,1]$.
(20) For every real number x such that $x \in\left[\frac{\pi}{4}, \frac{3}{4} \cdot \pi\right]$ holds $\cot x \in[-1,1]$.
(21) $\quad \operatorname{rng}\left((\right.$ the function $\left.\tan) \upharpoonright\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]\right)=[-1,1]$.
(22) $\operatorname{rng}\left((\right.$ the function cot $\left.) \upharpoonright\left[\frac{\pi}{4}, \frac{3}{4} \cdot \pi\right]\right)=[-1,1]$.
(23) $[-1,1] \subseteq \operatorname{dom}$ (the function arctan).
(24) $[-1,1] \subseteq \operatorname{dom}$ (the function arccot).

Let us observe that (the function \tan) $\upharpoonright\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ is one-to-one and (the function cot) $\upharpoonright\left[\frac{\pi}{4}, \frac{3}{4} \cdot \pi\right]$ is one-to-one.

The following propositions are true:
(25) (The function arctan) $\upharpoonright[-1,1]=\left((\text { the function } \tan) \upharpoonright\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]\right)^{-1}$.
(26) (The function arccot) $\upharpoonright[-1,1]=\left((\text { the function } \cot) \upharpoonright\left[\frac{\pi}{4}, \frac{3}{4} \cdot \pi\right]\right)^{-1}$.
(27) $\left((\right.$ The function $\tan) \upharpoonright\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ qua function) $\cdot(($ the function arctan $) \upharpoonright[-1,1])=$ $\operatorname{id}_{[-1,1]}$.
(28) $\left((\right.$ The function cot $) \upharpoonright\left[\frac{\pi}{4}, \frac{3}{4} \cdot \pi\right]$ qua function $) \cdot(($ the function $\operatorname{arccot}) \upharpoonright[-1,1])=$ $\operatorname{id}_{[-1,1]}$.
(29) $\quad\left((\right.$ The function tan $\left.) \upharpoonright\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]\right) \cdot(($ the function $\arctan) \upharpoonright[-1,1])=\operatorname{id}_{[-1,1]}$.
(30) $\quad\left((\right.$ The function cot $)\left\lceil\left[\frac{\pi}{4}, \frac{3}{4} \cdot \pi\right]\right) \cdot(($ the function arccot $) \upharpoonright[-1,1])=\operatorname{id}_{[-1,1]}$.
(31) (The function arctan qua function) $\cdot(($ (the function $\tan) \upharpoonright]-\frac{\pi}{2}, \frac{\pi}{2}[)=$ $\mathrm{id}_{]}-\frac{\pi}{2}, \frac{\pi}{2}[$ -
(32) (The function arccot) $\cdot(($ the function cot $) \upharpoonright] 0, \pi[)=\mathrm{id}_{j 0, \pi}[$.
(33) (The function arctan qua function) $\cdot(($ (the function $\tan) \upharpoonright]-\frac{\pi}{2}, \frac{\pi}{2}[)=$ $\mathrm{id}_{]}-\frac{\pi}{2}, \frac{\pi}{2}[$.
(34) (The function arccot qua function) $\cdot(($ the function $\cot) \upharpoonright] 0, \pi[)=\operatorname{id}_{j 0, \pi}[$.
(35) If $-\frac{\pi}{2}<r<\frac{\pi}{2}$, then $\arctan \tan r=r$.
(36) If $0<r<\pi$, then $\operatorname{arccot} \cot r=r$.
(37) $\arctan (-1)=-\frac{\pi}{4}$.
(38) $\operatorname{arccot}(-1)=\frac{3}{4} \cdot \pi$.
(39) $\arctan 1=\frac{\pi}{4}$.
(40) $\operatorname{arccot} 1=\frac{\pi}{4}$.
(41) $\tan 0=0$.
(42) $\cot \left(\frac{\pi}{2}\right)=0$.
(43) $\arctan 0=0$.
(44) $\operatorname{arccot} 0=\frac{\pi}{2}$.
(45) The function arctan is increasing on (the function tan) $\left.{ }^{\circ}\right]-\frac{\pi}{2}, \frac{\pi}{2}[$.
(46) The function arccot is decreasing on (the function cot) $\left.{ }^{\circ}\right] 0, \pi[$.
(47) The function arctan is increasing on $[-1,1]$.
(48) The function arccot is decreasing on $[-1,1]$.
