Euler's Polyhedron Formula

Jesse Alama Department of Philosophy Stanford University USA

Summary. Euler's polyhedron theorem states for a polyhedron p, that

V - E + F = 2,

where V, E, and F are, respectively, the number of vertices, edges, and faces of p. The formula was first stated in print by Euler in 1758 [11]. The proof given here is based on Poincaré's linear algebraic proof, stated in [17] (with a corrected proof in [18]), as adapted by Imre Lakatos in the latter's *Proofs and Refutations* [15].

As is well known, Euler's formula is not true for all polyhedra. The condition on polyhedra considered here is that of being a homology sphere, which says that the cycles (chains whose boundary is zero) are exactly the bounding chains (chains that are the boundary of a chain of one higher dimension).

The present proof actually goes beyond the three-dimensional version of the polyhedral formula given by Lakatos; it is dimension-free, in the sense that it gives a formula in which the dimension of the polyhedron is a parameter. The classical Euler relation V - E + F = 2 is corresponds to the case where the dimension of the polyhedron is 3.

The main theorem, expressed in the language of the present article, is

Sum alternating - characteristic - sequence(p) = 0,

where p is a polyhedron. The alternating characteristic sequence of a polyhedron is the sequence

 $-N(-1), +N(0), -N(1), \dots, (-1)^{\dim(p)} * N(\dim(p)),$

where N(k) is the number of polytopes of p of dimension k. The special case of $\dim(p) = 3$ yields Euler's classical relation. (N(-1) and N(3) will turn out to be equal, by definition, to 1.)

Two other special cases are proved: the first says that a one-dimensional "polyhedron" that is a homology sphere consists of just two vertices (and thus consists of just a single edge); the second special case asserts that a two-dimensional polyhedron that is a homology sphere (a polygon) has as many vertices as edges.

A treatment of the more general version of Euler's relation can be found in [12] and [6]. The former contains a proof of Steinitz's theorem, which shows

> C 2008 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

that the abstract polyhedra treated in Poincaré's proof, which might not appear to be about polyhedra in the usual sense of the word, are in fact embeddable in \mathbf{R}^3 under certain conditions. It would be valuable to formalize a proof of Steinitz's theorem and relate it to the development contained here.

MML identifier: POLYFORM, version: 7.8.05 4.89.993

The terminology and notation used here are introduced in the following articles: [9], [27], [28], [7], [8], [21], [10], [4], [22], [3], [5], [14], [19], [26], [23], [13], [25], [24], [16], [20], [29], [1], and [2].

1. Set-theoretical Preliminaries

The following propositions are true:

- (1) For all sets X, c, d such that there exist sets a, b such that $a \neq b$ and $X = \{a, b\}$ and $c, d \in X$ and $c \neq d$ holds $X = \{c, d\}$.
- (2) For every function f such that f is one-to-one holds $\overline{\text{dom } f} = \overline{\text{rng } f}$.

2. ARITHMETICAL PRELIMINARIES

In the sequel n denotes a natural number and k denotes an integer. Next we state the proposition

(3) If $1 \le k$, then k is a natural number.

Let a be an integer and let b be a natural number. Then $a \cdot b$ is an element of \mathbb{Z} .

One can prove the following propositions:

- (4) 1 is odd.
- (5) 2 is even.
- (6) 3 is odd.
- (7) 4 is even.
- (8) If *n* is even, then $(-1)^n = 1$.
- (9) If *n* is odd, then $(-1)^n = -1$.
- (10) $(-1)^n$ is an integer.

Let a be an integer and let n be a natural number. Then a^n is an element of \mathbb{Z} .

We now state four propositions:

(11) For all finite sequences p, q, r holds $\operatorname{len}(p \cap q) \leq \operatorname{len}(p \cap (q \cap r))$.

(12) 1 < n+2.

 $(13) \quad (-1)^2 = 1.$

(14) For every natural number n holds $(-1)^n = (-1)^{n+2}$.

3. Preliminaries on Finite Sequences

Let f be a finite sequence of elements of \mathbb{Z} and let k be a natural number. Observe that f_k is integer.

