Convex Sets and Convex Combinations on Complex Linear Spaces

Hidenori Matsuzaki
Shinshu University
Nagano, Japan

Noboru Endou
Gifu National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, convex sets, convex combinations and convex hulls on complex linear spaces are introduced.

MML identifier: CONVEX4, version: $\underline{7.8 .104 .99 .1005}$

The articles [19], [18], [9], [23], [24], [6], [25], [7], [20], [3], [22], [17], [2], [11], [8], [1], [5], [10], [14], [15], [4], [16], [21], [12], and [13] provide the terminology and notation for this paper.

1. Complex Linear Combinations

Let V be a non empty zero structure. An element of $\mathbb{C}^{\text {the }}$ carrier of V is said to be a \mathbb{C}-linear combination of V if:
(Def. 1) There exists a finite subset T of V such that for every element v of V such that $v \notin T$ holds $\operatorname{it}(v)=0$.
Let V be a non empty additive loop structure and let L be an element of $\mathbb{C}^{\text {the carrier of } V}$. The support of L yielding a subset of V is defined by:
(Def. 2) The support of $L=\left\{v \in V: L(v) \neq 0_{\mathbb{C}}\right\}$.
Let V be a non empty additive loop structure and let L be a \mathbb{C}-linear combination of V. One can check that the support of L is finite.

The following proposition is true
(1) Let V be a non empty additive loop structure, L be a \mathbb{C}-linear combination of V, and v be an element of V. Then $L(v)=0_{\mathbb{C}}$ if and only if $v \notin$ the support of L.
Let V be a non empty additive loop structure. The functor ZeroCLC V yields a \mathbb{C}-linear combination of V and is defined by:
(Def. 3) The support of ZeroCLC $V=\emptyset$.
Let V be a non empty additive loop structure. Note that the support of ZeroCLC V is empty.

We now state the proposition
(2) For every non empty additive loop structure V and for every element v of V holds (ZeroCLC $V)(v)=0_{\mathbb{C}}$.
Let V be a non empty additive loop structure and let A be a subset of V. A \mathbb{C}-linear combination of V is said to be a \mathbb{C}-linear combination of A if:
(Def. 4) The support of it $\subseteq A$.
Next we state three propositions:
(3) Let V be a non empty additive loop structure, A, B be subsets of V, and l be a \mathbb{C}-linear combination of A. If $A \subseteq B$, then l is a \mathbb{C}-linear combination of B.
(4) Let V be a non empty additive loop structure and A be a subset of V. Then ZeroCLC V is a \mathbb{C}-linear combination of A.
(5) Let V be a non empty additive loop structure and l be a \mathbb{C}-linear combination of $\emptyset_{\text {the carrier of } V}$. Then $l=$ ZeroCLC V.
In the sequel i is a natural number.
Let V be a non empty CLS structure, let F be a finite sequence of elements of the carrier of V, and let f be a function from the carrier of V into \mathbb{C}. The functor $f F$ yields a finite sequence of elements of the carrier of V and is defined as follows:
(Def. 5) $\quad \operatorname{len}(f F)=\operatorname{len} F$ and for every i such that $i \in \operatorname{dom}(f F)$ holds $(f F)(i)=$ $f\left(F_{i}\right) \cdot F_{i}$.
For simplicity, we follow the rules: V denotes a non empty CLS structure, v, v_{1}, v_{2}, v_{3} denote vectors of V, A denotes a subset of V, l denotes a \mathbb{C}-linear combination of A, x denotes a set, a, b denote complex numbers, F denotes a finite sequence of elements of the carrier of V, and f denotes a function from the carrier of V into \mathbb{C}.