(49) For every real number x such that $x \in[-1,1]$ holds $\arctan x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
(50) For every real number x such that $x \in[-1,1]$ holds $\operatorname{arccot} x \in\left[\frac{\pi}{4}, \frac{3}{4} \cdot \pi\right]$.
(51) If $-1 \leq r \leq 1$, then $\tan \arctan r=r$.
(52) If $-1 \leq r \leq 1$, then $\cot \operatorname{arccot} r=r$.
(53) The function arctan is continuous on $[-1,1]$.
(54) The function arccot is continuous on $[-1,1]$.
(55) $\quad \operatorname{rng}(($ the function $\arctan) \upharpoonright[-1,1])=\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
(56) $\operatorname{rng}(($ the function $\operatorname{arccot}) \upharpoonright[-1,1])=\left[\frac{\pi}{4}, \frac{3}{4} \cdot \pi\right]$.
(57) If $-1 \leq r \leq 1$ and $\arctan r=-\frac{\pi}{4}$, then $r=-1$.
(58) If $-1 \leq r \leq 1$ and $\operatorname{arccot} r=\frac{3}{4} \cdot \pi$, then $r=-1$.
(59) If $-1 \leq r \leq 1$ and $\arctan r=0$, then $r=0$.
(60) If $-1 \leq r \leq 1$ and $\operatorname{arccot} r=\frac{\pi}{2}$, then $r=0$.
(61) If $-1 \leq r \leq 1$ and $\arctan r=\frac{\pi}{4}$, then $r=1$.
(62) If $-1 \leq r \leq 1$ and $\operatorname{arccot} r=\frac{\pi}{4}$, then $r=1$.
(63) If $-1 \leq r \leq 1$, then $-\frac{\pi}{4} \leq \arctan r \leq \frac{\pi}{4}$.
(64) If $-1 \leq r \leq 1$, then $\frac{\pi}{4} \leq \operatorname{arccot} r \leq \frac{3}{4} \cdot \pi$.
(65) If $-1<r<1$, then $-\frac{\pi}{4}<\arctan r<\frac{\pi}{4}$.
(66) If $-1<r<1$, then $\frac{\pi}{4}<\operatorname{arccot} r<\frac{3}{4} \cdot \pi$.
(67) If $-1 \leq r \leq 1$, then $\arctan r=-\arctan (-r)$.
(68) If $-1 \leq r \leq 1$, then $\operatorname{arccot} r=\pi-\operatorname{arccot}(-r)$.
(69) If $-1 \leq r \leq 1$, then $\cot \arctan r=\frac{1}{r}$.
(70) If $-1 \leq r \leq 1$, then $\tan \operatorname{arccot} r=\frac{1}{r}$.
(71) The function arctan is differentiable on (the function $\left.\tan)^{\circ}\right]-\frac{\pi}{2}, \frac{\pi}{2}[$.
(72) The function arccot is differentiable on (the function cot) $\left.{ }^{\circ}\right] 0, \pi[$.
(73) The function arctan is differentiable on $]-1,1[$.
(74) The function arccot is differentiable on $]-1,1[$.
(75) If $-1 \leq r \leq 1$, then (the function $\arctan)^{\prime}(r)=\frac{1}{1+r^{2}}$.
(76) If $-1 \leq r \leq 1$, then (the function $\operatorname{arccot})^{\prime}(r)=-\frac{1}{1+r^{2}}$.
(77) The function arctan is continuous on (the function tan) $\left.{ }^{\circ}\right]-\frac{\pi}{2}, \frac{\pi}{2}[$.
(78) The function arccot is continuous on (the function cot) $\left.{ }^{\circ}\right] 0, \pi[$.
(79) dom (the function arctan) is open.
(80) dom (the function arccot) is open.

2. Several Differentiation Formulas of Arctan and Arccot

We now state a number of propositions:
(81) Suppose $Z \subseteq]-1,1[$. Then the function arctan is differentiable on Z and for every x such that $x \in Z$ holds (the function $\arctan)^{\prime}{ }_{Z}(x)=\frac{1}{1+x^{2}}$.
(82) Suppose $Z \subseteq]-1,1[$. Then the function arccot is differentiable on Z and for every x such that $x \in Z$ holds (the function arccot) ${ }_{\curlyvee Z}^{\prime}(x)=-\frac{1}{1+x^{2}}$.