The following propositions are true:

- (15) Let a, b, s be finite sequences of elements of \mathbb{Z} . Suppose that
 - (i) $\operatorname{len} s > 0$,
 - (ii) $\operatorname{len} a = \operatorname{len} s$,
- (iii) $\operatorname{len} s = \operatorname{len} b$,
- (iv) for every natural number n such that $1 \le n \le \text{len } s$ holds $s_n = a_n + b_n$, and
- (v) for every natural number k such that $1 \le k < \text{len } s$ holds $b_k = -a_{k+1}$. Then $\sum s = a_1 + b_{\text{len } s}$.
- (16) For all finite sequences p, q, r holds $\operatorname{len}(p \cap q \cap r) = \operatorname{len} p + \operatorname{len} q + \operatorname{len} r$.
- (17) For every set x and for all finite sequences p, q holds $(\langle x \rangle \cap p \cap q)_1 = x$.
- (18) For every set x and for all finite sequences p, q holds $(p \cap q \cap \langle x \rangle)_{\ln p + \ln q + 1} = x$.
- (19) For all finite sequences p, q, r and for every natural number k such that $\operatorname{len} p < k \leq \operatorname{len}(p \cap q)$ holds $(p \cap q \cap r)_k = q_{k-\operatorname{len} p}$.

Let a be an integer. Then $\langle a \rangle$ is a finite sequence of elements of \mathbb{Z} .

Let a, b be integers. Then $\langle a, b \rangle$ is a finite sequence of elements of \mathbb{Z} .

Let a, b, c be integers. Then (a, b, c) is a finite sequence of elements of \mathbb{Z} .

Let p, q be finite sequences of elements of \mathbb{Z} . Then $p \cap q$ is a finite sequence of elements of \mathbb{Z} .

We now state four propositions:

- (20) For all finite sequences p, q of elements of \mathbb{Z} holds $\sum p \cap q = (\sum p) + \sum q$.
- (21) For every integer k and for every finite sequence p of elements of \mathbb{Z} holds $\sum \langle k \rangle \cap p = k + \sum p$.
- (22) For all finite sequences p, q, r of elements of \mathbb{Z} holds $\sum p \cap q \cap r = (\sum p) + \sum q + \sum r$.
- (23) For every element a of \mathbf{Z}_2 holds $\sum \langle a \rangle = a$.

4. Polyhedra and Incidence Matrices

Let X, Y be sets. An incidence matrix of X and Y is an element of $\{0_{\mathbf{Z}_2}, 1_{\mathbf{Z}_2}\}^{X \times Y}$.

We now state the proposition

(24) For all sets X, Y holds $X \times Y \longmapsto 1_{\mathbb{Z}_2}$ is an incidence matrix of X and Y.

Polyhedron is defined by the condition (Def. 1).

- (Def. 1) There exists a finite sequence-yielding finite sequence F and there exists a function yielding finite sequence I such that
 - (i) $\operatorname{len} I = \operatorname{len} F 1$,
 - (ii) for every natural number n such that $1 \le n < \text{len } F$ holds I(n) is an incidence matrix of rng F(n) and rng F(n+1),
 - (iii) for every natural number n such that $1 \le n \le \ln F$ holds F(n) is non empty and F(n) is one-to-one, and

(iv) it =
$$\langle F, I \rangle$$
.

In the sequel p denotes a polyhedron, k denotes an integer, and n denotes a natural number.

Let us consider p. Then p_1 is a finite sequence-yielding finite sequence. Then p_2 is a function yielding finite sequence.

Let p be a polyhedron. The functor $\dim(p)$ yielding an element of \mathbb{N} is defined by:

(Def. 2) $\dim(p) = \operatorname{len}(p_1).$

Let p be a polyhedron and let k be an integer. The functor $P_{k,p}$ yielding a finite set is defined by the conditions (Def. 3).