The following propositions are true:
(6) If $x \in \operatorname{dom} F$ and $v=F(x)$, then $(f F)(x)=f(v) \cdot v$.
(7) $f \varepsilon_{(\text {the carrier of } V)}=\varepsilon_{\text {(the carrier of } V) \text {. }}$
(8) $f\langle v\rangle=\langle f(v) \cdot v\rangle$.
(9) $f\left\langle v_{1}, v_{2}\right\rangle=\left\langle f\left(v_{1}\right) \cdot v_{1}, f\left(v_{2}\right) \cdot v_{2}\right\rangle$.

$$
\begin{equation*}
f\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle f\left(v_{1}\right) \cdot v_{1}, f\left(v_{2}\right) \cdot v_{2}, f\left(v_{3}\right) \cdot v_{3}\right\rangle . \tag{10}
\end{equation*}
$$

In the sequel L, L_{1}, L_{2}, L_{3} are \mathbb{C}-linear combinations of V.
Let V be an Abelian add-associative right zeroed right complementable non empty CLS structure and let L be a \mathbb{C}-linear combination of V. The functor $\sum L$ yields an element of V and is defined by the condition (Def. 6).
(Def. 6) There exists a finite sequence F of elements of the carrier of V such that F is one-to-one and $\operatorname{rng} F=$ the support of L and $\sum L=\sum L F$.
One can prove the following propositions:
(11) For every Abelian add-associative right zeroed right complementable non empty CLS structure V holds \sum ZeroCLC $V=0_{V}$.
(12) Let V be a complex linear space and A be a subset of V. Suppose $A \neq \emptyset$. Then A is linearly closed if and only if for every \mathbb{C}-linear combination l of A holds $\sum l \in A$.
(13) Let V be an Abelian add-associative right zeroed right complementable non empty CLS structure and l be a \mathbb{C}-linear combination of $\emptyset_{\text {the carrier of } V}$. Then $\sum l=0_{V}$.
(14) Let V be a complex linear space, v be a vector of V, and l be a \mathbb{C}-linear combination of $\{v\}$. Then $\sum l=l(v) \cdot v$.
(15) Let V be a complex linear space and v_{1}, v_{2} be vectors of V. Suppose $v_{1} \neq v_{2}$. Let l be a \mathbb{C}-linear combination of $\left\{v_{1}, v_{2}\right\}$. Then $\sum l=l\left(v_{1}\right)$. $v_{1}+l\left(v_{2}\right) \cdot v_{2}$.
(16) Let V be an Abelian add-associative right zeroed right complementable non empty CLS structure and L be a \mathbb{C}-linear combination of V. If the support of $L=\emptyset$, then $\sum L=0_{V}$.
(17) Let V be a complex linear space, L be a \mathbb{C}-linear combination of V, and v be a vector of V. If the support of $L=\{v\}$, then $\sum L=L(v) \cdot v$.
(18) Let V be a complex linear space, L be a \mathbb{C}-linear combination of V, and v_{1}, v_{2} be vectors of V. If the support of $L=\left\{v_{1}, v_{2}\right\}$ and $v_{1} \neq v_{2}$, then $\sum L=L\left(v_{1}\right) \cdot v_{1}+L\left(v_{2}\right) \cdot v_{2}$.
Let V be a non empty additive loop structure and let L_{1}, L_{2} be \mathbb{C}-linear combinations of V. Let us observe that $L_{1}=L_{2}$ if and only if:
(Def. 7) For every element v of V holds $L_{1}(v)=L_{2}(v)$.
Let V be a non empty additive loop structure and let L_{1}, L_{2} be \mathbb{C}-linear combinations of V. Then $L_{1}+L_{2}$ is a \mathbb{C}-linear combination of V and it can be characterized by the condition:
(Def. 8) For every element v of V holds $\left(L_{1}+L_{2}\right)(v)=L_{1}(v)+L_{2}(v)$.
One can prove the following propositions:
(19) The support of $L_{1}+L_{2} \subseteq\left(\right.$ the support of $\left.L_{1}\right) \cup\left(\right.$ the support of $\left.L_{2}\right)$.
(20) Suppose L_{1} is a \mathbb{C}-linear combination of A and L_{2} is a \mathbb{C}-linear combination of A. Then $L_{1}+L_{2}$ is a \mathbb{C}-linear combination of A.
Let us consider V, A and let L_{1}, L_{2} be \mathbb{C}-linear combinations of A. Then $L_{1}+L_{2}$ is a \mathbb{C}-linear combination of A.

