Banach Algebra of Bounded Functionals

Yasunari Shidama
Shinshu University
Nagano, Japan

Hikofumi Suzuki
Shinshu University
Nagano, Japan

Noboru Endou
Gifu National College of Technology
Japan

Abstract

Summary. In this article, we describe some basic properties of the Banach algebra which is constructed from all bounded functionals.

MML identifier: COSP1, version: $\underline{7.8 .104 .99 .1005}$

The notation and terminology used here are introduced in the following papers: [7], [24], [4], [2], [5], [3], [21], [16], [23], [22], [13], [15], [6], [1], [20], [25], [8], [12], [11], [10], [9], [14], [17], [19], and [18].

1. Some Properties of Rings

Let V be a non empty additive loop structure and let V_{1} be a subset of V. We say that V_{1} has inverse if and only if:
(Def. 1) For every element v of V such that $v \in V_{1}$ holds $-v \in V_{1}$.
Let V be a non empty additive loop structure and let V_{1} be a subset of V. We say that V_{1} is additively-closed if and only if:
(Def. 2) V_{1} is add closed and has inverse.
Let V be a non empty additive loop structure. One can verify that Ω_{V} is add closed and has inverse.

Let V be a non empty double loop structure. One can verify that every subset of V which is additively-closed is also add closed and has inverse and every subset of V which is add closed and has inverse is also additively-closed.

Let V be a non empty additive loop structure. Observe that there exists a subset of V which is add closed and non empty and has inverse.

Let V be a ring. A ring is called a subring of V if it satisfies the conditions (Def. 3).
(Def. 3)(i) The carrier of it \subseteq the carrier of V,
(ii) the addition of it $=($ the addition of $V) \upharpoonright($ the carrier of it $)$,
(iii) the multiplication of it $=($ the multiplication of $V) \upharpoonright($ the carrier of it $)$,
(iv) $1_{\mathrm{it}}=1_{V}$, and
(v) $0_{\text {it }}=0_{V}$.

For simplicity, we follow the rules: X is a non empty set, x is an element of X, d_{1}, d_{2} are elements of X, A is a binary operation on X, M is a function from $X \times X$ into X, V is a ring, and V_{1} is a subset of V.

We now state the proposition
(1) Suppose $V_{1}=X$ and $A=$ (the addition of $\left.V\right) \upharpoonright\left(V_{1}\right)$ and $M=$ (the multiplication of $V) \upharpoonright\left(V_{1}\right)$ and $d_{1}=1_{V}$ and $d_{2}=0_{V}$ and V_{1} has inverse. Then $\left\langle X, A, M, d_{1}, d_{2}\right\rangle$ is a subring of V.
Let V be a ring. One can check that there exists a subring of V which is strict.

Let V be a non empty multiplicative loop with zero structure and let V_{1} be a subset of V. We say that V_{1} is multiplicatively-closed if and only if:
(Def. 4) $\quad 1_{V} \in V_{1}$ and for all elements v, u of V such that $v, u \in V_{1}$ holds $v \cdot u \in V_{1}$.
Let V be a non empty additive loop structure and let V_{1} be a subset of V. Let us assume that V_{1} is add closed and non empty. The functor $\operatorname{Add}\left(V_{1}, V\right)$ yielding a binary operation on V_{1} is defined as follows:
(Def. 5) $\quad \operatorname{Add}\left(V_{1}, V\right)=($ the addition of $V) \upharpoonright\left(V_{1}\right)$.
Let V be a non empty multiplicative loop with zero structure and let V_{1} be a subset of V. Let us assume that V_{1} is multiplicatively-closed and non empty. The functor mult $\left(V_{1}, V\right)$ yields a binary operation on V_{1} and is defined as follows:
(Def. 6) $\operatorname{mult}\left(V_{1}, V\right)=($ the multiplication of $V) \upharpoonright\left(V_{1}\right)$.
Let V be an add-associative right zeroed right complementable non empty double loop structure and let V_{1} be a subset of V. Let us assume that V_{1} is add closed and non empty and has inverse. The functor $\operatorname{Zero}\left(V_{1}, V\right)$ yields an element of V_{1} and is defined by:
(Def. 7) $\operatorname{Zero}\left(V_{1}, V\right)=0_{V}$.
Let V be a non empty multiplicative loop with zero structure and let V_{1} be a subset of V. Let us assume that V_{1} is multiplicatively-closed and non empty. The functor $\operatorname{One}\left(V_{1}, V\right)$ yields an element of V_{1} and is defined as follows:
(Def. 8) One $\left(V_{1}, V\right)=1_{V}$.
We now state the proposition
(2) If V_{1} is additively-closed, multiplicatively-closed, and non empty, then $\left\langle V_{1}, \operatorname{Add}\left(V_{1}, V\right), \operatorname{mult}\left(V_{1}, V\right), \operatorname{One}\left(V_{1}, V\right), \operatorname{Zero}\left(V_{1}, V\right)\right\rangle$ is a ring.