(Def. 3)(i) If k < -1, then $P_{k,p} = \emptyset$,

- (ii) if k = -1, then $P_{k,p} = \{\emptyset\}$,
- (iii) if $-1 < k < \dim(p)$, then $P_{k,p} = \operatorname{rng} p_1(k+1)$,
- (iv) if $k = \dim(p)$, then $P_{k,p} = \{p\}$, and
- (v) if $k > \dim(p)$, then $P_{k,p} = \emptyset$.

One can prove the following two propositions:

- (25) If $-1 < k < \dim(p)$, then k + 1 is a natural number and $1 \le k + 1 \le \dim(p)$.
- (26) $P_{k,p}$ is non empty iff $-1 \le k \le \dim(p)$.

Let p be a polyhedron and let k be an integer. Let us assume that $-1 \le k \le \dim(p)$. k-polytope of p is defined by:

(Def. 4) It $\in P_{k,p}$.

Next we state the proposition

(27) If $k < \dim(p)$, then $k - 1 < \dim(p)$.

Let p be a polyhedron and let k be an integer. The functor $\eta_{p,k}$ yielding an incidence matrix of $P_{k-1,p}$ and $P_{k,p}$ is defined by the conditions (Def. 5).

(Def. 5)(i) If k < 0, then $\eta_{p,k} = \emptyset$,

- (ii) if k = 0, then $\eta_{p,k} = \{\emptyset\} \times P_{0,p} \longmapsto 1_{\mathbf{Z}_2}$,
- (iii) if $0 < k < \dim(p)$, then $\eta_{p,k} = p_2(k)$,
- (iv) if $k = \dim(p)$, then $\eta_{p,k} = P_{\dim(p)-1,p} \times \{p\} \longmapsto 1_{\mathbb{Z}_2}$, and
- (v) if $k > \dim(p)$, then $\eta_{p,k} = \emptyset$.

Let p be a polyhedron and let k be an integer. The functor $S_{k,p}$ yielding a finite sequence is defined by the conditions (Def. 6).

- (Def. 6)(i) If k < -1, then $S_{k,p} = \varepsilon_{\emptyset}$,
 - (ii) if k = -1, then $S_{k,p} = \langle \emptyset \rangle$,
 - (iii) if $-1 < k < \dim(p)$, then $S_{k,p} = p_1(k+1)$,
 - (iv) if $k = \dim(p)$, then $S_{k,p} = \langle p \rangle$, and
 - (v) if $k > \dim(p)$, then $S_{k,p} = \varepsilon_{\emptyset}$.

Let p be a polyhedron and let k be an integer. The functor $N_{p,k}$ yielding an element of \mathbb{N} is defined as follows:

(Def. 7) $N_{p,k} = \overline{\overline{P_{k,p}}}.$

Let p be a polyhedron. The functor V_p yields an element of \mathbb{N} and is defined by:

(Def. 8) $V_p = N_{p,0}$.

The functor E_p yields an element of \mathbb{N} and is defined by:

(Def. 9) $E_p = N_{p,1}$.

The functor F_p yielding an element of \mathbb{N} is defined by:

(Def. 10) $F_p = N_{p,2}$.

Next we state several propositions:

- (28) $\operatorname{dom}(S_{k,p}) = \operatorname{Seg}(N_{p,k}).$
- $(29) \quad \operatorname{len}(S_{k,p}) = N_{p,k}.$
- $(30) \quad \operatorname{rng}(S_{k,p}) = P_{k,p}.$
- (31) $N_{p,-1} = 1.$
- (32) $N_{p,\dim(p)} = 1.$

Let p be a polyhedron, let k be an integer, and let n be a natural number. Let us assume that $1 \leq n \leq N_{p,k}$ and $-1 \leq k \leq \dim(p)$. The functor $P_{p,k}^n$ yielding an element of $P_{k,p}$ is defined by:

(Def. 11)
$$P_{p,k}^n = S_{k,p}(n).$$

We now state three propositions:

- (33) Suppose $-1 \le k \le \dim(p)$. Let x be a k-polytope of p. Then there exists a natural number n such that $x = P_{p,k}^n$ and $1 \le n \le N_{p,k}$.
- (34) $S_{k,p}$ is one-to-one.