The following three propositions are true:
(21) For every non empty additive loop structure V and for all \mathbb{C}-linear combinations L_{1}, L_{2} of V holds $L_{1}+L_{2}=L_{2}+L_{1}$.
(22) $L_{1}+\left(L_{2}+L_{3}\right)=\left(L_{1}+L_{2}\right)+L_{3}$.
(23) $L+$ ZeroCLC $V=L$.

Let us consider V, a and let us consider L. The functor $a \cdot L$ yielding a \mathbb{C}-linear combination of V is defined as follows:
(Def. 9) For every v holds $(a \cdot L)(v)=a \cdot L(v)$.
One can prove the following propositions:
(24) If $a \neq 0_{\mathbb{C}}$, then the support of $a \cdot L=$ the support of L.
(25) $\quad 0_{\mathbb{C}} \cdot L=$ ZeroCLC V.
(26) If L is a \mathbb{C}-linear combination of A, then $a \cdot L$ is a \mathbb{C}-linear combination of A.
(27) $(a+b) \cdot L=a \cdot L+b \cdot L$.
(28) $a \cdot\left(L_{1}+L_{2}\right)=a \cdot L_{1}+a \cdot L_{2}$.
(29) $a \cdot(b \cdot L)=(a \cdot b) \cdot L$.
(30) $1_{\mathbb{C}} \cdot L=L$.

Let us consider V, L. The functor $-L$ yielding a \mathbb{C}-linear combination of V is defined as follows:
(Def. 10) $\quad-L=\left(-1_{\mathbb{C}}\right) \cdot L$.
We now state three propositions:
(31) $(-L)(v)=-L(v)$.
(32) If $L_{1}+L_{2}=$ ZeroCLC V, then $L_{2}=-L_{1}$.
(33) $--L=L$.

Let us consider V and let us consider L_{1}, L_{2}. The functor $L_{1}-L_{2}$ yields a \mathbb{C}-linear combination of V and is defined by:
(Def. 11) $L_{1}-L_{2}=L_{1}+-L_{2}$.
One can prove the following propositions:
(34) $\quad\left(L_{1}-L_{2}\right)(v)=L_{1}(v)-L_{2}(v)$.
(35) The support of $L_{1}-L_{2} \subseteq$ (the support of $\left.L_{1}\right) \cup$ (the support of L_{2}).
(36) Suppose L_{1} is a \mathbb{C}-linear combination of A and L_{2} is a \mathbb{C}-linear combination of A. Then $L_{1}-L_{2}$ is a \mathbb{C}-linear combination of A.
(37) $L-L=$ ZeroCLC V.

Let us consider V. The functor \mathbb{C}-LinComb V yields a set and is defined as follows:
(Def. 12) $\quad x \in \mathbb{C}$-LinComb V iff x is a \mathbb{C}-linear combination of V.
Let us consider V. One can verify that \mathbb{C}-LinComb V is non empty.
In the sequel e, e_{1}, e_{2} denote elements of \mathbb{C}-LinComb V.
Let us consider V and let us consider e. The functor ${ }^{@} e$ yields a \mathbb{C}-linear combination of V and is defined as follows:
(Def. 13) ${ }^{@} e=e$.
Let us consider V and let us consider L. The functor ${ }^{@} L$ yielding an element of \mathbb{C}-LinComb V is defined by:
(Def. 14) ${ }^{@} L=L$.
Let us consider V. The functor \mathbb{C}-LCAdd V yields a binary operation on \mathbb{C}-LinComb V and is defined by:
(Def. 15) For all e_{1}, e_{2} holds $(\mathbb{C}$-LCAdd $V)\left(e_{1}, e_{2}\right)=\left({ }^{@} e_{1}\right)+{ }^{@} e_{2}$.
Let us consider V. The functor \mathbb{C}-LCMult V yields a function from $\mathbb{C} \times$ \mathbb{C}-LinComb V into \mathbb{C}-LinComb V and is defined as follows:
(Def. 16) For all a, e holds $(\mathbb{C}$-LCMult $V)(\langle a, e\rangle)=a \cdot\left({ }^{@} e\right)$.
Let us consider V. The functor LC-CLSpace V yielding a complex linear space is defined by:
(Def. 17) LC्CLSpace $V=\left\langle\mathbb{C}\right.$-LinComb $V,{ }^{@}$ ZeroCLC V, \mathbb{C}-LCAdd V, \mathbb{C}-LCMult $\left.V\right\rangle$.
Let us consider V. Note that LC-CLSpace V is strict and non empty.
We now state four propositions:

