
FORMALIZED MATHEMATICS

Vol. 16, No. 2, Pages 115–122, 2008
DOI: 10.2478/v10037-008-0017-z

Banach Algebra of Bounded Functionals

Yasunari Shidama
Shinshu University
Nagano, Japan

Hikofumi Suzuki
Shinshu University
Nagano, Japan

Noboru Endou
Gifu National College of Technology

Japan

Summary. In this article, we describe some basic properties of the Banach
algebra which is constructed from all bounded functionals.
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The notation and terminology used here are introduced in the following papers:
[7], [24], [4], [2], [5], [3], [21], [16], [23], [22], [13], [15], [6], [1], [20], [25], [8], [12],
[11], [10], [9], [14], [17], [19], and [18].

1. Some Properties of Rings

Let V be a non empty additive loop structure and let V1 be a subset of V .
We say that V1 has inverse if and only if:

(Def. 1) For every element v of V such that v ∈ V1 holds −v ∈ V1.
Let V be a non empty additive loop structure and let V1 be a subset of V .

We say that V1 is additively-closed if and only if:

(Def. 2) V1 is add closed and has inverse.

Let V be a non empty additive loop structure. One can verify that ΩV is
add closed and has inverse.
Let V be a non empty double loop structure. One can verify that every

subset of V which is additively-closed is also add closed and has inverse and
every subset of V which is add closed and has inverse is also additively-closed.
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Let V be a non empty additive loop structure. Observe that there exists a
subset of V which is add closed and non empty and has inverse.
Let V be a ring. A ring is called a subring of V if it satisfies the conditions

(Def. 3).

(Def. 3)(i) The carrier of it ⊆ the carrier of V ,
(ii) the addition of it = (the addition of V ) � (the carrier of it),
(iii) the multiplication of it = (the multiplication of V ) � (the carrier of it),
(iv) 1it = 1V , and
(v) 0it = 0V .

For simplicity, we follow the rules: X is a non empty set, x is an element
of X, d1, d2 are elements of X, A is a binary operation on X, M is a function
from X ×X into X, V is a ring, and V1 is a subset of V .
We now state the proposition

(1) Suppose V1 = X and A = (the addition of V ) � (V1) and M = (the
multiplication of V ) � (V1) and d1 = 1V and d2 = 0V and V1 has inverse.
Then 〈X,A,M, d1, d2〉 is a subring of V .
Let V be a ring. One can check that there exists a subring of V which is

strict.
Let V be a non empty multiplicative loop with zero structure and let V1 be

a subset of V . We say that V1 is multiplicatively-closed if and only if:

(Def. 4) 1V ∈ V1 and for all elements v, u of V such that v, u ∈ V1 holds v ·u ∈ V1.
Let V be a non empty additive loop structure and let V1 be a subset of V .

Let us assume that V1 is add closed and non empty. The functor Add(V1, V )
yielding a binary operation on V1 is defined as follows:

(Def. 5) Add(V1, V ) = (the addition of V ) � (V1).

Let V be a non empty multiplicative loop with zero structure and let V1 be a
subset of V . Let us assume that V1 is multiplicatively-closed and non empty. The
functor mult(V1, V ) yields a binary operation on V1 and is defined as follows:

(Def. 6) mult(V1, V ) = (the multiplication of V ) � (V1).

Let V be an add-associative right zeroed right complementable non empty
double loop structure and let V1 be a subset of V . Let us assume that V1 is
add closed and non empty and has inverse. The functor Zero(V1, V ) yields an
element of V1 and is defined by:

(Def. 7) Zero(V1, V ) = 0V .

Let V be a non empty multiplicative loop with zero structure and let V1 be
a subset of V . Let us assume that V1 is multiplicatively-closed and non empty.
The functor One(V1, V ) yields an element of V1 and is defined as follows:

(Def. 8) One(V1, V ) = 1V .

We now state the proposition
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(2) If V1 is additively-closed, multiplicatively-closed, and non empty, then
〈V1,Add(V1, V ),mult(V1, V ),One(V1, V ),Zero(V1, V )〉 is a ring.

2. Some Properties of Algebras

In the sequel V is an algebra, V1 is a subset of V , M1 is a function from R×
X into X, and a is a real number.
Let V be an algebra. An algebra is called a subalgebra of V if it satisfies the

conditions (Def. 9).

(Def. 9)(i) The carrier of it ⊆ the carrier of V ,
(ii) the addition of it = (the addition of V ) � (the carrier of it),
(iii) the multiplication of it = (the multiplication of V ) � (the carrier of it),
(iv) the external multiplication of it = (the external multiplication of
V )�(R× the carrier of it),

(v) 1it = 1V , and
(vi) 0it = 0V .