(83) Suppose $Z \subseteq]-1,1[$. Then
(i) r the function arctan is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(r \text { the function } \arctan)^{\prime}{ }_{Z}(x)=\frac{r}{1+x^{2}}$.
(84) Suppose $Z \subseteq]-1,1[$. Then
(i) r the function arccot is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(r$ the function $\operatorname{arccot}){ }_{r}^{\prime}(x)=-\frac{r}{1+x^{2}}$.
(85) Suppose f is differentiable in x and $-1<f(x)<1$. Then (the function arctan) $\cdot f$ is differentiable in x and ((the function arctan) $\cdot f)^{\prime}(x)=$ $\frac{f^{\prime}(x)}{1+f(x)^{2}}$.
(86) Suppose f is differentiable in x and $-1<f(x)<1$. Then (the function arccot) $\cdot f$ is differentiable in x and ((the function arccot) $\cdot f)^{\prime}(x)=$ $-\frac{f^{\prime}(x)}{1+f(x)^{2}}$.
(87) Suppose $Z \subseteq \operatorname{dom}(($ the function arctan $) \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=r \cdot x+s$ and $-1<f(x)<1$. Then
(i) (the function arctan) $\cdot f$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left((\text { the function arctan) } \cdot f)_{\mid Z}^{\prime}(x)=\right.$ $\frac{r}{1+(r \cdot x+s)^{2}}$.
(88) Suppose $Z \subseteq \operatorname{dom}(($ the function arccot) $\cdot f)$ and for every x such that $x \in Z$ holds $f(x)=r \cdot x+s$ and $-1<f(x)<1$. Then
(i) (the function arccot) $\cdot f$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function arccot) $\cdot f)_{\mid Z}^{\prime}(x)=$ $-\frac{r}{1+(r \cdot x+s)^{2}}$.
(89) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function arctan)) and $Z \subseteq$]-1, $[$ and for every x such that $x \in Z$ holds $\arctan x>0$. Then
(i) (the function \ln) •(the function arctan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \ln) •(the function $\arctan))_{Y}^{\prime}(x)=\frac{1}{\left(1+x^{2}\right) \cdot \arctan x}$.
(90) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function arccot)) and $Z \subseteq$ $]-1,1[$ and for every x such that $x \in Z$ holds $\operatorname{arccot} x>0$. Then
(i) (the function \ln) \cdot (the function arccot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \ln) •(the function $\operatorname{arccot}))_{\mid Z}^{\prime}(x)=-\frac{1}{\left(1+x^{2}\right) \cdot \operatorname{arccot} x}$.
(91) Suppose $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right)\right.$ •the function arctan) and $\left.Z \subseteq\right]-1,1[$. Then
(i) $\left(\square^{n}\right) \cdot$ the function arctan is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(\square^{n}\right) \cdot \text { the function } \arctan \right)_{\mid Z}^{\prime}(x)=$ $\frac{n \cdot(\arctan x)^{n-1}}{1+x^{2}}$.
(92) Suppose $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right)\right.$ • the function arccot) and $\left.Z \subseteq\right]-1,1[$. Then
(i) $\left(\square^{n}\right) \cdot$ the function arccot is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(\square^{n}\right) \cdot\right.$ the function $\operatorname{arccot}^{\prime}{ }^{\prime} Z(x)=$ $-\frac{n \cdot(\operatorname{arccot} x)^{n-1}}{1+x^{2}}$.
(93) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.\right.$ the function $\left.\left.\arctan \right)\right)$ and $\left.Z \subseteq\right]-1,1[$. Then
(i) $\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.$ the function arctan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{2}\left(\left(\square^{2}\right) \text { •the function } \arctan \right)\right)^{\prime}{ }_{Y}(x)=$ $\frac{\arctan x}{1+x^{2}}$.
(94) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.\right.$ the function arccot $\left.)\right)$ and $\left.Z \subseteq\right]-1,1[$. Then
(i) $\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.$ the function arccot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{2}\left(\left(\square^{2}\right) \cdot \text { the function } \operatorname{arccot}\right)\right)^{\prime}{ }_{Z}(x)=$ $-\frac{\operatorname{arccot} x}{1+x^{2}}$.
(95) Suppose $Z \subseteq]-1,1[$. Then
(i) id_{Z} the function arctan is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\mathrm{id}_{Z} \text { the function } \arctan \right)_{{ }_{Z}}^{\prime}(x)=$ $\arctan x+\frac{x}{1+x^{2}}$.
