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Summary. In the [20], it had been proven that the Integers modulo p, in
this article we shall refer as Z/pZ, constitutes a field if and only if p is a prime.
Then the prime modulo Z/pZ is an additive cyclic group and Z/pZ∗ = Z/pZ\{0}
is a multiplicative cyclic group, too. The former has been proven in the [23].
However, the latter had not been proven yet. In this article, first, we prove a
theorem concerning the LCM to prove the existence of primitive elements of
Z/p∗. Moreover we prove the uniqueness of factoring an integer. Next we define
the multiplicative group Z/pZ∗ and prove it is cyclic.
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The articles [31], [3], [9], [1], [25], [2], [32], [8], [24], [4], [19], [29], [28], [13], [7],
[26], [22], [11], [17], [18], [12], [16], [30], [23], [27], [5], [14], [15], [20], [21], [6], and
[10] provide the terminology and notation for this paper.

1. Uniqueness of Factoring an Integer

In this paper x, X denote sets.
Next we state four propositions:

(1) For every many sorted set p indexed by X such that support p = {x}
holds p = (X 7−→ 0) +· (x, p(x)).

(2) Let X be a set and p, q, r be real-valued many sorted sets indexed by
X. If support p∩ support q = ∅ and support p∪ support q = support r and
p� support p = r� support p and q� support q = r� support q, then p+q = r.
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(3) For every set X and for all many sorted sets p, q indexed by X such that
p� support p = q� support q holds p = q.

(4) For every set X and for all bags p, q of X such that support p = ∅ and
support q = ∅ holds p = q.
Let p be a bag of Prime. We say that p is prime-factorization-like if and only

if:

(Def. 1) For every prime number x such that x ∈ support p there exists a natural
number n such that 0 < n and p(x) = xn.

Let n be a non empty natural number. Note that PPF(n) is prime-factorization-
like.
Next we state a number of propositions:

(5) For all prime numbers p, q and for all natural numbers n, m such that
p | m · qn and p 6= q holds p | m.

(6) Let f be a finite sequence of elements of N, b be a bag of Prime, and a
be a prime number. Suppose b is prime-factorization-like and

∏
b 6= 1 and

a |
∏
b and

∏
b =
∏
f and f = b · CFS(support b). Then a ∈ support b.

(7) For all bags p, q of Prime such that support p ⊆ support q and
p� support p = q� support p holds

∏
p |
∏
q.

(8) Let p be a bag of Prime and x be a prime number. If p is prime-
factorization-like, then x |

∏
p iff x ∈ support p.

(9) For all non empty natural numbers n, m, k such that k = lcm(n,m)
holds support PPF(k) = support PPF(n) ∪ support PPF(m).

(10) For every set X and for all bags b1, b2 of X holds supportmin(b1, b2) =
support b1 ∩ support b2.

(11) For all non empty natural numbers n, m, k such that k = n gcdm holds
support PPF(k) = support PPF(n) ∩ support PPF(m).

(12) Let p, q be bags of Prime. Suppose p is prime-factorization-like and q
is prime-factorization-like and support p misses support q. Then

∏
p and∏

q are relative prime.

(13) For every bag p of Prime such that p is prime-factorization-like holds∏
p 6= 0.

(14) For every bag p of Prime such that p is prime-factorization-like holds∏
p = 1 iff support p = ∅.

(15) Let p, q be bags of Prime. Suppose p is prime-factorization-like and q is
prime-factorization-like and

∏
p =
∏
q. Then p = q.

(16) Let p be a bag of Prime and n be a non empty natural number. If p is
prime-factorization-like and n =

∏
p, then PPF(n) = p.

(17) Let n, m be elements of N. Suppose 1 ≤ n and 1 ≤ m. Then there exist
elements m0, n0 of N such that lcm(n,m) = n0 · m0 and n0 gcdm0 = 1
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and n0 | n and m0 | m and n0 6= 0 and m0 6= 0.

2. Multiplicative Group Z/pZ∗

Let n be a natural number. Let us assume that 1 < n. The functor Z∗n yields
a non empty finite subset of N and is defined by:
(Def. 2) Z∗n = Zn \ {0}.

We now state the proposition

(18) For every natural number n such that 1 < n holds Z∗n = n− 1.
Let n be a prime number. The functor ·Z∗n yielding a binary operation on Z∗n

is defined by:

(Def. 3) ·Z∗n = ·Zn � Z∗n.
One can prove the following proposition

(19) For every prime number p holds 〈Z∗p, ·Z∗p〉 is associative, commutative,
and group-like.

Let p be a prime number. The functor Z/pZ∗ yielding a commutative group
is defined by:

(Def. 4) Z/pZ∗ = 〈Z∗p, ·Z∗p〉.
The following three propositions are true:

(20) Let p be a prime number, x, y be elements of Z/pZ∗, and x1, y1 be
elements of ZRp . If x = x1 and y = y1, then x · y = x1 · y1.

(21) For every prime number p holds 1Z/pZ∗ = 1 and 1Z/pZ∗ = 1ZRp .

(22) For every prime number p and for every element x of Z/pZ∗ and for
every element x1 of ZRp such that x = x1 holds x−1 = x1−1.
Let p be a prime number. One can verify that Z/pZ∗ is finite.
We now state several propositions:

(23) For every prime number p holds ord(Z/pZ∗) = p− 1.
(24) Let G be a group, a be an element of G, and i be an integer. Suppose a
is not of order 0. Then there exist elements n, k of N such that ai = an
and n = k · ord(a) + i.

(25) LetG be a commutative group, a, b be elements ofG, and n,m be natural
numbers. If G is finite and ord(a) = n and ord(b) = m and n gcdm = 1,
then ord(a · b) = n ·m.

(26) For every non empty zero structure L and for every polynomial p of L
such that 0 ≤ deg p holds p is non-zero.

(27) For every field L and for every polynomial f of L such that 0 ≤ deg f
holds Roots f is a finite set and Roots f ≤ deg f.
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(28) Let p be a prime number, z be an element of Z/pZ∗, and y be an element
of ZRp . If z = y, then for every element n of N holds powerZ/pZ∗(z, n) =
powerZRp (y, n).

(29) Let p be a prime number, a, b be elements of Z/pZ∗, and n be a natural
number. If 0 < n and ord(a) = n and bn = 1, then b is an element of
gr({a}).

(30) Let G be a group, z be an element of G, and d, l be elements of N. If G
is finite and ord(z) = d · l, then ord(zd) = l.

(31) For every prime number p holds Z/pZ∗ is a cyclic group.
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