(35) Suppose $-1 \le k \le \dim(p)$. Let m, n be natural numbers. If $1 \le n \le N_{p,k}$ and $1 \le m \le N_{p,k}$ and $P_{p,k}^n = P_{p,k}^m$, then m = n.

Let p be a polyhedron, let k be an integer, let x be a (k-1)-polytope of p, and let y be a k-polytope of p. Let us assume that $0 \le k \le \dim(p)$. The functor x(y) yields an element of \mathbb{Z}_2 and is defined by:

(Def. 12) $x(y) = \eta_{p,k}(x, y).$

5. The Chain Spaces and their Subspaces. Boundary of a k-chain

Let p be a polyhedron and let k be an integer. The functor $C_{k,p}$ yielding a finite dimensional vector space over \mathbf{Z}_2 is defined by:

(Def. 13) $C_{k,p} = B_{P_{k,p}}.$

We now state two propositions:

- (36) For every k-polytope x of p holds $0_{C_{k,p}} @x = 0_{\mathbf{Z}_2}$.
- (37) $N_{p,k} = \dim(C_{k,p}).$

Let p be a polyhedron and let k be an integer. The functor k-chains p yielding a non empty finite set is defined by:

(Def. 14) k-chains $p = 2^{P_{k,p}}$.

Let p be a polyhedron, let k be an integer, let x be a (k-1)-polytope of p, and let v be an element of $C_{k,p}$. The functor v(x) yielding a finite sequence of elements of \mathbb{Z}_2 is defined by the conditions (Def. 15).

- (Def. 15)(i) If $P_{k-1,p}$ is empty, then $v(x) = \varepsilon_{\emptyset}$, and
 - (ii) if $P_{k-1,p}$ is non empty, then $\operatorname{len}(v(x)) = N_{p,k}$ and for every natural number n such that $1 \le n \le N_{p,k}$ holds $v(x)(n) = (v^{@}P_{p,k}^{n}) \cdot x(P_{p,k}^{n})$.

We now state several propositions:

- (38) For all elements c, d of $C_{k,p}$ and for every k-polytope x of p holds $(c + d)^{@}x = c^{@}x + d^{@}x$.
- (39) For all elements c, d of $C_{k,p}$ and for every (k-1)-polytope x of p holds (c+d)(x) = c(x) + d(x).
- (40) For all elements c, d of $C_{k,p}$ and for every (k-1)-polytope x of p holds $\sum (c(x) + d(x)) = (\sum c(x)) + \sum d(x).$
- (41) For all elements c, d of $C_{k,p}$ and for every (k-1)-polytope x of p holds $\sum (c+d)(x) = (\sum c(x)) + \sum d(x).$
- (42) For every element c of $C_{k,p}$ and for every element a of \mathbf{Z}_2 and for every k-polytope x of p holds $(a \cdot c)^{@}x = a \cdot (c^{@}x)$.
- (43) For every element c of $C_{k,p}$ and for every element a of \mathbb{Z}_2 and for every k-polytope x of p holds $(a \cdot c)(x) = a \cdot c(x)$.
- (44) For all elements c, d of $C_{k,p}$ holds c = d iff for every k-polytope x of p holds $c^{@}x = d^{@}x$.

(45) For all elements c, d of $C_{k,p}$ holds c = d iff for every k-polytope x of p holds $x \in c$ iff $x \in d$.

The scheme *ChainEx* deals with a polyhedron \mathcal{A} , an integer \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

There exists a subset c of $P_{\mathcal{B},\mathcal{A}}$ such that for every \mathcal{B} -polytope x of \mathcal{A} holds $x \in c$ iff $\mathcal{P}[x]$ and $x \in P_{\mathcal{B},\mathcal{A}}$

for all values of the parameters.

Let p be a polyhedron, let k be an integer, and let v be an element of $C_{k,p}$. The functor ∂v yields an element of $C_{k-1,p}$ and is defined by the conditions (Def. 16).