The following proposition is true

(3) Suppose that V1 = X and d1 = 0V and d2 = 1V and A = (the ad-
dition of V ) � (V1) and M = (the multiplication of V ) � (V1) and
M1 = (the external multiplication of V )�(R × V1) and V1 has inverse.
Then 〈X,M,A,M1, d2, d1〉 is a subalgebra of V .
Let V be an algebra. Observe that there exists a subalgebra of V which is

strict.
Let V be an algebra and let V1 be a subset of V . We say that V1 is additively-

linearly-closed if and only if:

(Def. 10) V1 is add closed and has inverse and for every real number a and for
every element v of V such that v ∈ V1 holds a · v ∈ V1.
Let V be an algebra. One can check that every subset of V which is additively-

linearly-closed is also additively-closed.
Let V be an algebra and let V1 be a subset of V . Let us assume that V1

is additively-linearly-closed and non empty. The functor Mult(V1, V ) yielding a
function from R× V1 into V1 is defined by:

(Def. 11) Mult(V1, V ) = (the external multiplication of V )�(R× V1).
Let V be a non empty RLS structure. We say that V is scalar-multiplcation-

cancelable if and only if:

(Def. 12) For every real number a and for every element v of V such that a ·v = 0V
holds a = 0 or v = 0V .

One can prove the following propositions:

(4) Let V be an add-associative right zeroed right complementable algebra-
like non empty algebra structure and a be a real number. Then a·0V = 0V .
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(5) Let V be an Abelian add-associative right zeroed right complemen-
table algebra-like non empty algebra structure. Suppose V is scalar-
multiplcation-cancelable. Then V is a real linear space.

(6) Suppose V1 is additively-linearly-closed, multiplicatively-closed, and non
empty.
Then 〈V1,mult(V1, V ),Add(V1, V ),Mult(V1, V ),One(V1, V ),Zero(V1, V )〉
is a subalgebra of V .

Let X be a non empty set. Observe that RAlgebraX is Abelian, add-
associative, right zeroed, right complementable, commutative, associative, right
unital, right distributive, and algebra-like.
One can prove the following two propositions:

(7) RAlgebraX is a real linear space.

(8) Let V be an algebra and V1 be a subalgebra of V . Then
(i) for all elements v1, w1 of V1 and for all elements v, w of V such that
v1 = v and w1 = w holds v1 + w1 = v + w,

(ii) for all elements v1, w1 of V1 and for all elements v, w of V such that
v1 = v and w1 = w holds v1 · w1 = v · w,

(iii) for every element v1 of V1 and for every element v of V and for every
real number a such that v1 = v holds a · v1 = a · v,

(iv) 1(V1) = 1V , and
(v) 0(V1) = 0V .

3. Banach Algebra of Bounded Functionals

Let X be a non empty set. The functor BoundedFunctionsX yielding a non
empty subset of RAlgebraX is defined as follows:

(Def. 13) BoundedFunctionsX = {f : X → R: f is bounded on X}.
We now state the proposition

(9) BoundedFunctionsX is additively-linearly-closed and multiplicatively-
closed.

Let us consider X. Note that BoundedFunctionsX is additively-linearly-
closed and multiplicatively-closed.
The following proposition is true

(10) 〈BoundedFunctionsX,mult(BoundedFunctionsX,RAlgebraX),
Add(BoundedFunctionsX,RAlgebraX),Mult(BoundedFunctionsX,
RAlgebraX),One(BoundedFunctionsX,RAlgebraX),
Zero(BoundedFunctionsX,RAlgebraX)〉 is a subalgebra of RAlgebraX.
Let X be a non empty set. The R-algebra of bounded functions on X yields

an algebra and is defined by:
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(Def. 14) The R-algebra of bounded functions on X = 〈BoundedFunctionsX,
mult(BoundedFunctionsX,RAlgebraX),Add(BoundedFunctionsX,
RAlgebraX),Mult(BoundedFunctionsX,RAlgebraX),One(Bounded
FunctionsX,RAlgebraX),Zero(BoundedFunctionsX,RAlgebraX)〉.
The following proposition is true

(11) The R-algebra of bounded functions on X is a real linear space.
We adopt the following rules: F , G, H are vectors of the R-algebra of boun-

ded functions on X and f , g, h are functions from X into R.
Next we state several propositions:

(12) If f = F and g = G and h = H, then H = F +G iff for every element x
of X holds h(x) = f(x) + g(x).

(13) If f = F and g = G, then G = a · F iff for every element x of X holds
g(x) = a · f(x).

