Uniqueness of Factoring an Integer and Multiplicative Group $\mathbb{Z} / p \mathbb{Z}^{*}$

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In the [20], it had been proven that the Integers modulo p, in this article we shall refer as $\mathbb{Z} / p \mathbb{Z}$, constitutes a field if and only if p is a prime. Then the prime modulo $\mathbb{Z} / p \mathbb{Z}$ is an additive cyclic group and $\mathbb{Z} / p \mathbb{Z}^{*}=\mathbb{Z} / p \mathbb{Z} \backslash\{0\}$ is a multiplicative cyclic group, too. The former has been proven in the [23]. However, the latter had not been proven yet. In this article, first, we prove a theorem concerning the LCM to prove the existence of primitive elements of \mathbb{Z} / p^{*}. Moreover we prove the uniqueness of factoring an integer. Next we define the multiplicative group $\mathbb{Z} / p \mathbb{Z}^{*}$ and prove it is cyclic.

MML identifier: INT_7, version: 7.8.10 4.99.1005

The articles [31], [3], [9], [1], [25], [2], [32], [8], [24], [4], [19], [29], [28], [13], [7], [26], [22], [11], [17], [18], [12], [16], [30], [23], [27], [5], [14], [15], [20], [21], [6], and [10] provide the terminology and notation for this paper.

1. Uniqueness of Factoring an Integer

In this paper x, X denote sets.
Next we state four propositions:
(1) For every many sorted set p indexed by X such that support $p=\{x\}$ holds $p=(X \longmapsto 0)+\cdot(x, p(x))$.
(2) Let X be a set and p, q, r be real-valued many sorted sets indexed by X. If support $p \cap \operatorname{support} q=\emptyset$ and support $p \cup \operatorname{support} q=\operatorname{support} r$ and $p \upharpoonright$ support $p=r \upharpoonright$ support p and $q \upharpoonright$ support $q=r \upharpoonright$ support q, then $p+q=r$.
(3) For every set X and for all many sorted sets p, q indexed by X such that $p \upharpoonright$ support $p=q \upharpoonright$ support q holds $p=q$.
(4) For every set X and for all bags p, q of X such that support $p=\emptyset$ and support $q=\emptyset$ holds $p=q$.
Let p be a bag of Prime. We say that p is prime-factorization-like if and only if:
(Def. 1) For every prime number x such that $x \in \operatorname{support} p$ there exists a natural number n such that $0<n$ and $p(x)=x^{n}$.
Let n be a non empty natural number. Note that $\operatorname{PPF}(n)$ is prime-factorizationlike.

Next we state a number of propositions:
(5) For all prime numbers p, q and for all natural numbers n, m such that $p \mid m \cdot q^{n}$ and $p \neq q$ holds $p \mid m$.
(6) Let f be a finite sequence of elements of \mathbb{N}, b be a bag of Prime, and a be a prime number. Suppose b is prime-factorization-like and $\Pi b \neq 1$ and $a \mid \Pi b$ and $\Pi b=\Pi f$ and $f=b \cdot \mathrm{CFS}($ support $b)$. Then $a \in \operatorname{support} b$.
(7) For all bags p, q of Prime such that support $p \subseteq \operatorname{support} q$ and $p \upharpoonright$ support $p=q \upharpoonright$ support p holds $\Pi p \mid \Pi q$.
(8) Let p be a bag of Prime and x be a prime number. If p is prime-factorization-like, then $x \mid \Pi p$ iff $x \in \operatorname{support} p$.
(9) For all non empty natural numbers n, m, k such that $k=\operatorname{lcm}(n, m)$ holds support $\operatorname{PPF}(k)=\operatorname{support} \operatorname{PPF}(n) \cup \operatorname{support} \operatorname{PPF}(m)$.
(10) For every set X and for all bags b_{1}, b_{2} of X holds $\operatorname{support} \min \left(b_{1}, b_{2}\right)=$ support $b_{1} \cap$ support b_{2}.
(11) For all non empty natural numbers n, m, k such that $k=n \operatorname{gcd} m$ holds support $\operatorname{PPF}(k)=\operatorname{support} \operatorname{PPF}(n) \cap \operatorname{support} \operatorname{PPF}(m)$.
(12) Let p, q be bags of Prime. Suppose p is prime-factorization-like and q is prime-factorization-like and support p misses support q. Then $\prod p$ and Πq are relative prime.
(13) For every bag p of Prime such that p is prime-factorization-like holds $\Pi p \neq 0$.
(14) For every bag p of Prime such that p is prime-factorization-like holds $\Pi p=1$ iff support $p=\emptyset$.
(15) Let p, q be bags of Prime. Suppose p is prime-factorization-like and q is prime-factorization-like and $\Pi p=\Pi q$. Then $p=q$.
(16) Let p be a bag of Prime and n be a non empty natural number. If p is prime-factorization-like and $n=\Pi p$, then $\operatorname{PPF}(n)=p$.
(17) Let n, m be elements of \mathbb{N}. Suppose $1 \leq n$ and $1 \leq m$. Then there exist elements m_{0}, n_{0} of \mathbb{N} such that $\operatorname{lcm}(n, m)=n_{0} \cdot m_{0}$ and $n_{0} \operatorname{gcd} m_{0}=1$
and $n_{0} \mid n$ and $m_{0} \mid m$ and $n_{0} \neq 0$ and $m_{0} \neq 0$.