$$
\begin{align*}
& L_{1}{ }^{\mathrm{LC} \text {-CLSpace } V}+L_{2}{ }^{\mathrm{L} \mathbb{C} \text {-CLSpace } V}=L_{1}+L_{2} \tag{38}\\
& a \cdot L^{\mathrm{L} \mathbb{C}-C L S p a c e} V=a \cdot L \\
& -L^{\mathrm{L} \mathbb{C}-C L S p a c e} V=-L \\
& L_{1}{ }^{\mathrm{L} \mathbb{C}} \text {-CLSpace } V \\
&
\end{align*} L_{2}{ }^{\mathrm{L} \mathbb{C} \text {-CLSpace } V}=L_{1}-L_{2} .
$$

Let us consider V and let us consider A. The functor LC-CLSpace A yielding a strict subspace of LC-CLSpace V is defined as follows:
(Def. 18) The carrier of LC-CLSpace $A=\{l\}$.

2. Preliminaries for Complex Convex Sets

Let V be a complex linear space and let W be a subspace of V. The functor $\mathrm{Up}(W)$ yields a subset of V and is defined by:
(Def. 19) $\mathrm{Up}(W)=$ the carrier of W.
Let V be a complex linear space and let W be a subspace of V. One can check that $\mathrm{Up}(W)$ is non empty.

Let V be a non empty CLS structure and let S be a subset of V. We say that S is affine if and only if the condition (Def. 20) is satisfied.
(Def. 20) Let x, y be vectors of V and z be a complex number. If there exists a real number a such that $a=z$ and $x, y \in S$, then $\left(1_{\mathbb{C}}-z\right) \cdot x+z \cdot y \in S$.
Let V be a complex linear space. The functor Ω_{V} yields a strict subspace of V and is defined as follows:
(Def. 21) $\Omega_{V}=$ the CLS structure of V.
Let V be a non empty CLS structure. Observe that Ω_{V} is affine and \emptyset_{V} is affine.

Let V be a non empty CLS structure. One can check that there exists a subset of V which is non empty and affine and there exists a subset of V which is empty and affine.

We now state three propositions:
(42) For every real number a and for every complex number z holds $\Re(a \cdot z)=$ $a \cdot \Re(z)$.
(43) For every real number a and for every complex number z holds $\Im(a \cdot z)=$ $a \cdot \Im(z)$.
(44) For every real number a and for every complex number z such that $0 \leq a \leq 1$ holds $|a \cdot z|=a \cdot|z|$ and $\left|\left(1_{\mathbb{C}}-a\right) \cdot z\right|=\left(1_{\mathbb{C}}-a\right) \cdot|z|$.