- (Def. 16)(i) If $P_{k-1,p}$ is empty, then $\partial v = 0_{C_{k-1,p}}$, and
 - (ii) if $P_{k-1,p}$ is non empty, then for every (k-1)-polytope x of p holds $x \in \partial v$ iff $\sum v(x) = 1_{\mathbb{Z}_2}$.

One can prove the following proposition

(46) For every element c of $C_{k,p}$ and for every (k-1)-polytope x of p holds $\partial c^{@}x = \sum c(x)$.

Let p be a polyhedron and let k be an integer. The functor $\partial_k p$ yields a function from $C_{k,p}$ into $C_{k-1,p}$ and is defined by:

(Def. 17) For every element c of $C_{k,p}$ holds $\partial_k p(c) = \partial c$.

One can prove the following propositions:

- (47) For all elements c, d of $C_{k,p}$ holds $\partial(c+d) = \partial c + \partial d$.
- (48) For every element a of \mathbb{Z}_2 and for every element c of $C_{k,p}$ holds $\partial(a \cdot c) = a \cdot \partial c$.
- (49) $\partial_k p$ is a linear transformation from $C_{k,p}$ to $C_{k-1,p}$.

Let p be a polyhedron and let k be an integer. Then $\partial_k p$ is a linear transformation from $C_{k,p}$ to $C_{k-1,p}$.

Let p be a polyhedron and let k be an integer. The functor $Z_{k,p}$ yielding a subspace of $C_{k,p}$ is defined as follows:

(Def. 18) $Z_{k,p} = \ker \partial_k p.$

Let p be a polyhedron and let k be an integer. The functor $|Z_{k,p}|$ yields a non empty subset of k-chains p and is defined by:

(Def. 19) $|Z_{k,p}| = \Omega_{Z_{k,p}}$.

Let p be a polyhedron and let k be an integer. The functor $B_{k,p}$ yields a subspace of $C_{k,p}$ and is defined as follows:

(Def. 20) $B_{k,p} = im(\partial_{k+1}p).$

Let p be a polyhedron and let k be an integer. The functor $|B_{k,p}|$ yielding a non empty subset of k-chains p is defined by:

(Def. 21) $|B_{k,p}| = \Omega_{B_{k,p}}$.

Let p be a polyhedron and let k be an integer. The functor $BZ_{k,p}$ yields a subspace of $C_{k,p}$ and is defined as follows:

(Def. 22) $BZ_{k,p} = B_{k,p} \cap Z_{k,p}$.

Let p be a polyhedron and let k be an integer.

The functor k-bounding-circuits p yields a non empty subset of k-chains p and is defined as follows:

(Def. 23) k-bounding-circuits $p = \Omega_{\mathrm{BZ}_{k,p}}$.

The following proposition is true

(50) $\dim(C_{k,p}) = \operatorname{rank}(\partial_k p) + \operatorname{nullity}(\partial_k p).$

6. SIMPLY CONNECTED AND EULERIAN POLYHEDRA

Let p be a polyhedron. We say that p is being a homology sphere if and only if:

(Def. 24) For every integer k holds $|Z_{k,p}| = |B_{k,p}|$.

The following proposition is true

(51) p is being a homology sphere iff for every integer n holds $Z_{n,p} = B_{n,p}$.

Let p be a polyhedron. The functor \widehat{p} yielding a finite sequence of elements of $\mathbb Z$ is defined as follows:

(Def. 25) $\operatorname{len} \hat{p} = \operatorname{dim}(p) + 2$ and for every natural number k such that $1 \le k \le \operatorname{dim}(p) + 2$ holds $\hat{p}(k) = (-1)^k \cdot N_{p,k-2}$.

Let p be a polyhedron. The functor \bar{p} yields a finite sequence of elements of \mathbb{Z} and is defined by:

(Def. 26) $\ln \bar{p} = \dim(p)$ and for every natural number k such that $1 \le k \le \dim(p)$ holds $\bar{p}(k) = (-1)^{k+1} \cdot N_{p,k-1}$.

