Uniform Boundedness Principle

Hideki Sakurai Shinshu University Nagano, Japan Hisayoshi Kunimune Shinshu University Nagano, Japan

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article at first, we proved the lemma of the inferior limit and the superior limit. Next, we proved the Baire category theorem (Banach space version) [20], [9], [3], quoted it and proved the uniform boundedness principle. Moreover, the proof of the Banach-Steinhaus theorem is added.

MML identifier: LOPBAN_5, version: 7.8.05 4.89.993

The articles [17], [18], [15], [12], [19], [1], [21], [5], [8], [7], [16], [10], [6], [13], [4], [2], [14], and [11] provide the terminology and notation for this paper.

1. Uniform Boundedness Principle

The following two propositions are true:

- (1) For every sequence s_1 of real numbers and for every real number r such that s_1 is bounded and $0 \le r$ holds $\liminf (r s_1) = r \cdot \liminf s_1$.
- (2) For every sequence s_1 of real numbers and for every real number r such that s_1 is bounded and $0 \le r$ holds $\limsup (r s_1) = r \cdot \limsup s_1$.

Let X be a real Banach space. One can verify that Metric SpaceNorm X is complete.

Let X be a real Banach space, let x_0 be a point of X, and let r be a real number. The functor $Ball(x_0, r)$ yielding a subset of X is defined as follows:

(Def. 1) Ball $(x_0, r) = \{x; x \text{ ranges over points of } X: ||x_0 - x|| < r\}.$

The following propositions are true:

(3) Let X be a real Banach space and Y be a sequence of subsets of X. Suppose $\bigcup \operatorname{rng} Y = \operatorname{the}$ carrier of X and for every element n of \mathbb{N} holds Y(n) is closed. Then there exists an element n_0 of \mathbb{N} and there exists

- a real number r and there exists a point x_0 of X such that 0 < r and $Ball(x_0, r) \subseteq Y(n_0)$.
- (4) Let X, Y be real normed spaces and f be a bounded linear operator from X into Y. Then
- (i) f is Lipschitzian on the carrier of X and continuous on the carrier of X, and
- (ii) for every point x of X holds f is continuous in x.
- (5) Let X be a real Banach space, Y be a real normed space, and T be a subset of the real norm space of bounded linear operators from X into Y. Suppose that for every point x of X there exists a real number K such that $0 \le K$ and for every point f of the real norm space of bounded linear operators from X into Y such that $f \in T$ holds $||f(x)|| \le K$. Then there exists a real number L such that
- (i) $0 \le L$, and
- (ii) for every point f of the real norm space of bounded linear operators from X into Y such that $f \in T$ holds $||f|| \leq L$.

Let X, Y be real normed spaces, let H be a function from \mathbb{N} into the carrier of the real norm space of bounded linear operators from X into Y, and let x be a point of X. The functor H # x yields a sequence of Y and is defined by:

(Def. 2) For every element n of \mathbb{N} holds (H # x)(n) = H(n)(x).

The following proposition is true

- (6) Let X be a real Banach space, Y be a real normed space, v_1 be a sequence of the real norm space of bounded linear operators from X into Y, and t_1 be a function from X into Y. Suppose that for every point x of X holds $v_1\#x$ is convergent and $t_1(x) = \lim(v_1\#x)$. Then
- (i) t_1 is a bounded linear operator from X into Y,
- (ii) for every point x of X holds $||t_1(x)|| \le \liminf ||v_1|| \cdot ||x||$, and
- (iii) for every point t_2 of the real norm space of bounded linear operators from X into Y such that $t_2 = t_1$ holds $||t_2|| \le \liminf ||v_1||$.

2. Banach-Steinhaus Theorem

We now state two propositions:

- (7) Let X be a real Banach space, X_0 be a subset of LinearTopSpaceNorm X, Y be a real Banach space, and v_1 be a sequence of the real norm space of bounded linear operators from X into Y. Suppose that
 - (i) X_0 is dense,
- (ii) for every point x of X such that $x \in X_0$ holds $v_1 \# x$ is convergent, and
- (iii) for every point x of X there exists a real number K such that $0 \le K$ and for every element n of \mathbb{N} holds $\|(v_1 \# x)(n)\| \le K$. Let x be a point of X. Then $v_1 \# x$ is convergent.

- (8) Let X, Y be real Banach spaces, X_0 be a subset of LinearTopSpaceNorm X, and v_1 be a sequence of the real norm space of bounded linear operators from X into Y. Suppose that (i) X_0 is dense,
- (ii) for every point x of X such that $x \in X_0$ holds $v_1 \# x$ is convergent, and
- (iii) for every point x of X there exists a real number K such that $0 \le K$ and for every element n of \mathbb{N} holds $\|(v_1 \# x)(n)\| \le K$.

Then there exists a point t_1 of the real norm space of bounded linear operators from X into Y such that for every point x of X holds $v_1 \# x$ is convergent and $t_1(x) = \lim(v_1 \# x)$ and $||t_1(x)|| \le \lim\inf||v_1|| \cdot ||x||$ and $||t_1|| \le \lim\inf||v_1||$.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
- [3] N. J. Dunford and T. Schwartz. Linear operators I. Interscience Publ., 1958.
- [4] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire's category theorem and some spaces generated from real normed space. Formalized Mathematics, 14(4):213–219, 2006.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [6] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [9] Isao Miyadera. Functional Analysis. Riko-Gaku-Sya, 1972.
- [10] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [11] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269–275, 2004.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [14] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004.
- [15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [19] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.
- [20] Kosaku Yoshida. Functional Analysis. Springer, 1980.
- [21] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375–381, 2005.

Received October 9, 2007