2. Some Properties of Algebras

In the sequel V is an algebra, V_{1} is a subset of V, M_{1} is a function from $\mathbb{R} \times$ X into X, and a is a real number.

Let V be an algebra. An algebra is called a subalgebra of V if it satisfies the conditions (Def. 9).
(Def. 9)(i) The carrier of it \subseteq the carrier of V,
(ii) the addition of it $=($ the addition of $V) \upharpoonright($ the carrier of it $)$,
(iii) the multiplication of it $=$ (the multiplication of $V) \upharpoonright($ the carrier of it),
(iv) the external multiplication of it $=$ (the external multiplication of $V) \upharpoonright(\mathbb{R} \times$ the carrier of it $)$,
(v) $1_{\mathrm{it}}=1_{V}$, and
(vi) $\quad 0_{\text {it }}=0_{V}$.

The following proposition is true
(3) Suppose that $V_{1}=X$ and $d_{1}=0_{V}$ and $d_{2}=1_{V}$ and $A=$ (the addition of $V) \upharpoonright\left(V_{1}\right)$ and $M=$ (the multiplication of $\left.V\right) \upharpoonright\left(V_{1}\right)$ and $M_{1}=$ (the external multiplication of $\left.V\right) \upharpoonright\left(\mathbb{R} \times V_{1}\right)$ and V_{1} has inverse. Then $\left\langle X, M, A, M_{1}, d_{2}, d_{1}\right\rangle$ is a subalgebra of V.
Let V be an algebra. Observe that there exists a subalgebra of V which is strict.

Let V be an algebra and let V_{1} be a subset of V. We say that V_{1} is additively-linearly-closed if and only if:
(Def. 10) $\quad V_{1}$ is add closed and has inverse and for every real number a and for every element v of V such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.
Let V be an algebra. One can check that every subset of V which is additively-linearly-closed is also additively-closed.

Let V be an algebra and let V_{1} be a subset of V. Let us assume that V_{1} is additively-linearly-closed and non empty. The functor $\operatorname{Mult}\left(V_{1}, V\right)$ yielding a function from $\mathbb{R} \times V_{1}$ into V_{1} is defined by:
(Def. 11) $\operatorname{Mult}\left(V_{1}, V\right)=($ the external multiplication of $V) \upharpoonright\left(\mathbb{R} \times V_{1}\right)$.
Let V be a non empty RLS structure. We say that V is scalar-multiplcationcancelable if and only if:
(Def. 12) For every real number a and for every element v of V such that $a \cdot v=0_{V}$ holds $a=0$ or $v=0_{V}$.
One can prove the following propositions:
(4) Let V be an add-associative right zeroed right complementable algebralike non empty algebra structure and a be a real number. Then $a \cdot 0_{V}=0_{V}$.
(5) Let V be an Abelian add-associative right zeroed right complementable algebra-like non empty algebra structure. Suppose V is scalar-multiplcation-cancelable. Then V is a real linear space.
(6) Suppose V_{1} is additively-linearly-closed, multiplicatively-closed, and non empty.
Then $\left\langle V_{1}, \operatorname{mult}\left(V_{1}, V\right), \operatorname{Add}\left(V_{1}, V\right), \operatorname{Mult}\left(V_{1}, V\right), \operatorname{One}\left(V_{1}, V\right), \operatorname{Zero}\left(V_{1}, V\right)\right\rangle$ is a subalgebra of V.
Let X be a non empty set. Observe that RAlgebra X is Abelian, addassociative, right zeroed, right complementable, commutative, associative, right unital, right distributive, and algebra-like.