Let p be a polyhedron. The functor \overline{p} yielding a finite sequence of elements of \mathbb{Z} is defined as follows:

(Def. 27) $\operatorname{len} \overline{p} = \operatorname{dim}(p) + 1$ and for every natural number k such that $1 \le k \le \operatorname{dim}(p) + 1$ holds $\overline{p}(k) = (-1)^{k+1} \cdot N_{p,k-1}$.

One can prove the following proposition

- (52) If $1 \leq n \leq \text{len } \bar{p}$, then $\bar{p}(n) = (-1)^{n+1} \cdot \dim(B_{n-2,p}) + (-1)^{n+1} \cdot \dim(Z_{n-1,p})$.
- Let p be a polyhedron. We say that p is Eulerian if and only if: $\sum_{p=1}^{\infty} \sum_{p=1}^{\infty} \frac{1}{p} + (-1)^{\dim(p)+1}$

(Def. 28) $\sum \bar{p} = 1 + (-1)^{\dim(p)+1}$.

One can prove the following proposition

(53) $\overline{p} = \overline{p} \cap \langle (-1)^{\dim(p)} \rangle$.

Let p be a polyhedron. Let us observe that p is Eulerian if and only if: (Def. 29) $\sum \overline{p} = 1$. One can prove the following proposition

(54) $\widehat{p} = \langle -1 \rangle \cap \overline{p}.$

Let p be a polyhedron. Let us observe that p is Eulerian if and only if: (Def. 30) $\sum \hat{p} = 0.$

7. The Extremal Chain Spaces

The following propositions are true:

- (55) $P_{0,p}$ is non empty.
- (56) $\overline{\overline{\Omega_{C_{-1,p}}}} = 2.$
- (57) $\Omega_{C_{-1,p}} = \{\emptyset, \{\emptyset\}\}.$
- (58) For every k-polytope x of p and for every (k-1)-polytope e of p such that k = 0 and $e = \emptyset$ holds $e(x) = 1_{\mathbb{Z}_2}$.
- (59) Let k be an integer, x be a k-polytope of p, v be an element of $C_{k,p}$, e be a (k-1)-polytope of p, and n be a natural number. If k = 0 and $v = \{x\}$ and $e = \emptyset$ and $x = P_{p,k}^n$ and $1 \le n \le N_{p,k}$, then $v(e)(n) = 1_{\mathbb{Z}_2}$.
- (60) Let k be an integer, x be a k-polytope of p, e be a (k-1)-polytope of p, v be an element of $C_{k,p}$, and m, n be natural numbers. Suppose k = 0 and $v = \{x\}$ and $x = P_{p,k}^n$ and $1 \le m \le N_{p,k}$ and $1 \le n \le N_{p,k}$ and $m \ne n$. Then $v(e)(m) = 0_{\mathbb{Z}_2}$.
- (61) Let k be an integer, x be a k-polytope of p, v be an element of $C_{k,p}$, and e be a (k-1)-polytope of p. If k = 0 and $v = \{x\}$ and $e = \emptyset$, then $\sum v(e) = 1_{\mathbb{Z}_2}$.
- (62) For every 0-polytope x of p holds $\partial_0 p(\{x\}) = \{\emptyset\}$.

(63)
$$\dim(B_{(-1),p}) = 1.$$

(64)
$$\overline{\Omega_{C_{\dim(p),p}}} = 2.$$

- (65) $\{p\}$ is an element of $C_{\dim(p),p}$.
- (66) $\{p\} \in \Omega_{C_{\dim(p),p}}.$
- (67) $P_{\dim(p)-1,p}$ is non empty.

Let p be a polyhedron. Note that $P_{\dim(p)-1,p}$ is non empty. The following propositions are true:

- (68) $\Omega_{C_{\dim(p),p}} = \{0_{C_{\dim(p),p}}, \{p\}\}.$
- (69) For every element x of $C_{\dim(p),p}$ holds $x = 0_{C_{\dim(p),p}}$ or $x = \{p\}$.
- (70) For all elements x, y of $C_{\dim(p),p}$ such that $x \neq y$ holds $x = 0_{C_{\dim(p),p}}$ or $y = 0_{C_{\dim(p),p}}$.

