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Summary. In this article at first, we proved the lemma of the inferior limit
and the superior limit. Next, we proved the Baire category theorem (Banach space
version) [20], [9], [3], quoted it and proved the uniform boundedness principle.
Moreover, the proof of the Banach-Steinhaus theorem is added.
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The articles [17], [18], [15], [12], [19], [1], [21], [5], [8], [7], [16], [10], [6], [13], [4],
[2], [14], and [11] provide the terminology and notation for this paper.

1. Uniform Boundedness Principle

The following two propositions are true:

(1) For every sequence s1 of real numbers and for every real number r such
that s1 is bounded and 0 ≤ r holds lim inf(r s1) = r · lim inf s1.

(2) For every sequence s1 of real numbers and for every real number r such
that s1 is bounded and 0 ≤ r holds lim sup(r s1) = r · lim sup s1.
Let X be a real Banach space. One can verify that MetricSpaceNormX is

complete.
Let X be a real Banach space, let x0 be a point of X, and let r be a real

number. The functor Ball(x0, r) yielding a subset of X is defined as follows:

(Def. 1) Ball(x0, r) = {x;x ranges over points of X: ‖x0 − x‖ < r}.
The following propositions are true:

(3) Let X be a real Banach space and Y be a sequence of subsets of X.
Suppose

⋃
rng Y = the carrier of X and for every element n of N holds

Y (n) is closed. Then there exists an element n0 of N and there exists
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a real number r and there exists a point x0 of X such that 0 < r and
Ball(x0, r) ⊆ Y (n0).

(4) Let X, Y be real normed spaces and f be a bounded linear operator
from X into Y . Then
(i) f is Lipschitzian on the carrier of X and continuous on the carrier of
X, and

(ii) for every point x of X holds f is continuous in x.

(5) Let X be a real Banach space, Y be a real normed space, and T be a
subset of the real norm space of bounded linear operators from X into Y .
Suppose that for every point x of X there exists a real number K such
that 0 ≤ K and for every point f of the real norm space of bounded linear
operators from X into Y such that f ∈ T holds ‖f(x)‖ ≤ K. Then there
exists a real number L such that
(i) 0 ≤ L, and
(ii) for every point f of the real norm space of bounded linear operators
from X into Y such that f ∈ T holds ‖f‖ ≤ L.
Let X, Y be real normed spaces, let H be a function from N into the carrier

of the real norm space of bounded linear operators from X into Y , and let x be
a point of X. The functor H#x yields a sequence of Y and is defined by:

(Def. 2) For every element n of N holds (H#x)(n) = H(n)(x).
The following proposition is true

(6) LetX be a real Banach space, Y be a real normed space, v1 be a sequence
of the real norm space of bounded linear operators from X into Y , and t1
be a function from X into Y . Suppose that for every point x of X holds
v1#x is convergent and t1(x) = lim(v1#x). Then
(i) t1 is a bounded linear operator from X into Y ,
(ii) for every point x of X holds ‖t1(x)‖ ≤ lim inf‖v1‖ · ‖x‖, and
(iii) for every point t2 of the real norm space of bounded linear operators
from X into Y such that t2 = t1 holds ‖t2‖ ≤ lim inf‖v1‖.

2. Banach-Steinhaus Theorem

We now state two propositions:

(7) LetX be a real Banach space,X0 be a subset of LinearTopSpaceNormX,
Y be a real Banach space, and v1 be a sequence of the real norm space of
bounded linear operators from X into Y . Suppose that
(i) X0 is dense,
(ii) for every point x of X such that x ∈ X0 holds v1#x is convergent, and
(iii) for every point x of X there exists a real number K such that 0 ≤ K
and for every element n of N holds ‖(v1#x)(n)‖ ≤ K.
Let x be a point of X. Then v1#x is convergent.
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(8) LetX, Y be real Banach spaces,X0 be a subset of LinearTopSpaceNormX,
and v1 be a sequence of the real norm space of bounded linear operators
from X into Y . Suppose that (i) X0 is dense,

(ii) for every point x of X such that x ∈ X0 holds v1#x is convergent, and
(iii) for every point x of X there exists a real number K such that 0 ≤ K
and for every element n of N holds ‖(v1#x)(n)‖ ≤ K.
Then there exists a point t1 of the real norm space of bounded linear
operators from X into Y such that for every point x of X holds v1#x
is convergent and t1(x) = lim(v1#x) and ‖t1(x)‖ ≤ lim inf‖v1‖ · ‖x‖ and
‖t1‖ ≤ lim inf‖v1‖.
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