3. Complex Convex Sets

Let V be a non empty CLS structure, let M be a subset of V, and let r be an element of \mathbb{C}. The functor $r \cdot M$ yielding a subset of V is defined by:
(Def. 22) $r \cdot M=\{r \cdot v ; v$ ranges over elements of $V: v \in M\}$.
Let V be a non empty CLS structure and let M be a subset of V. We say that M is convex if and only if the condition (Def. 23) is satisfied.
(Def. 23) Let u, v be vectors of V and z be a complex number. Suppose there exists a real number r such that $z=r$ and $0<r<1$ and $u, v \in M$. Then $z \cdot u+\left(1_{\mathbb{C}}-z\right) \cdot v \in M$.
One can prove the following propositions:
(45) Let V be a complex linear space-like non empty CLS structure, M be a subset of V, and z be a complex number. If M is convex, then $z \cdot M$ is convex.
(46) Let V be an Abelian add-associative complex linear space-like non empty CLS structure and M, N be subsets of V. If M is convex and N is convex, then $M+N$ is convex.
(47) Let V be a complex linear space and M, N be subsets of V. If M is convex and N is convex, then $M-N$ is convex.
(48) Let V be a non empty CLS structure and M be a subset of V. Then M is convex if and only if for every complex number z such that there exists a real number r such that $z=r$ and $0<r<1$ holds $z \cdot M+\left(1_{\mathbb{C}}-z\right) \cdot M \subseteq M$.
(49) Let V be an Abelian non empty CLS structure and M be a subset of V. Suppose M is convex. Let z be a complex number. If there exists a real number r such that $z=r$ and $0<r<1$, then $\left(1_{\mathbb{C}}-z\right) \cdot M+z \cdot M \subseteq M$.
(50) Let V be an Abelian add-associative complex linear space-like non empty CLS structure and M, N be subsets of V. Suppose M is convex and N is convex. Let z be a complex number. If there exists a real number r such that $z=r$, then $z \cdot M+\left(1_{\mathbb{C}}-z\right) \cdot N$ is convex.
(51) For every complex linear space-like non empty CLS structure V and for every subset M of V holds $1_{\mathbb{C}} \cdot M=M$.
(52) For every complex linear space V and for every non empty subset M of V holds $0_{\mathbb{C}} \cdot M=\left\{0_{V}\right\}$.
(53) For every add-associative non empty additive loop structure V and for all subsets M_{1}, M_{2}, M_{3} of V holds $\left(M_{1}+M_{2}\right)+M_{3}=M_{1}+\left(M_{2}+M_{3}\right)$.
(54) Let V be a complex linear space-like non empty CLS structure, M be a subset of V, and z_{1}, z_{2} be complex numbers. Then $z_{1} \cdot\left(z_{2} \cdot M\right)=\left(z_{1} \cdot z_{2}\right) \cdot M$.
(55) Let V be a complex linear space-like non empty CLS structure, M_{1}, M_{2} be subsets of V, and z be a complex number. Then $z \cdot\left(M_{1}+M_{2}\right)=$ $z \cdot M_{1}+z \cdot M_{2}$.
(56) Let V be a complex linear space, M be a subset of V, and v be a vector of V. Then M is convex if and only if $v+M$ is convex.
(57) For every complex linear space V holds $\operatorname{Up}\left(\mathbf{0}_{V}\right)$ is convex.
(58) For every complex linear space V holds $\operatorname{Up}\left(\Omega_{V}\right)$ is convex.
(59) For every non empty CLS structure V and for every subset M of V such that $M=\emptyset$ holds M is convex.
(60) Let V be an Abelian add-associative complex linear space-like non empty CLS structure, M_{1}, M_{2} be subsets of V, and z_{1}, z_{2} be complex numbers. If M_{1} is convex and M_{2} is convex, then $z_{1} \cdot M_{1}+z_{2} \cdot M_{2}$ is convex.
(61) Let V be a complex linear space-like non empty CLS structure, M be a subset of V, and z_{1}, z_{2} be complex numbers. Then $\left(z_{1}+z_{2}\right) \cdot M \subseteq$ $z_{1} \cdot M+z_{2} \cdot M$.
(62) Let V be a non empty CLS structure, M, N be subsets of V, and z be a complex number. If $M \subseteq N$, then $z \cdot M \subseteq z \cdot N$.
(63) For every non empty CLS structure V and for every empty subset M of V and for every complex number z holds $z \cdot M=\emptyset$.
(64) Let V be a non empty additive loop structure, M be an empty subset of V, and N be a subset of V. Then $M+N=\emptyset$.
(65) For every right zeroed non empty additive loop structure V and for every subset M of V holds $M+\left\{0_{V}\right\}=M$.
(66) Let V be a complex linear space, M be a subset of V, and z_{1}, z_{2} be complex numbers. Suppose there exist real numbers r_{1}, r_{2} such that $z_{1}=$ r_{1} and $z_{2}=r_{2}$ and $r_{1} \geq 0$ and $r_{2} \geq 0$ and M is convex. Then $z_{1} \cdot M+z_{2}$. $M=\left(z_{1}+z_{2}\right) \cdot M$.
(67) Let V be an Abelian add-associative complex linear space-like non empty CLS structure, M_{1}, M_{2}, M_{3} be subsets of V, and z_{1}, z_{2}, z_{3} be complex numbers. If M_{1} is convex and M_{2} is convex and M_{3} is convex, then z_{1}. $M_{1}+z_{2} \cdot M_{2}+z_{3} \cdot M_{3}$ is convex.
(68) Let V be a non empty CLS structure and F be a family of subsets of V. Suppose that for every subset M of V such that $M \in F$ holds M is convex. Then $\cap F$ is convex.
(69) For every non empty CLS structure V and for every subset M of V such that M is affine holds M is convex.
Let V be a non empty CLS structure. One can check that there exists a subset of V which is non empty and convex.