(71)
$$S_{\dim(p),p} = \langle p \rangle.$$

(72) $P_{p,\dim(p)}^1 = p.$

- (73) For every element c of $C_{\dim(p),p}$ and for every $\dim(p)$ -polytope x of p such that $c = \{p\}$ holds $c^{@}x = 1_{\mathbb{Z}_2}$.
- (74) For every $(\dim(p) 1)$ -polytope x of p and for every $\dim(p)$ -polytope c of p such that c = p holds $x(c) = 1_{\mathbb{Z}_2}$.
- (75) For every $(\dim(p)-1)$ -polytope x of p and for every element c of $C_{\dim(p),p}$ such that $c = \{p\}$ holds $c(x) = \langle 1_{\mathbb{Z}_2} \rangle$.
- (76) For every $(\dim(p)-1)$ -polytope x of p and for every element c of $C_{\dim(p),p}$ such that $c = \{p\}$ holds $\sum c(x) = 1_{\mathbb{Z}_2}$.
- (77) $\partial_{\dim(p)} p(\{p\}) = P_{\dim(p)-1,p}.$
- (78) $\partial_{\dim(p)}p$ is one-to-one.
- (79) $\dim(B_{\dim(p)-1,p}) = 1.$
- (80) If p is being a homology sphere, then $\dim(Z_{\dim(p)-1,p}) = 1$.
- (81) If $1 < n < \dim(p) + 2$, then $\hat{p}(n) = \bar{p}(n-1)$.
- (82) $\widehat{p} = \langle -1 \rangle \cap \overline{p} \cap \langle (-1)^{\dim(p)} \rangle.$

8. A GENERALIZED EULER RELATION AND ITS 1–, 2–, AND 3–DIMENSIONAL SPECIAL CASES

One can prove the following propositions:

- (83) If dim(p) is odd, then $\sum \hat{p} = (\sum \bar{p}) 2$.
- (84) If dim(p) is even, then $\sum \hat{p} = \sum \bar{p}$.
- (85) If dim(p) = 1, then $\sum \bar{p} = N_{p,0}$.
- (86) If dim(p) = 2, then $\sum \bar{p} = N_{p,0} N_{p,1}$.
- (87) If dim(p) = 3, then $\sum \bar{p} = (N_{p,0} N_{p,1}) + N_{p,2}$.
- (88) If $\dim(p) = 0$, then p is Eulerian.
- (89) If p is being a homology sphere, then p is Eulerian.
- (90) If p is being a homology sphere and $\dim(p) = 1$, then $V_p = 2$.
- (91) If p is being a homology sphere and $\dim(p) = 2$, then $V_p = E_p$.
- (92) If p is being a homology sphere and $\dim(p) = 3$, then $(V_p E_p) + F_p = 2$.

References

- [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007.
- Jesse Alama. The vector space of subsets of a set based on symmetric difference. Formalized Mathematics, 16(1):1–5, 2008.
- [3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Arne Brøndsted. An Introduction to Convex Polytopes. Graduate Texts in Mathematics. Springer, 1983.

16

- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Leonhard Euler. Elementa doctrinae solidorum. Novi Commentarii Academiae Scientarum Petropolitanae, 4:109–140, 1758.
- [12] Branko Grünbaum. Convex Polytopes. Number 221 in Graduate Texts in Mathematics. Springer, 2nd edition, 2003.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [14] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [15] Imre Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press, 1976. Edited by John Worrall and Elie Zahar.
- [16] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579–585, 1991. [17] Henri Poincaré. Sur la généralisation d'un théorème d'Euler relatif aux polyèdres. *Comp*-
- tes Rendus de Séances de l'Academie des Sciences, 117:144, 1893.
- [18] Henri Poincaré. Complément à l'analysis situs. Rendiconti del Circolo Matematico di Palermo, 13:285–343, 1899.
- [19] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
- [20] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623-627, 1991.
- [21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. [22]
- [23]Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [24] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
- [25] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
- [26] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990. Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67–71, 1990.
- [27]
- [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [29] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.

Received October 9, 2007