Solutions of Linear Equations

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Abstract

Summary. In this paper I present the Kronecker-Capelli theorem which states that a system of linear equations has a solution if and only if the rank of its coefficient matrix is equal to the rank of its augmented matrix.

MML identifier: MATRIX15, version: $\underline{7.8 .09} 4.97 .1001$

The terminology and notation used in this paper are introduced in the following papers: [9], [24], [1], [2], [10], [25], [6], [8], [7], [3], [23], [21], [13], [5], [11], [12], [26], [15], [27], [19], [16], [22], [20], [28], [4], [17], [14], and [18].

1. Preliminaries

For simplicity, we follow the rules: x denotes a set, i, j, k, l, m, n denote natural numbers, K denotes a field, N denotes a without zero finite subset of \mathbb{N}, a, b denote elements of $K, A, B, B_{1}, B_{2}, X, X_{1}, X_{2}$ denote matrices over K, A^{\prime} denotes a matrix over K of dimension $m \times n, B^{\prime}$ denotes a matrix over K of dimension $m \times k$, and M denotes a square matrix over K of dimension n.

We now state a number of propositions:
(1) If width $A=\operatorname{len} B$, then $(a \cdot A) \cdot B=a \cdot(A \cdot B)$.
(2) $\mathbf{1}_{K} \cdot A=A$ and $a \cdot(b \cdot A)=(a \cdot b) \cdot A$.
(3) Let K be a non empty additive loop structure and f, g, h, w be finite sequences of elements of K. If len $f=\operatorname{len} g$ and $\operatorname{len} h=\operatorname{len} w$, then f^{\wedge} $h+g^{\wedge} w=(f+g)^{\wedge}(h+w)$.
(4) Let K be a non empty multiplicative magma, f, g be finite sequences of elements of K, and a be an element of K. Then $a \cdot(f \wedge g)=(a \cdot f)^{\wedge}(a \cdot g)$.
(5) Let f be a function and $p_{1}, p_{2}, f_{1}, f_{2}$ be finite sequences. If $\operatorname{rng} p_{1} \subseteq$ $\operatorname{dom} f$ and $\operatorname{rng} p_{2} \subseteq \operatorname{dom} f$ and $f_{1}=f \cdot p_{1}$ and $f_{2}=f \cdot p_{2}$, then $f \cdot\left(p_{1}{ }^{\complement} p_{2}\right)=$ $f_{1} \curvearrowleft f_{2}$.
(6) Let f be a finite sequence of elements of \mathbb{N} and given n. Suppose f is one-to-one and $\operatorname{rng} f \subseteq \operatorname{Seg} n$ and for all i, j such that $i, j \in \operatorname{dom} f$ and $i<j$ holds $f(i)<f(j)$. Then Sgm rng $f=f$.
(7) Let K be an Abelian add-associative right zeroed right complementable non empty additive loop structure, p be a finite sequence of elements of K, and given i, j. Suppose $i, j \in \operatorname{dom} p$ and $i \neq j$ and for every k such that $k \in \operatorname{dom} p$ and $k \neq i$ and $k \neq j$ holds $p(k)=0_{K}$. Then $\sum p=p_{i}+p_{j}$.
(8) If $i \in \operatorname{Seg} m$, then $(\operatorname{Sgm}(\operatorname{Seg}(n+m) \backslash \operatorname{Seg} n))(i)=n+i$.
(9) Let D be a non empty set, A be a matrix over D, and B_{3}, B_{4}, C_{1}, C_{2} be without zero finite subsets of \mathbb{N}. Suppose $B_{3} \times B_{4} \subseteq$ the indices of A and $C_{1} \times C_{2} \subseteq$ the indices of A. Let B be a matrix over D of dimension card $B_{3} \times$ card B_{4} and C be a matrix over D of dimension $\operatorname{card} C_{1} \times \operatorname{card} C_{2}$. Suppose that for all natural numbers $i, j, b_{1}, b_{2}, c_{1}$, c_{2} such that $\langle i, j\rangle \in\left(B_{3} \times B_{4}\right) \cap\left(C_{1} \times C_{2}\right)$ and $b_{1}=\left(\operatorname{Sgm} B_{3}\right)^{-1}(i)$ and $b_{2}=\left(\operatorname{Sgm} B_{4}\right)^{-1}(j)$ and $c_{1}=\left(\operatorname{Sgm} C_{1}\right)^{-1}(i)$ and $c_{2}=\left(\operatorname{Sgm} C_{2}\right)^{-1}(j)$ holds $B_{b_{1}, b_{2}}=C_{c_{1}, c_{2}}$. Then there exists a matrix M over D of dimension len $A \times$ width A such that $\operatorname{Segm}\left(M, B_{3}, B_{4}\right)=B$ and $\operatorname{Segm}\left(M, C_{1}, C_{2}\right)=C$ and for all i, j such that $\langle i, j\rangle \in($ the indices of $M) \backslash\left(B_{3} \times B_{4} \cup C_{1} \times C_{2}\right)$ holds $M_{i, j}=A_{i, j}$.
(10) Let P, Q, Q^{\prime} be without zero finite subsets of \mathbb{N}. Suppose $P \times Q^{\prime} \subseteq$ the indices of A. Let given i, j. Suppose $i \in \operatorname{dom} A \backslash P$ and $j \in \operatorname{Seg}$ width $A \backslash Q$ and $A_{i, j} \neq 0_{K}$ and $Q \subseteq Q^{\prime}$ and $\operatorname{Line}(A, i) \cdot \operatorname{Sgm} Q^{\prime}=\operatorname{card} Q^{\prime} \mapsto 0_{K}$. Then $\operatorname{rk}(A)>\operatorname{rk}(\operatorname{Segm}(A, P, Q))$.
(11) For every N such that $N \subseteq \operatorname{dom} A$ and for every i such that $i \in \operatorname{dom} A \backslash N$ holds Line $(A, i)=$ width $A \mapsto 0_{K} \operatorname{holds} \operatorname{rk}(A)=$ $\operatorname{rk}(\operatorname{Segm}(A, N, \operatorname{Seg}$ width $A))$.
(12) For every N such that $N \subseteq \operatorname{Seg}$ width A and for every i such that $i \in \operatorname{Seg}$ width $A \backslash N$ holds $A_{\square, i}=\operatorname{len} A \mapsto 0_{K} \operatorname{holds} \operatorname{rk}(A)=$ $\operatorname{rk}(\operatorname{Segm}(A, \operatorname{Seg} \operatorname{len} A, N))$.
(13) Let V be a vector space over K, U be a finite subset of V, u, v be vectors of V, and given a. If $u, v \in U$, then $\operatorname{Lin}((U \backslash\{u\}) \cup\{u+a \cdot v\})$ is a subspace of $\operatorname{Lin}(U)$.
(14) Let V be a vector space over K, U be a finite subset of V, u, v be vectors of V, and given a. Suppose $u, v \in U$ and if $u=v$, then $a \neq-\mathbf{1}_{K}$ or $u=0_{V}$. Then $\operatorname{Lin}((U \backslash\{u\}) \cup\{u+a \cdot v\})=\operatorname{Lin}(U)$.