(96) Suppose $Z \subseteq]-1,1[$. Then
(i) id_{Z} the function arccot is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\operatorname{id}_{Z} \text { the function } \operatorname{arccot}\right)^{\prime}{ }_{Z}(x)=$ $\operatorname{arccot} x-\frac{x}{1+x^{2}}$.
(97) Suppose $Z \subseteq \operatorname{dom}(f$ the function arctan) and $Z \subseteq]-1,1[$ and for every x such that $x \in Z$ holds $f(x)=r \cdot x+s$. Then
(i) f the function arctan is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (f the function $\arctan)^{\prime}{ }_{Z}(x)=$ $r \cdot \arctan x+\frac{r \cdot x+s}{1+x^{2}}$.
(98) Suppose $Z \subseteq \operatorname{dom}(f$ the function arccot) and $Z \subseteq]-1,1[$ and for every x such that $x \in Z$ holds $f(x)=r \cdot x+s$. Then
(i) f the function arccot is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (f the function $\operatorname{arccot})^{\prime}{ }_{\mid Z}(x)=$ $r \cdot \operatorname{arccot} x-\frac{r \cdot x+s}{1+x^{2}}$.
(99) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}((\right.$ the function arctan $\left.) \cdot f)\right)$ and for every x such that $x \in Z$ holds $f(x)=2 \cdot x$ and $-1<f(x)<1$. Then
(i) $\frac{1}{2}(($ the function arctan $) \cdot f)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{2}((\text { the function arctan }) \cdot f)\right)^{\prime}{ }_{Z}(x)=$ $\frac{1}{1+(2 \cdot x)^{2}}$.
(100) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}((\right.$ the function arccot $\left.) \cdot f)\right)$ and for every x such that $x \in Z$ holds $f(x)=2 \cdot x$ and $-1<f(x)<1$. Then
(i) $\frac{1}{2}(($ the function arccot $) \cdot f)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{2}((\text { the function arccot }) \cdot f)\right)^{\prime}{ }_{Z}^{\prime}(x)=$ $-\frac{1}{1+(2 \cdot x)^{2}}$.
(101) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f_{2}=\square^{2}$. Then $f_{1}+f_{2}$ is differentiable on Z and for every
x such that $x \in Z$ holds $\left(f_{1}+f_{2}\right)^{\prime}{ }_{Y}(x)=2 \cdot x$.
(102) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}\left((\right.\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)$ and $f_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$. Then
(i) $\frac{1}{2}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{2}\left((\right.\right.$ the function $\ln) \cdot\left(f_{1}+\right.$ $\left.\left.\left.f_{2}\right)\right)\right)^{\prime}{ }_{Z}(x)=\frac{x}{1+x^{2}}$.
(103) Suppose that
(i) $Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}\right.$ the function $\arctan -\frac{1}{2}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$),
(ii) $Z \subseteq]-1,1[$,
(iii) $f_{2}=\square^{2}$, and
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$.

Then
(v) id_{Z} the function arctan- $\frac{1}{2}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ is differentiable on Z, and
(vi) for every x such that $x \in Z$ holds (id id $_{Z}$ the function $\arctan -\frac{1}{2}(($ the function ln) $\left.\left.\cdot\left(f_{1}+f_{2}\right)\right)\right)_{Y}^{\prime}(x)=\arctan x$.
(104) Suppose that
(i) $Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}\right.$ the function $\operatorname{arccot}+\frac{1}{2}\left((\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)$,
(ii) $Z \subseteq]-1,1[$,
(iii) $f_{2}=\square^{2}$, and
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$.

Then
(v) id_{Z} the function $\operatorname{arccot}+\frac{1}{2}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ is differentiable on Z, and
(vi) for every x such that $x \in Z$ holds (id Z_{Z} the function $\operatorname{arccot}+\frac{1}{2}(($ the function ln) $\left.\left.\cdot\left(f_{1}+f_{2}\right)\right)\right)_{Y}^{\prime}(x)=\operatorname{arccot} x$.