Let V be a non empty CLS structure. Observe that there exists a subset of V which is empty and convex.

One can prove the following propositions:
(70) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V: \Re((u \mid v)) \geq r\}$, then M is convex.
(71) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V: \Re((u \mid v))>r\}$, then M is convex.
(72) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V: \Re((u \mid v)) \leq r\}$, then M is convex.
(73) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V: \Re((u \mid v))<r\}$, then M is convex.
(74) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V: \Im((u \mid v)) \geq r\}$, then M is convex.
(75) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V: \Im((u \mid v))>r\}$, then M is convex.
(76) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number.

If $M=\{u ; u$ ranges over vectors of $V: \Im((u \mid v)) \leq r\}$, then M is convex.
(77) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V: \Im((u \mid v))<r\}$, then M is convex.
(78) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V:|(u \mid v)| \leq r\}$, then M is convex.
(79) Let V be a complex unitary space-like non empty complex unitary space structure, M be a subset of V, v be a vector of V, and r be a real number. If $M=\{u ; u$ ranges over vectors of $V:|(u \mid v)|<r\}$, then M is convex.

4. Complex Convex Combinations

Let V be a complex linear space and let L be a \mathbb{C}-linear combination of V. We say that L is convex if and only if the condition (Def. 24) is satisfied.
(Def. 24) There exists a finite sequence F of elements of the carrier of V such that
(i) F is one-to-one,
(ii) $\operatorname{rng} F=$ the support of L, and
(iii) there exists a finite sequence f of elements of \mathbb{R} such that len $f=\operatorname{len} F$ and $\sum f=1$ and for every natural number n such that $n \in \operatorname{dom} f$ holds $f(n)=L(F(n))$ and $f(n) \geq 0$.
We now state several propositions:
(80) Let V be a complex linear space and L be a \mathbb{C}-linear combination of V. If L is convex, then the support of $L \neq \emptyset$.
(81) Let V be a complex linear space, L be a \mathbb{C}-linear combination of V, and v be a vector of V. Suppose L is convex and there exists a real number r such that $r=L(v)$ and $r \leq 0$. Then $v \notin$ the support of L.
(82) For every complex linear space V and for every \mathbb{C}-linear combination L of V such that L is convex holds $L \neq$ ZeroCLC V.
(83) Let V be a complex linear space, v be a vector of V, and L be a \mathbb{C} linear combination of V. Suppose L is convex and the support of $L=\{v\}$. Then there exists a real number r such that $r=L(v)$ and $r=1$ and $\sum L=L(v) \cdot v$.
(84) Let V be a complex linear space, v_{1}, v_{2} be vectors of V, and L be a \mathbb{C}-linear combination of V. Suppose L is convex and the support of $L=\left\{v_{1}, v_{2}\right\}$ and $v_{1} \neq v_{2}$. Then there exist real numbers r_{1}, r_{2} such that $r_{1}=L\left(v_{1}\right)$ and $r_{2}=L\left(v_{2}\right)$ and $r_{1}+r_{2}=1$ and $r_{1} \geq 0$ and $r_{2} \geq 0$ and $\sum L=L\left(v_{1}\right) \cdot v_{1}+L\left(v_{2}\right) \cdot v_{2}$.