2. Selected Properties of Joining Operation of two Matrices

Let D be a non empty set, let n, m, k be natural numbers, let A be a matrix over D of dimension $n \times m$, and let B be a matrix over D of dimension $n \times k$. Then $A \frown B$ is a matrix over D of dimension $n \times($ width $A+$ width $B)$.

We now state a number of propositions:
(15) Let D be a non empty set, A be a matrix over D of dimension $n \times m$, B be a matrix over D of dimension $n \times k$, and given i. If $i \in \operatorname{Seg} n$, then $\operatorname{Line}(A \frown B, i)=\operatorname{Line}(A, i)^{\frown} \operatorname{Line}(B, i)$.
(16) Let D be a non empty set, A be a matrix over D of dimension $n \times m$, B be a matrix over D of dimension $n \times k$, and given i. If $i \in \operatorname{Seg}$ width A, then $(A \frown B)_{\square, i}=A_{\square, i}$.
(17) Let D be a non empty set, A be a matrix over D of dimension $n \times m$, B be a matrix over D of dimension $n \times k$, and given i. If $i \in \operatorname{Seg}$ width B, then $(A \frown B)_{\square \text {, width } A+i}=B_{\square, i}$.
(18) Let D be a non empty set, A be a matrix over D of dimension n $\times m, B$ be a matrix over D of dimension $n \times k$, and p_{3}, p_{4} be finite sequences of elements of D. If $\operatorname{len} p_{3}=$ width A and len $p_{4}=$ width B, then ReplaceLine $\left(A \frown B, i, p_{3} \frown p_{4}\right)=\left(\operatorname{ReplaceLine}\left(A, i, p_{3}\right)\right) \frown$ ReplaceLine $\left(B, i, p_{4}\right)$.
(19) Let D be a non empty set, A be a matrix over D of dimension $n \times$ m, and B be a matrix over D of dimension $n \times k$. Then $\operatorname{Segm}(A \frown$ $B, \operatorname{Seg} n, \operatorname{Seg}$ width $A)=A$ and $\operatorname{Segm}(A \frown B, \operatorname{Seg} n, \operatorname{Seg}($ width $A+$ width $B) \backslash \operatorname{Seg}$ width $A)=B$.
(20) For all matrices A, B over K such that len $A=$ len B holds $\operatorname{rk}(A) \leq$ $\operatorname{rk}(A \frown B)$ and $\operatorname{rk}(B) \leq \operatorname{rk}(A \frown B)$.
(21) For all matrices A, B over K such that $\operatorname{len} A=\operatorname{len} B$ and len $A=\operatorname{rk}(A)$ holds $\operatorname{rk}(A)=\operatorname{rk}(A \frown B)$.
(22) For all matrices A, B over K such that len $A=\operatorname{len} B$ and width $A=0$ holds $A \frown B=B$ and $B \frown A=B$.
(23) For all matrices A, B over K such that $B=0_{K}^{(\operatorname{len} A) \times m} \operatorname{holds} \operatorname{rk}(A)=$ $\operatorname{rk}(A \frown B)$.
(24) Let A, B be matrices over K. Suppose $\operatorname{rk}(A)=\operatorname{rk}(A \frown B)$ and len $A=$ len B. Let given N. Suppose $N \subseteq \operatorname{dom} A$ and for every i such that $i \in N$ holds Line $(A, i)=$ width $A \mapsto 0_{K}$. Let given i. If $i \in N$, then Line $(B, i)=$ width $B \mapsto 0_{K}$.