One can prove the following two propositions:
(7) RAlgebra X is a real linear space.
(8) Let V be an algebra and V_{1} be a subalgebra of V. Then
(i) for all elements v_{1}, w_{1} of V_{1} and for all elements v, w of V such that $v_{1}=v$ and $w_{1}=w$ holds $v_{1}+w_{1}=v+w$,
(ii) for all elements v_{1}, w_{1} of V_{1} and for all elements v, w of V such that $v_{1}=v$ and $w_{1}=w$ holds $v_{1} \cdot w_{1}=v \cdot w$,
(iii) for every element v_{1} of V_{1} and for every element v of V and for every real number a such that $v_{1}=v$ holds $a \cdot v_{1}=a \cdot v$,
(iv) $\mathbf{1}_{\left(V_{1}\right)}=\mathbf{1}_{V}$, and
(v) $\quad 0_{\left(V_{1}\right)}=0_{V}$.

3. Banach Algebra of Bounded Functionals

Let X be a non empty set. The functor BoundedFunctions X yielding a non empty subset of RAlgebra X is defined as follows:
(Def. 13) BoundedFunctions $X=\{f: X \rightarrow \mathbb{R}: f$ is bounded on $X\}$.
We now state the proposition
(9) BoundedFunctions X is additively-linearly-closed and multiplicativelyclosed.
Let us consider X. Note that BoundedFunctions X is additively-linearlyclosed and multiplicatively-closed.

The following proposition is true
(10) 〈BoundedFunctions X, mult(BoundedFunctions X, RAlgebra X), $\operatorname{Add}($ BoundedFunctions X, RAlgebra X), Mult(BoundedFunctions X, RAlgebra X), One(BoundedFunctions X, RAlgebra X), Zero(BoundedFunctions X, RAlgebra $X)\rangle$ is a subalgebra of RAlgebra X.
Let X be a non empty set. The \mathbb{R}-algebra of bounded functions on X yields an algebra and is defined by:
(Def. 14) The \mathbb{R}-algebra of bounded functions on $X=\langle$ BoundedFunctions X, mult(BoundedFunctions X, RAlgebra X), $\operatorname{Add}($ BoundedFunctions X, RAlgebra X), Mult(BoundedFunctions X, RAlgebra X), One (Bounded Functions X, RAlgebra X), Zero(BoundedFunctions X, RAlgebra $X)\rangle$.
The following proposition is true
(11) The \mathbb{R}-algebra of bounded functions on X is a real linear space.

We adopt the following rules: F, G, H are vectors of the \mathbb{R}-algebra of bounded functions on X and f, g, h are functions from X into \mathbb{R}.

Next we state several propositions:
(12) If $f=F$ and $g=G$ and $h=H$, then $H=F+G$ iff for every element x of X holds $h(x)=f(x)+g(x)$.
(13) If $f=F$ and $g=G$, then $G=a \cdot F$ iff for every element x of X holds $g(x)=a \cdot f(x)$.
(14) If $f=F$ and $g=G$ and $h=H$, then $H=F \cdot G$ iff for every element x of X holds $h(x)=f(x) \cdot g(x)$.

(16) $\mathbf{1}_{\text {the } \mathbb{R}}$-algebra of bounded functions on $X=X \longmapsto 1$.

Let X be a non empty set and let F be a set. Let us assume that $F \in$ BoundedFunctions X. The functor modetrans (F, X) yielding a function from X into \mathbb{R} is defined by:
(Def. 15) $\operatorname{modetrans}(F, X)=F$ and modetrans (F, X) is bounded on X.
Let X be a non empty set and let f be a function from X into \mathbb{R}. The functor $\operatorname{PreNorms}(f)$ yielding a non empty subset of \mathbb{R} is defined as follows:
(Def. 16) PreNorms $(f)=\{|f(x)|: x$ ranges over elements of $X\}$.
Next we state three propositions:
(17) If f is bounded on X, then $\operatorname{PreNorms}(f)$ is non empty and upper bounded.
(18) f is bounded on X iff $\operatorname{PreNorms}(f)$ is upper bounded.
(19) There exists a function N_{1} from BoundedFunctions X into \mathbb{R} such that for every set F such that $F \in$ BoundedFunctions X holds $N_{1}(F)=$ sup PreNorms(modetrans (F, X)).
Let X be a non empty set. The functor BoundedFunctionsNorm X yields a function from BoundedFunctions X into \mathbb{R} and is defined by:
(Def. 17) For every set x such that $x \in$ BoundedFunctions X holds (BoundedFunctionsNorm $X)(x)=\sup \operatorname{PreNorms}(\operatorname{modetrans}(x, X)$).
We now state two propositions:
(20) If f is bounded on X, then modetrans $(f, X)=f$.
(21) If f is bounded on X, then (BoundedFunctionsNorm $X)(f)=$ $\sup \operatorname{PreNorms}(f)$.