(85) Let V be a complex linear space, v_{1}, v_{2}, v_{3} be vectors of V, and L be a \mathbb{C}-linear combination of V. Suppose L is convex and the support of $L=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $v_{1} \neq v_{2} \neq v_{3} \neq v_{1}$. Then
(i) there exist real numbers r_{1}, r_{2}, r_{3} such that $r_{1}=L\left(v_{1}\right)$ and $r_{2}=L\left(v_{2}\right)$ and $r_{3}=L\left(v_{3}\right)$ and $r_{1}+r_{2}+r_{3}=1$ and $r_{1} \geq 0$ and $r_{2} \geq 0$ and $r_{3} \geq 0$, and
(ii) $\sum L=L\left(v_{1}\right) \cdot v_{1}+L\left(v_{2}\right) \cdot v_{2}+L\left(v_{3}\right) \cdot v_{3}$.
(86) Let V be a complex linear space, v be a vector of V, and L be a \mathbb{C}-linear combination of $\{v\}$. Suppose L is convex. Then there exists a real number r such that $r=L(v)$ and $r=1$ and $\sum L=L(v) \cdot v$.
(87) Let V be a complex linear space, v_{1}, v_{2} be vectors of V, and L be a \mathbb{C}-linear combination of $\left\{v_{1}, v_{2}\right\}$. Suppose $v_{1} \neq v_{2}$ and L is convex. Then there exist real numbers r_{1}, r_{2} such that $r_{1}=L\left(v_{1}\right)$ and $r_{2}=L\left(v_{2}\right)$ and $r_{1} \geq 0$ and $r_{2} \geq 0$ and $\sum L=L\left(v_{1}\right) \cdot v_{1}+L\left(v_{2}\right) \cdot v_{2}$.
(88) Let V be a complex linear space, v_{1}, v_{2}, v_{3} be vectors of V, and L be a \mathbb{C}-linear combination of $\left\{v_{1}, v_{2}, v_{3}\right\}$. Suppose $v_{1} \neq v_{2} \neq v_{3} \neq v_{1}$ and L is convex. Then
(i) there exist real numbers r_{1}, r_{2}, r_{3} such that $r_{1}=L\left(v_{1}\right)$ and $r_{2}=L\left(v_{2}\right)$ and $r_{3}=L\left(v_{3}\right)$ and $r_{1}+r_{2}+r_{3}=1$ and $r_{1} \geq 0$ and $r_{2} \geq 0$ and $r_{3} \geq 0$, and
(ii) $\quad \sum L=L\left(v_{1}\right) \cdot v_{1}+L\left(v_{2}\right) \cdot v_{2}+L\left(v_{3}\right) \cdot v_{3}$.

5. Complex Convex Hull

Let V be a non empty CLS structure and let M be a subset of V. The functor Convex-Family M yielding a family of subsets of V is defined by:
(Def. 25) For every subset N of V holds $N \in$ Convex-Family M iff N is convex and $M \subseteq N$.
Let V be a non empty CLS structure and let M be a subset of V. The functor conv M yielding a convex subset of V is defined as follows:
(Def. 26) conv $M=\bigcap$ Convex-Family M.
The following proposition is true
(89) Let V be a non empty CLS structure, M be a subset of V, and N be a convex subset of V. If $M \subseteq N$, then $\operatorname{conv} M \subseteq N$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990
[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[13] Noboru Endou. Complex linear space of complex sequences. Formalized Mathematics, 12(2):109-117, 2004.
[14] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.
[15] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Topology of real unitary space. Formalized Mathematics, 11(1):33-38, 2003.
[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[18] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[20] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[21] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