3. Basic Properties of two Transformations which Transform Finite Sequences to Matrices

For simplicity, we follow the rules: D is a non empty set, b_{3} is a finite sequence of elements of D, b, f, g are finite sequences of elements of K, and M_{1} is a matrix over D.

Let D be a non empty set and let b be a finite sequence of elements of D. The functor LineVec $2 \mathrm{Mx} b$ yielding a matrix over D of dimension $1 \times$ len b is defined by:
(Def. 1) LineVec $2 \mathrm{Mx} b=\langle b\rangle$.
The functor ColVec $2 \mathrm{Mx} b$ yielding a matrix over D of dimension len $b \times 1$ is defined by:
(Def. 2) ColVec $2 \mathrm{Mx} b=\langle b\rangle^{\mathrm{T}}$.
One can prove the following propositions:
(25) $\quad M_{1}=\operatorname{LineVec} 2 \mathrm{Mx} b_{3}$ iff $\operatorname{Line}\left(M_{1}, 1\right)=b_{3}$ and len $M_{1}=1$.
(26) If len $M_{1} \neq 0$ or len $b_{3} \neq 0$, then $M_{1}=\operatorname{ColVec} 2 \mathrm{Mx} b_{3}$ iff $\left(M_{1}\right) \square, 1=b_{3}$ and width $M_{1}=1$.
(27) If len $f=\operatorname{len} g$, then LineVec $2 \mathrm{Mx} f+\operatorname{LineVec} 2 \operatorname{Mx} g=\operatorname{LineVec} 2 \mathrm{Mx}(f+$ g).
(28) If len $f=\operatorname{len} g$, then ColVec $2 \mathrm{Mx} f+\operatorname{ColVec} 2 \mathrm{Mx} g=\operatorname{ColVec} 2 \mathrm{Mx}(f+g)$.
(29) $a \cdot \operatorname{LineVec} 2 \operatorname{Mx} f=\operatorname{LineVec} 2 \operatorname{Mx}(a \cdot f)$.
(30) $a \cdot \operatorname{ColVec} 2 \mathrm{Mx} f=\operatorname{ColVec} 2 \mathrm{Mx}(a \cdot f)$.
(31) LineVec $2 \mathrm{Mx}\left(k \mapsto 0_{K}\right)=0_{K}^{1 \times k}$.
(32) $\operatorname{ColVec} 2 \operatorname{Mx}\left(k \mapsto 0_{K}\right)=0_{K}^{k \times 1}$.