Let X be a non empty set. The \mathbb{R}-normed algebra of bounded functions on X yielding a normed algebra structure is defined as follows:
(Def. 18) The \mathbb{R}-normed algebra of bounded functions on $X=$ (BoundedFunctions X, mult(BoundedFunctions X, RAlgebra X), $\operatorname{Add}($ BoundedFunctions X, RAlgebra X), Mult(BoundedFunctions X, RAlgebra X), One(BoundedFunctions X, RAlgebra X),
Zero(BoundedFunctions X, RAlgebra X), BoundedFunctionsNorm $X\rangle$.
Let X be a non empty set. Note that the \mathbb{R}-normed algebra of bounded functions on X is non empty.

Let X be a non empty set. Observe that the \mathbb{R}-normed algebra of bounded functions on X is unital.

We now state the proposition
(22) Let W be a normed algebra structure and V be an algebra. If the algebra structure of $W=V$ and $1_{V}=1_{W}$, then W is an algebra.
In the sequel F, G, H denote points of the \mathbb{R}-normed algebra of bounded functions on X.

We now state a number of propositions:
(23) The \mathbb{R}-normed algebra of bounded functions on X is an algebra.
(24) $\quad(\operatorname{Mult}($ BoundedFunctions X, RAlgebra $X))(1, F)=F$.
(25) The \mathbb{R}-normed algebra of bounded functions on X is a real linear space.
(26) $\quad X \longmapsto 0=0_{\text {the }} \mathbb{R}$-normed algebra of bounded functions on X.
(27) If $f=F$ and f is bounded on X, then $|f(x)| \leq\|F\|$.
(28) $0 \leq\|F\|$.
(29) $0=\|\left(0_{\text {the }} \mathbb{R}\right.$-normed algebra of bounded functions on $\left.X\right) \|$.
(30) If $f=F$ and $g=G$ and $h=H$, then $H=F+G$ iff for every element x of X holds $h(x)=f(x)+g(x)$.
(31) If $f=F$ and $g=G$, then $G=a \cdot F$ iff for every element x of X holds $g(x)=a \cdot f(x)$.
(32) If $f=F$ and $g=G$ and $h=H$, then $H=F \cdot G$ iff for every element x of X holds $h(x)=f(x) \cdot g(x)$.
(33)(i) $\|F\|=0$ iff $F=0_{\text {the }} \mathbb{R}$-normed algebra of bounded functions on X,
(ii) $\|a \cdot F\|=|a| \cdot\|F\|$, and
(iii) $\|F+G\| \leq\|F\|+\|G\|$.
(34) The \mathbb{R}-normed algebra of bounded functions on X is real normed spacelike.
Let X be a non empty set.
Note that the \mathbb{R}-normed algebra of bounded functions on X is real normed space-like, real linear space-like, Abelian, add-associative, right zeroed, and right complementable.

We now state three propositions:
(35) If $f=F$ and $g=G$ and $h=H$, then $H=F-G$ iff for every element x of X holds $h(x)=f(x)-g(x)$.
(36) Let X be a non empty set and s_{1} be a sequence of the \mathbb{R}-normed algebra of bounded functions on X. If s_{1} is Cauchy sequence by norm, then s_{1} is convergent.
(37) The \mathbb{R}-normed algebra of bounded functions on X is a real Banach space.

Let X be a non empty set.
Observe that the \mathbb{R}-normed algebra of bounded functions on X is complete. The following proposition is true
(38) The \mathbb{R}-normed algebra of bounded functions on X is a Banach algebra.

References

[1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.
[2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[9] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[10] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[11] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[15] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[17] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[18] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.
[19] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[20] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences. Formalized Mathematics, 11(4):377-380, 2003.
[21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received March 3, 2008