(14) If f = F and g = G and h = H, then H = F ·G iff for every element x
of X holds h(x) = f(x) · g(x).

(15) 0the R-algebra of bounded functions on X = X 7−→ 0.
(16) 1the R-algebra of bounded functions on X = X 7−→ 1.
Let X be a non empty set and let F be a set. Let us assume that F ∈

BoundedFunctionsX. The functor modetrans(F,X) yielding a function from X
into R is defined by:

(Def. 15) modetrans(F,X) = F and modetrans(F,X) is bounded on X.

Let X be a non empty set and let f be a function from X into R. The functor
PreNorms(f) yielding a non empty subset of R is defined as follows:

(Def. 16) PreNorms(f) = {|f(x)| : x ranges over elements of X}.
Next we state three propositions:

(17) If f is bounded on X, then PreNorms(f) is non empty and upper boun-
ded.

(18) f is bounded on X iff PreNorms(f) is upper bounded.

(19) There exists a function N1 from BoundedFunctionsX into R such that
for every set F such that F ∈ BoundedFunctionsX holds N1(F ) =
supPreNorms(modetrans(F,X)).

Let X be a non empty set. The functor BoundedFunctionsNormX yields a
function from BoundedFunctionsX into R and is defined by:

(Def. 17) For every set x such that x ∈ BoundedFunctionsX holds
(BoundedFunctionsNormX)(x) = supPreNorms(modetrans(x,X)).

We now state two propositions:

(20) If f is bounded on X, then modetrans(f,X) = f.

(21) If f is bounded on X, then (BoundedFunctionsNormX)(f) =
supPreNorms(f).



120 yasunari shidama et al.

Let X be a non empty set. The R-normed algebra of bounded functions on
X yielding a normed algebra structure is defined as follows:

(Def. 18) The R-normed algebra of bounded functions on X =
〈BoundedFunctionsX,mult(BoundedFunctionsX,RAlgebraX),
Add(BoundedFunctionsX,RAlgebraX),Mult(BoundedFunctionsX,
RAlgebraX),One(BoundedFunctionsX,RAlgebraX),
Zero(BoundedFunctionsX,RAlgebraX),BoundedFunctionsNormX〉.
Let X be a non empty set. Note that the R-normed algebra of bounded

functions on X is non empty.
Let X be a non empty set. Observe that the R-normed algebra of bounded

functions on X is unital.
We now state the proposition

(22) LetW be a normed algebra structure and V be an algebra. If the algebra
structure of W = V and 1V = 1W , then W is an algebra.

In the sequel F , G, H denote points of the R-normed algebra of bounded
functions on X.
We now state a number of propositions:

(23) The R-normed algebra of bounded functions on X is an algebra.
(24) (Mult(BoundedFunctionsX,RAlgebraX))(1, F ) = F.

(25) The R-normed algebra of bounded functions on X is a real linear space.
(26) X 7−→ 0 = 0the R-normed algebra of bounded functions on X .

(27) If f = F and f is bounded on X, then |f(x)| ≤ ‖F‖.
(28) 0 ≤ ‖F‖.
(29) 0 = ‖(0the R-normed algebra of bounded functions on X)‖.
(30) If f = F and g = G and h = H, then H = F +G iff for every element x
of X holds h(x) = f(x) + g(x).

(31) If f = F and g = G, then G = a · F iff for every element x of X holds
g(x) = a · f(x).

(32) If f = F and g = G and h = H, then H = F ·G iff for every element x
of X holds h(x) = f(x) · g(x).

(33)(i) ‖F‖ = 0 iff F = 0the R-normed algebra of bounded functions on X ,

(ii) ‖a · F‖ = |a| · ‖F‖, and
(iii) ‖F +G‖ ≤ ‖F‖+ ‖G‖.
(34) The R-normed algebra of bounded functions on X is real normed space-
like.

Let X be a non empty set.
Note that the R-normed algebra of bounded functions on X is real normed

space-like, real linear space-like, Abelian, add-associative, right zeroed, and right
complementable.
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We now state three propositions:

(35) If f = F and g = G and h = H, then H = F −G iff for every element x
of X holds h(x) = f(x)− g(x).

(36) Let X be a non empty set and s1 be a sequence of the R-normed algebra
of bounded functions on X. If s1 is Cauchy sequence by norm, then s1 is
convergent.

(37) The R-normed algebra of bounded functions onX is a real Banach space.
Let X be a non empty set.
Observe that the R-normed algebra of bounded functions on X is complete.
The following proposition is true

(38) The R-normed algebra of bounded functions on X is a Banach algebra.
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