4. Basis Properties of the Solution of Linear Equations

Let us consider K and let us consider A, B. The set of solutions of A and B is a set and is defined as follows:
(Def. 3) The set of solutions of A and $B=\{X:$ len $X=$ width $A \wedge$ width $X=$ width $B \wedge A \cdot X=B\}$.
We now state a number of propositions:
(33) If the set of solutions of A and B is non empty, then len $A=\operatorname{len} B$.
(34) If $X \in$ the set of solutions of A and B and $i \in \operatorname{Seg}$ width X and $X_{\square, i}=$ len $X \mapsto 0_{K}$, then $B \square, i=$ len $B \mapsto 0_{K}$.
(35) Suppose $X \in$ the set of solutions of A and B. Then $a \cdot X \in$ the set of solutions of A and $a \cdot B$ and $X \in$ the set of solutions of $a \cdot A$ and $a \cdot B$.
(36) If $a \neq 0_{K}$, then the set of solutions of A and $B=$ the set of solutions of $a \cdot A$ and $a \cdot B$.
(37) Suppose $X_{1} \in$ the set of solutions of A and B_{1} and $X_{2} \in$ the set of solutions of A and B_{2} and width $B_{1}=$ width B_{2}. Then $X_{1}+X_{2} \in$ the set of solutions of A and $B_{1}+B_{2}$.
(38) If $X \in$ the set of solutions of A^{\prime} and B^{\prime}, then $X \in$ the set of solutions of $\operatorname{RLine}\left(A^{\prime}, i, a \cdot \operatorname{Line}\left(A^{\prime}, i\right)\right)$ and $\operatorname{RLine}\left(B^{\prime}, i, a \cdot \operatorname{Line}\left(B^{\prime}, i\right)\right)$.
(39) Suppose $X \in$ the set of solutions of A^{\prime} and B^{\prime} and $j \in \operatorname{Seg} m$ and $i \neq j$. Then $X \in$ the set of solutions of $\operatorname{RLine}\left(A^{\prime}, i, \operatorname{Line}\left(A^{\prime}, i\right)+a \cdot \operatorname{Line}\left(A^{\prime}, j\right)\right)$ and $\operatorname{RLine}\left(B^{\prime}, i, \operatorname{Line}\left(B^{\prime}, i\right)+a \cdot \operatorname{Line}\left(B^{\prime}, j\right)\right)$.
(40) Suppose $j \in \operatorname{Seg} m$ and if $i=j$, then $a \neq-\mathbf{1}_{K}$. Then the set of solutions of A^{\prime} and $B^{\prime}=$ the set of solutions of $\operatorname{RLine}\left(A^{\prime}, i, \operatorname{Line}\left(A^{\prime}, i\right)+a \cdot \operatorname{Line}\left(A^{\prime}, j\right)\right)$ and $\operatorname{RLine}\left(B^{\prime}, i, \operatorname{Line}\left(B^{\prime}, i\right)+a \cdot \operatorname{Line}\left(B^{\prime}, j\right)\right)$.
(41) If $X \in$ the set of solutions of A and B and $i \in \operatorname{dom} A$ and $\operatorname{Line}(A, i)=$ width $A \mapsto 0_{K}$, then Line $(B, i)=$ width $B \mapsto 0_{K}$.
(42) Let n_{1} be an element of \mathbb{N}^{n}. Suppose $\operatorname{rng} n_{1} \subseteq \operatorname{dom} A$ and $n>$ 0 . Then the set of solutions of A and $B \subseteq$ the set of solutions of $\operatorname{Segm}\left(A, n_{1}, \operatorname{Sgm} \operatorname{Seg}\right.$ width $\left.A\right)$ and $\operatorname{Segm}\left(B, n_{1}, \operatorname{Sgm} \operatorname{Seg}\right.$ width $\left.B\right)$.
(43) Let n_{1} be an element of \mathbb{N}^{n}. Suppose $\operatorname{rng} n_{1} \subseteq \operatorname{dom} A=\operatorname{dom} B$ and $n>0$ and for every i such that $i \in \operatorname{dom} A \backslash \operatorname{rng} n_{1}$ holds Line $(A, i)=$ width $A \mapsto 0_{K}$ and Line $(B, i)=$ width $B \mapsto 0_{K}$. Then the set of solutions of A and $B=$ the set of solutions of $\operatorname{Segm}\left(A, n_{1}, \operatorname{Sgm} \operatorname{Seg}\right.$ width $\left.A\right)$ and $\operatorname{Segm}\left(B, n_{1}, \operatorname{Sgm} \operatorname{Seg}\right.$ width $\left.B\right)$.
(44) Let given N. Suppose $N \subseteq \operatorname{dom} A$ and N is non empty. Then the set of solutions of A and $B \subseteq$ the set of solutions of $\operatorname{Segm}(A, N, \operatorname{Seg}$ width $A)$ and $\operatorname{Segm}(B, N, \operatorname{Seg}$ width $B)$.