(105) Suppose $Z \subseteq \operatorname{dom}\left(\operatorname{id}_{Z}((\right.$ the function arctan) $\cdot f))$ and for every x such that $x \in Z$ holds $f(x)=\frac{x}{r}$ and $-1<f(x)<1$. Then
(i) $\operatorname{id}_{Z}(($ the function arctan $) \cdot f)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (id Z ((the function arctan) $\cdot f))_{r Z}^{\prime}(x)=\arctan \left(\frac{x}{r}\right)+\frac{x}{r \cdot\left(1+\left(\frac{x}{r}\right)^{2}\right)}$.
(106) Suppose $Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}((\right.$ the function arccot $\left.) \cdot f)\right)$ and for every x such that $x \in Z$ holds $f(x)=\frac{x}{r}$ and $-1<f(x)<1$. Then
(i) $\operatorname{id}_{Z}(($ the function arccot $) \cdot f)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\text { id }_{Z}((\text { the function arccot }) \cdot f)\right)_{\mid Z}^{\prime}(x)=$ $\operatorname{arccot}\left(\frac{x}{r}\right)-\frac{x}{r \cdot\left(1+\left(\frac{x}{r}\right)^{2}\right)}$.
(107) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f_{2}=\left(\square^{2}\right) \cdot f$ and for every x such that $x \in Z$ holds $f(x)=\frac{x}{r}$. Then $f_{1}+f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}+f_{2}\right)^{\prime}{ }_{Z}(x)=\frac{2 \cdot x}{r^{2}}$.
(108) Suppose that
(i) $Z \subseteq \operatorname{dom}\left(\frac{r}{2}\left((\right.\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(iii) $r \neq 0$,
(iv) $f_{2}=\left(\square^{2}\right) \cdot f$, and
(v) for every x such that $x \in Z$ holds $f(x)=\frac{x}{r}$.

Then
(vi) $\quad \frac{r}{2}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ is differentiable on Z, and
(vii) for every x such that $x \in Z$ holds $\left(\frac{r}{2}\left((\right.\right.$ the function $\ln) \cdot\left(f_{1}+\right.$ $\left.\left.\left.f_{2}\right)\right)\right)_{\Gamma Z}^{r}(x)=\frac{x}{r \cdot\left(1+\left(\frac{x}{r}\right)^{2}\right)}$.
(109) Suppose that
(i) $Z \subseteq \operatorname{dom}\left(\right.$ id $_{Z}(($ the function arctan $) \cdot f)-\frac{r}{2}\left((\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)$,
(ii) $r \neq 0$,
(iii) for every x such that $x \in Z$ holds $f(x)=\frac{x}{r}$ and $-1<f(x)<1$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(v) $f_{2}=\left(\square^{2}\right) \cdot f$, and
(vi) for every x such that $x \in Z$ holds $f(x)=\frac{x}{r}$.

Then
(vii) $\quad \operatorname{id}_{Z}(($ the function arctan $) \cdot f)-\frac{r}{2}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ is differentiable on Z, and
(viii) for every x such that $x \in Z$ holds $\left(\right.$ id $_{Z}(($ the function arctan $) \cdot f)-$ $\frac{r}{2}\left((\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)_{\mid Z}^{\prime}(x)=\arctan \left(\frac{x}{r}\right)$.
(110) Suppose that
(i) $\quad Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}((\right.$ the function arccot $) \cdot f)+\frac{r}{2}\left((\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)$,
(ii) $r \neq 0$,
(iii) for every x such that $x \in Z$ holds $f(x)=\frac{x}{r}$ and $-1<f(x)<1$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(v) $f_{2}=\left(\square^{2}\right) \cdot f$, and
(vi) for every x such that $x \in Z$ holds $f(x)=\frac{x}{r}$.

Then
(vii) $\quad \operatorname{id}_{Z}(($ the function arccot $) \cdot f)+\frac{r}{2}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ is differentiable on Z, and
(viii) for every x such that $x \in Z$ holds $\left(\right.$ id $_{Z}(($ the function arccot $) \cdot f)+\frac{r}{2}(($ the function ln) $\left.\left.\cdot\left(f_{1}+f_{2}\right)\right)\right)_{Y Z}^{\prime}(x)=\operatorname{arccot}\left(\frac{x}{r}\right)$.
(111) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function arctan $\left.) \cdot \frac{1}{f}\right)$ and for every x such that $x \in Z$ holds $f(x)=x$ and $-1<\left(\frac{1}{f}\right)(x)<1$. Then
(i) (the function arctan) $\cdot \frac{1}{f}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function arctan) $\left.\cdot \frac{1}{f}\right)^{\prime}{ }_{Y Z}(x)=$ $-\frac{1}{1+x^{2}}$.