2. Multiplicative Group $\mathbb{Z} / p \mathbb{Z}^{*}$

Let n be a natural number. Let us assume that $1<n$. The functor \mathbb{Z}_{n}^{*} yields a non empty finite subset of \mathbb{N} and is defined by:
(Def. 2) $\mathbb{Z}_{n}^{*}=\mathbb{Z}_{n} \backslash\{0\}$.
We now state the proposition
(18) For every natural number n such that $1<n$ holds $\overline{\overline{\mathbb{Z}_{n}^{*}}}=n-1$.

Let n be a prime number. The functor $\cdot \mathbb{Z}_{n}^{*}$ yielding a binary operation on \mathbb{Z}_{n}^{*} is defined by:
(Def. 3) $\quad \mathbb{Z}_{n}^{*}=\cdot \mathbb{Z}_{n} \upharpoonright \mathbb{Z}_{n}^{*}$.
One can prove the following proposition
(19) For every prime number p holds $\left\langle\mathbb{Z}_{p}^{*}, \cdot \mathbb{Z}_{p}^{*}\right\rangle$ is associative, commutative, and group-like.
Let p be a prime number. The functor $\mathbb{Z} / p \mathbb{Z}^{*}$ yielding a commutative group is defined by:
(Def. 4) $\mathbb{Z} / p \mathbb{Z}^{*}=\left\langle\mathbb{Z}_{p}^{*}, \cdot \mathbb{Z}_{p}^{*}\right\rangle$.
The following three propositions are true:
(20) Let p be a prime number, x, y be elements of $\mathbb{Z} / p \mathbb{Z}^{*}$, and x_{1}, y_{1} be elements of $\mathbb{Z}_{p}^{\mathrm{R}}$. If $x=x_{1}$ and $y=y_{1}$, then $x \cdot y=x_{1} \cdot y_{1}$.
(21) For every prime number p holds $\mathbf{1}_{\mathbb{Z} / p \mathbb{Z}^{*}}=1$ and $\mathbf{1}_{\mathbb{Z} / p \mathbb{Z}^{*}}=1_{\mathbb{Z}_{p}^{R}}$.
(22) For every prime number p and for every element x of $\mathbb{Z} / p \mathbb{Z}^{*}$ and for every element x_{1} of $\mathbb{Z}_{p}^{\mathrm{R}}$ such that $x=x_{1}$ holds $x^{-1}=x_{1}{ }^{-1}$.
Let p be a prime number. One can verify that $\mathbb{Z} / p \mathbb{Z}^{*}$ is finite.
We now state several propositions:
(23) For every prime number p holds $\operatorname{ord}\left(\mathbb{Z} / p \mathbb{Z}^{*}\right)=p-1$.
(24) Let G be a group, a be an element of G, and i be an integer. Suppose a is not of order 0 . Then there exist elements n, k of \mathbb{N} such that $a^{i}=a^{n}$ and $n=k \cdot \operatorname{ord}(a)+i$.
(25) Let G be a commutative group, a, b be elements of G, and n, m be natural numbers. If G is finite and $\operatorname{ord}(a)=n$ and $\operatorname{ord}(b)=m$ and $n \operatorname{gcd} m=1$, then $\operatorname{ord}(a \cdot b)=n \cdot m$.
(26) For every non empty zero structure L and for every polynomial p of L such that $0 \leq \operatorname{deg} p$ holds p is non-zero.
(27) For every field L and for every polynomial f of L such that $0 \leq \operatorname{deg} f$ holds Roots f is a finite set and $\overline{\overline{\operatorname{Roots} f}} \leq \operatorname{deg} f$.
(28) Let p be a prime number, z be an element of $\mathbb{Z} / p \mathbb{Z}^{*}$, and y be an element of $\mathbb{Z}_{p}^{\mathrm{R}}$. If $z=y$, then for every element n of \mathbb{N} holds power $_{\mathbb{Z} / p \mathbb{Z}^{*}}(z, n)=$ $\operatorname{power}_{\mathbb{Z}_{p}^{\mathrm{R}}}(y, n)$.
(29) Let p be a prime number, a, b be elements of $\mathbb{Z} / p \mathbb{Z}^{*}$, and n be a natural number. If $0<n$ and $\operatorname{ord}(a)=n$ and $b^{n}=1$, then b is an element of $\operatorname{gr}(\{a\})$.
(30) Let G be a group, z be an element of G, and d, l be elements of \mathbb{N}. If G is finite and $\operatorname{ord}(z)=d \cdot l$, then $\operatorname{ord}\left(z^{d}\right)=l$.
(31) For every prime number p holds $\mathbb{Z} / p \mathbb{Z}^{*}$ is a cyclic group.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[6] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.
[11] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.
[12] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[15] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[16] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461470, 2001.
[17] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[18] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49-58, 2004.
[19] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[20] Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
[21] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Schur's theorem on the stability of networks. Formalized Mathematics, 14(4):135-142, 2006.
[22] Christoph Schwarzweller and Andrzej Trybulec. The evaluation of multivariate polynomials. Formalized Mathematics, 9(2):331-338, 2001.
[23] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[26] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[27] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[28] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[30] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