(45) Let given N. Suppose $N \subseteq \operatorname{dom} A$ and N is non empty and $\operatorname{dom} A=$ $\operatorname{dom} B$ and for every i such that $i \in \operatorname{dom} A \backslash N$ holds $\operatorname{Line}(A, i)=$ width $A \mapsto 0_{K}$ and $\operatorname{Line}(B, i)=$ width $B \mapsto 0_{K}$. Then the set of solutions of A and $B=$ the set of solutions of $\operatorname{Segm}(A, N, \operatorname{Seg}$ width $A)$ and $\operatorname{Segm}(B, N, \operatorname{Seg}$ width $B)$.
(46) Suppose $i \in \operatorname{dom} A$ and len $A>1$. Then the set of solutions of A and $B \subseteq$ the set of solutions of the deleting of i-row in A and the deleting of i -row in B.
(47) Let given A, B, i. Suppose $i \in \operatorname{dom} A$ and len $A>1$ and $\operatorname{Line}(A, i)=$ width $A \mapsto 0_{K}$ and $i \in \operatorname{dom} B$ and Line $(B, i)=\operatorname{width} B \mapsto 0_{K}$. Then the set of solutions of A and $B=$ the set of solutions of the deleting of i-row in A and the deleting of i-row in B.
(48) Let A be a matrix over K of dimension $n \times m, B$ be a matrix over K of dimension $n \times k$, and P be a function from $\operatorname{Seg} n \operatorname{into} \operatorname{Seg} n$. Then
(i) the set of solutions of A and $B \subseteq$ the set of solutions of $A \cdot P$ and $B \cdot P$, and
(ii) if P is one-to-one, then the set of solutions of A and $B=$ the set of solutions of $A \cdot P$ and $B \cdot P$.
(49) Let A be a matrix over K of dimension $n \times m$ and given N. Suppose $\operatorname{card} N=n$ and $N \subseteq \operatorname{Seg} m$ and $\operatorname{Segm}(A, \operatorname{Seg} n, N)=I_{K}^{n \times n}$ and $n>0$. Then there exists a matrix M_{2} over K of dimension $m-^{\prime} n \times m$ such that
(i) $\operatorname{Segm}\left(M_{2}, \operatorname{Seg}\left(m-^{\prime} n\right), \operatorname{Seg} m \backslash N\right)=I_{K}^{\left(m-^{\prime} n\right) \times\left(m-^{\prime} n\right) \text {, }}$
(ii) $\operatorname{Segm}\left(M_{2}, \operatorname{Seg}\left(m-{ }^{\prime} n\right), N\right)=-(\operatorname{Segm}(A, \operatorname{Seg} n, \operatorname{Seg} m \backslash N))^{T}$, and
(iii) for every l and for every matrix M over K of dimension $m \times l$ such that for every i such that $i \in \operatorname{Seg} l$ holds there exists j such that $j \in \operatorname{Seg}\left(m-^{\prime} n\right)$ and $M_{\square, i}=\operatorname{Line}\left(M_{2}, j\right)$ or $M_{\square, i}=m \mapsto 0_{K}$ holds $M \in$ the set of solutions of A and $0_{K}^{n \times l}$.
(50) Let A be a matrix over K of dimension $n \times m, B$ be a matrix over K of dimension $n \times l$, and given N. Suppose card $N=n$ and $N \subseteq \operatorname{Seg} m$ and $n>0$ and $\operatorname{Segm}(A, \operatorname{Seg} n, N)=I_{K}^{n \times n}$. Then there exists a matrix X over K of dimension $m \times l$ such that $\operatorname{Segm}(X, \operatorname{Seg} m \backslash N, \operatorname{Seg} l)=0_{K}^{\left(m-^{\prime} n\right) \times l}$ and $\operatorname{Segm}(X, N, \operatorname{Seg} l)=B$ and $X \in$ the set of solutions of A and B.
(51) Let A be a matrix over K of dimension $0 \times n$ and B be a matrix over K of dimension $0 \times m$. Then the set of solutions of A and $B=\{\emptyset\}$.
(52) For every matrix B over K such that the set of solutions of $0_{K}^{n \times k}$ and B is non empty holds $B=0_{K}^{n \times(\text { width } B)}$.
(53) Let A be a matrix over K of dimension $n \times k$ and B be a matrix over K of dimension $n \times m$. Suppose $n>0$. Suppose $x \in$ the set of solutions of A and B. Then x is a matrix over K of dimension $k \times m$.
(54) Suppose $n>0$ and $k>0$. Then the set of solutions of $0_{K}^{n \times k}$ and $0_{K}^{n \times m}=$ $\{X: X$ ranges over matrices over K of dimension $k \times m\}$.
(55) If $n>0$ and the set of solutions of $0_{K}^{n \times 0}$ and $0_{K}^{n \times m}$ is non empty, then $m=0$.
(56) The set of solutions of $0_{K}^{n \times 0}$ and $0_{K}^{n \times 0}=\{\emptyset\}$.