(112) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function arccot $\left.) \cdot \frac{1}{f}\right)$ and for every x such that $x \in Z$ holds $f(x)=x$ and $-1<\left(\frac{1}{f}\right)(x)<1$. Then
(i) (the function arccot) $\cdot \frac{1}{f}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function arccot) $\left.\cdot \frac{1}{f}\right)^{\prime}{ }_{Z}(x)=$ $\frac{1}{1+x^{2}}$.
(113) Suppose that
(i) $Z \subseteq \operatorname{dom}(($ the function $\arctan) \cdot f)$,
(ii) $f=f_{1}+h f_{2}$,
(iii) for every x such that $x \in Z$ holds $-1<f(x)<1$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=r+s \cdot x$, and
(v) $f_{2}=\square^{2}$.

Then
(vi) (the function arctan) $\cdot\left(f_{1}+h f_{2}\right)$ is differentiable on Z, and
(vii) for every x such that $x \in Z$ holds ((the function arctan) $\cdot\left(f_{1}+\right.$ $\left.\left.h f_{2}\right)\right)_{\mid Z}^{\prime}(x)=\frac{s+2 \cdot h \cdot x}{1+\left(r+s \cdot x+h \cdot x^{2}\right)^{2}}$.
(114) Suppose that
(i) $Z \subseteq \operatorname{dom}(($ the function arccot $) \cdot f)$,
(ii) $f=f_{1}+h f_{2}$,
(iii) for every x such that $x \in Z$ holds $-1<f(x)<1$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=r+s \cdot x$, and
(v) $f_{2}=\square^{2}$.

Then
(vi) (the function arccot) $\cdot\left(f_{1}+h f_{2}\right)$ is differentiable on Z, and
(vii) for every x such that $x \in Z$ holds ((the function arccot) $\cdot\left(f_{1}+\right.$ $\left.\left.h f_{2}\right)\right)_{Y Z}^{\prime}(x)=-\frac{s+2 \cdot h \cdot x}{1+\left(r+s \cdot x+h \cdot x^{2}\right)^{2}}$.
(115) Suppose $Z \subseteq \operatorname{dom}(($ the function arctan) $\cdot($ the function $\exp))$ and for every x such that $x \in Z$ holds $\exp x<1$. Then
(i) (the function arctan) (the function \exp) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function arctan) •(the function $\exp))_{Y}^{\prime}(x)=\frac{\exp x}{1+(\exp x)^{2}}$.
(116) Suppose $Z \subseteq \operatorname{dom}(($ the function arccot) $\cdot($ the function $\exp))$ and for every x such that $x \in Z$ holds $\exp x<1$. Then
(i) (the function arccot) •(the function \exp) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function arccot) •(the function $\exp))^{\prime}{ }_{Y}(x)=-\frac{\exp x}{1+(\exp x)^{2}}$.
(117) Suppose that
(i) $Z \subseteq \operatorname{dom}(($ the function arctan) $\cdot($ the function $\ln))$, and
(ii) for every x such that $x \in Z$ holds $-1<$ (the function \ln)(x) and (the function $\ln)(x)<1$.
Then
(iii) (the function arctan) •(the function \ln) is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds ((the function arctan) •(the function $\ln))^{\prime}{ }_{Z}(x)=\frac{1}{x \cdot\left(1+(\text { the function } \ln)(x)^{2}\right)}$.
(118) Suppose that
(i) $Z \subseteq \operatorname{dom}(($ the function arccot) $\cdot($ the function ln$))$, and
(ii) for every x such that $x \in Z$ holds $-1<($ the function $\ln)(x)$ and (the function $\ln)(x)<1$.
Then
(iii) (the function arccot) •(the function \ln) is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds ((the function arccot) •(the function $\ln))^{\prime} Z(x)=-\frac{1}{x \cdot\left(1+(\text { the function } \ln)(x)^{2}\right)}$.
(119) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot($ the function arctan)) and $Z \subseteq$]-1,1[. Then
(i) (the function \exp) (the function arctan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\exp) \cdot$ (the function $\arctan))_{\Gamma}^{\prime}(x)=\frac{\exp \arctan x}{1+x^{2}}$.