5. Gaussian Eliminations

In this article we present several logical schemes. The scheme GAUSS1 deals with a field \mathcal{A}, natural numbers $\mathcal{B}, \mathcal{C}, \mathcal{D}$, a matrix \mathcal{E} over \mathcal{A} of dimension $\mathcal{B} \times$ \mathcal{C}, a matrix \mathcal{F} over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{D}$, a 4 -ary functor \mathcal{F} yielding a matrix over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{D}$, and a binary predicate \mathcal{P}, and states that: There exists a matrix A^{\prime} over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{C}$ and there exists a matrix B^{\prime} over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{D}$ and there exists a without zero finite subset N of \mathbb{N} such that
$N \subseteq \operatorname{Seg} \mathcal{C}$ and $\operatorname{rk}(\mathcal{E})=\operatorname{rk}\left(A^{\prime}\right)$ and $\operatorname{rk}(\mathcal{E})=\operatorname{card} N$ and $\mathcal{P}\left[A^{\prime}, B^{\prime}\right]$ and $\operatorname{Segm}\left(A^{\prime}, \operatorname{Seg} \operatorname{card} N, N\right)$ is diagonal and for every i
such that $i \in \operatorname{Seg}$ card N holds $A_{i,(\operatorname{Sgm} N)_{i}}^{\prime} \neq 0_{\mathcal{A}}$ and for every i such that $i \in \operatorname{dom} A^{\prime}$ and $i>\operatorname{card} N$ holds $\operatorname{Line}\left(A^{\prime}, i\right)=\mathcal{C} \mapsto 0_{\mathcal{A}}$ and for all i, j such that $i \in \operatorname{Seg} \operatorname{card} N$ and $j \in \operatorname{Seg}$ width A^{\prime} and $j<(\operatorname{Sgm} N)(i)$ holds $A_{i, j}^{\prime}=0_{\mathcal{A}}$
provided the parameters meet the following requirements:

- $\mathcal{P}[\mathcal{E}, \mathcal{F}]$, and
- Let A^{\prime} be a matrix over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{C}$ and B^{\prime} be a matrix over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{D}$. Suppose $\mathcal{P}\left[A^{\prime}, B^{\prime}\right]$. Let given i, j. Suppose $i \neq j$ and $j \in \operatorname{dom} A^{\prime}$. Let a be an element of \mathcal{A}. Then $\mathcal{P}\left[\operatorname{RLine}\left(A^{\prime}, i, \operatorname{Line}\left(A^{\prime}, i\right)+a \cdot \operatorname{Line}\left(A^{\prime}, j\right)\right), \mathcal{F}\left(B^{\prime}, i, j, a\right)\right]$.
The scheme GAUSS2 deals with a field \mathcal{A}, natural numbers $\mathcal{B}, \mathcal{C}, \mathcal{D}$, a matrix \mathcal{E} over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{C}$, a matrix \mathcal{F} over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{D}$, a 4 -ary functor \mathcal{F} yielding a matrix over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{D}$, and a binary predicate \mathcal{P}, and states that:

There exists a matrix A^{\prime} over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{C}$ and there exists a matrix B^{\prime} over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{D}$ and there exists a without zero finite subset N of \mathbb{N} such that
$N \subseteq \operatorname{Seg} \mathcal{C}$ and $\operatorname{rk}(\mathcal{E})=\operatorname{rk}\left(A^{\prime}\right)$ and $\operatorname{rk}(\mathcal{E})=\operatorname{card} N$ and $\mathcal{P}\left[A^{\prime}, B^{\prime}\right]$ and $\operatorname{Segm}\left(A^{\prime}, \operatorname{Seg} \operatorname{card} N, N\right)=I_{\mathcal{A}}^{\text {card } N \times \operatorname{card} N}$ and for every i such that $i \in \operatorname{dom} A^{\prime}$ and $i>\operatorname{card} N$ holds Line $\left(A^{\prime}, i\right)=$ $\mathcal{C} \mapsto 0_{\mathcal{A}}$ and for all i, j such that $i \in \operatorname{Seg} \operatorname{card} N$ and $j \in$ Seg width A^{\prime} and $j<(\operatorname{Sgm} N)(i)$ holds $A_{i, j}^{\prime}=0_{\mathcal{A}}$
provided the parameters satisfy the following conditions:

- $\mathcal{P}[\mathcal{E}, \mathcal{F}]$, and
- Let A^{\prime} be a matrix over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{C}$ and B^{\prime} be a matrix over \mathcal{A} of dimension $\mathcal{B} \times \mathcal{D}$. Suppose $\mathcal{P}\left[A^{\prime}, B^{\prime}\right]$. Let a be an element of \mathcal{A} and given i, j. If $j \in \operatorname{dom} A^{\prime}$ and if $i=j$, then $a \neq-\mathbf{1}_{\mathcal{A}}$, then $\mathcal{P}\left[\operatorname{RLine}\left(A^{\prime}, i, \operatorname{Line}\left(A^{\prime}, i\right)+a \cdot \operatorname{Line}\left(A^{\prime}, j\right)\right), \mathcal{F}\left(B^{\prime}, i, j, a\right)\right]$.

6. The Main Theorem

We now state the proposition
(57) Let A, B be matrices over K. Suppose len $A=\operatorname{len} B$ and if width $A=0$, then width $B=0$. Then $\operatorname{rk}(A)=\operatorname{rk}(A \frown B)$ if and only if the set of solutions of A and B is non empty.

7. Space of Solutions of Linear Equations

Let us consider K, let A be a matrix over K, and let b be a finite sequence of elements of K. The set of solutions of A and b is defined by:
(Def. 4) The set of solutions of A and $b=\{f: \operatorname{ColVec} 2 \mathrm{Mx} f \in$ the set of solutions of A and ColVec $2 \mathrm{Mx} b\}$.
We now state two propositions:
(58) For every x such that $x \in$ the set of solutions of A and ColVec $2 \mathrm{Mx} b$ there exists f such that $x=\operatorname{ColVec} 2 \mathrm{Mx} f$ and len $f=$ width A.
(59) For every f such that ColVec $2 \mathrm{Mx} f \in$ the set of solutions of A and ColVec $2 \mathrm{Mx} b$ holds len $f=$ width A.
Let us consider K, let A be a matrix over K, and let b be a finite sequence of elements of K. Then the set of solutions of A and b is a subset of the width A dimension vector space over K.

Let us consider K, let A be a matrix over K, and let k be an element of \mathbb{N}. Note that the set of solutions of A and $k \mapsto 0_{K}$ is linearly closed.