(120) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot($ the function arccot)) and $Z \subseteq$]-1, $1[$. Then
(i) (the function \exp) (the function arccot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \exp) •(the function $\operatorname{arccot}))_{\mid Z}^{\prime}(x)=-\frac{\exp \operatorname{arccot} x}{1+x^{2}}$.
(121) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\arctan)-\mathrm{id}_{Z}\right)$ and $\left.Z \subseteq\right]-1,1[$. Then
(i) (the function $\arctan)-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\left.\arctan)-\mathrm{id}_{Z}\right)_{\mid Z}^{\prime}(x)=$ $-\frac{x^{2}}{1+x^{2}}$.
(122) Suppose $Z \subseteq \operatorname{dom}\left(-\right.$ the function $\left.\operatorname{arccot}-\mathrm{id}_{Z}\right)$ and $\left.Z \subseteq\right]-1,1[$. Then
(i) -the function $\operatorname{arccot}-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (- the function $\left.\operatorname{arccot}-\operatorname{id}_{Z}\right)^{\prime} Z(x)=$ $-\frac{x^{2}}{1+x^{2}}$.
(123) Suppose $Z \subseteq]-1,1[$. Then
(i) (the function exp) (the function arctan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \exp) (the function $\arctan))_{\mid Z}^{\prime}(x)=\exp x \cdot \arctan x+\frac{\exp x}{1+x^{2}}$.
(124) Suppose $Z \subseteq]-1,1[$. Then
(i) (the function exp) (the function arccot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function exp) (the function $\operatorname{arccot}))_{\mid Z}^{\prime}(x)=\exp x \cdot \operatorname{arccot} x-\frac{\exp x}{1+x^{2}}$.
(125) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{r}((\right.$ the function $\left.\arctan) \cdot f)-\operatorname{id}_{Z}\right)$ and for every x such that $x \in Z$ holds $f(x)=r \cdot x$ and $r \neq 0$ and $-1<f(x)<1$. Then
(i) $\frac{1}{r}(($ the function arctan $) \cdot f)-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{r}((\right.$ the function arctan $) \cdot f)-$ $\left.\operatorname{id}_{Z}\right)^{\prime}{ }_{Z}(x)=-\frac{(r \cdot x)^{2}}{1+(r \cdot x)^{2}}$.
(126) Suppose $Z \subseteq \operatorname{dom}\left(\left(-\frac{1}{r}\right)\right.$ ((the function arccot) $\left.\left.\cdot f\right)-\mathrm{id}_{Z}\right)$ and for every x such that $x \in Z$ holds $f(x)=r \cdot x$ and $r \neq 0$ and $-1<f(x)<1$. Then
(i) $\quad\left(-\frac{1}{r}\right)(($ the function arccot $) \cdot f)-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(-\frac{1}{r}\right)((\right.$ the function arccot $) \cdot f)-$ $\left.\mathrm{id}_{Z}\right)_{\mid Z}^{\prime}(x)=-\frac{(r \cdot x)^{2}}{1+(r \cdot x)^{2}}$.
(127) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function arctan)) and $Z \subseteq$]-1, 1[. Then
(i) (the function \ln) (the function arctan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \ln) (the function $\arctan))^{\prime}{ }_{Z}(x)=\frac{\arctan x}{x}+\frac{(\text { the function } \ln)(x)}{1+x^{2}}$.
(128) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function arccot)) and $Z \subseteq$]-1, $1[$. Then
(i) (the function \ln) (the function arccot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \ln) (the function $\operatorname{arccot}))^{\prime}{ }_{Z}(x)=\frac{\operatorname{arccot} x}{x}-\frac{(\text { the function } \ln)(x)}{1+x^{2}}$.
(129) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{f}\right.$ the function arctan) and $\left.Z \subseteq\right]-1,1[$ and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) $\frac{1}{f}$ the function arctan is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{f} \text { the function } \arctan \right)^{\prime}{ }_{Z}(x)=$ $-\frac{\arctan x}{x^{2}}+\frac{1}{x \cdot\left(1+x^{2}\right)}$.
(130) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{f}\right.$ the function arccot) and $\left.Z \subseteq\right]-1,1[$ and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) $\frac{1}{f}$ the function arccot is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{f} \text { the function } \operatorname{arccot}\right)^{\prime}{ }_{Z}(x)=$ $-\frac{\operatorname{arccot} x}{x^{2}}-\frac{1}{x \cdot\left(1+x^{2}\right)}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[8] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received March 18, 2008