We now state two propositions:
(60) If the set of solutions of A and b is non empty and width $A=0$, then len $A=0$.
(61) If width $A \neq 0$ or len $A=0$, then the set of solutions of A and len $A \mapsto 0_{K}$ is non empty.
Let us consider K and let A be a matrix over K. Let us assume that if width $A=0$, then len $A=0$. The space of solutions of A is a strict subspace of the width A-dimension vector space over K and is defined by:
(Def. 5) The carrier of the space of solutions of $A=$ the set of solutions of A and len $A \mapsto 0_{K}$.
The following propositions are true:
(62) Let A be a matrix over K and b be a finite sequence of elements of K. Suppose the set of solutions of A and b is non empty. Then the set of solutions of A and b is a coset of the space of solutions of A.
(63) Let given A. Suppose if width $A=0$, then len $A=0$ and $\operatorname{rk}(A)=0$. Then the space of solutions of $A=$ the width A-dimension vector space over K.
(64) For every A such that the space of solutions of $A=$ the width A dimension vector space over K holds $\operatorname{rk}(A)=0$.
(65) Let given i, j. Suppose $j \in \operatorname{Seg} m$ and $n>0$ and if $i=j$, then $a \neq-\mathbf{1}_{K}$. Then the space of solutions of $A^{\prime}=$ the space of solutions of $\operatorname{RLine}\left(A^{\prime}, i, \operatorname{Line}\left(A^{\prime}, i\right)+a \cdot \operatorname{Line}\left(A^{\prime}, j\right)\right)$.
(66) Let given N. Suppose $N \subseteq \operatorname{dom} A$ and N is non empty and width $A>0$ and for every i such that $i \in \operatorname{dom} A \backslash N$ holds $\operatorname{Line}(A, i)=$ width $A \mapsto$ 0_{K}. Then the space of solutions of $A=$ the space of solutions of $\operatorname{Segm}(A, N, \operatorname{Seg}$ width $A)$.
(67) Let A be a matrix over K of dimension $n \times m$ and given N. Suppose $\operatorname{card} N=n$ and $N \subseteq \operatorname{Seg} m$ and $\operatorname{Segm}(A, \operatorname{Seg} n, N)=I_{K}^{n \times n}$ and $n>0$
and $m-^{\prime} n>0$. Then there exists a matrix M_{2} over K of dimension $m-^{\prime} n \times m$ such that $\operatorname{Segm}\left(M_{2}, \operatorname{Seg}\left(m-^{\prime} n\right), \operatorname{Seg} m \backslash N\right)=I_{K}^{\left(m-^{\prime} n\right) \times\left(m-^{\prime} n\right)}$ and $\operatorname{Segm}\left(M_{2}, \operatorname{Seg}\left(m-^{\prime} n\right), N\right)=-(\operatorname{Segm}(A, \operatorname{Seg} n, \operatorname{Seg} m \backslash N))^{\mathrm{T}}$ and $\operatorname{Lin}\left(\operatorname{lines}\left(M_{2}\right)\right)=$ the space of solutions of A.
(68) For every A such that if width $A=0$, then len $A=0$ holds dim (the space of solutions of A) $=$ width $A-\operatorname{rk}(A)$.
(69) Let M be a matrix over K of dimension $n \times m$ and given i, j, a. Suppose M is without repeated line and $j \in \operatorname{dom} M$ and if $i=j$, then $a \neq-\mathbf{1}_{K}$. Then $\operatorname{Lin}(\operatorname{lines}(M))=\operatorname{Lin}(\operatorname{lines}(\operatorname{RLine}(M, i, \operatorname{Line}(M, i)+a \cdot \operatorname{Line}(M, j))))$.
(70) Let W be a subspace of the m-dimension vector space over K. Then there exists a matrix A over K of dimension $\operatorname{dim}(W) \times m$ and there exists a without zero finite subset N of \mathbb{N} such that $N \subseteq \operatorname{Seg} m$ and $\operatorname{dim}(W)=\operatorname{card} N$ and $\operatorname{Segm}(A, \operatorname{Seg} \operatorname{dim}(W), N)=I_{K}^{\operatorname{dim}(W) \times \operatorname{dim}(W)}$ and $\operatorname{rk}(A)=\operatorname{dim}(W)$ and $\operatorname{lines}(A)$ is a basis of W.
(71) Let W be a strict subspace of the m-dimension vector space over K. Suppose $\operatorname{dim}(W)<m$. Then there exists a matrix A over K of dimension $m-^{\prime} \operatorname{dim}(W) \times m$ and there exists a without zero finite subset N of \mathbb{N} such that $\operatorname{card} N=m-^{\prime} \operatorname{dim}(W)$ and $N \subseteq \operatorname{Seg} m$ and $\operatorname{Segm}\left(A, \operatorname{Seg}\left(m-^{\prime}\right.\right.$ $\operatorname{dim}(W)), N)=I_{K}^{\left(m-^{\prime} \operatorname{dim}(W)\right) \times\left(m-^{\prime} \operatorname{dim}(W)\right)}$ and $W=$ the space of solutions of A.
(72) Let A, B be matrices over K. Suppose width $A=$ len B and if width $A=$ 0 , then len $A=0$ and if width $B=0$, then len $B=0$. Then the space of solutions of B is a subspace of the space of solutions of $A \cdot B$.
(73) For all matrices A, B over K such that width $A=\operatorname{len} B$ holds $\operatorname{rk}(A \cdot B) \leq$ $\operatorname{rk}(A)$ and $\operatorname{rk}(A \cdot B) \leq \operatorname{rk}(B)$.
(74) Let A be a matrix over K of dimension $n \times n$ and B be a matrix over K. Suppose Det $A \neq 0_{K}$ and width $A=\operatorname{len} B$ and if width $B=0$, then len $B=0$. Then the space of solutions of $B=$ the space of solutions of $A \cdot B$.
(75) Let A be a matrix over K of dimension $n \times n$ and B be a matrix over K. If width $A=\operatorname{len} B$ and $\operatorname{Det} A \neq 0_{K}$, then $\operatorname{rk}(A \cdot B)=\operatorname{rk}(B)$.
(76) Let A be a matrix over K of dimension $n \times n$ and B be a matrix over K. If len $A=$ width B and $\operatorname{Det} A \neq 0_{K}$, then $\operatorname{rk}(B \cdot A)=\operatorname{rk}(B)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[12] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339345, 1996.
[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[16] Karol Pa̧k. Basic properties of determinants of square matrices over a field. Formalized Mathematics, 15(1):17-25, 2007.
[17] Karol Pa̧k. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.
[18] Karol Pạk and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143150, 2007.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[20] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[21] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[22] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[26] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[27] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.
[28] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.

Received December 18, 2007

