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Summary. In this article, we extended properties of sequences of real

numbers to sequences of extended real numbers. We also introduced basic prop-

erties of the inferior limit, superior limit and convergence of sequences of extended

real numbers.
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The notation and terminology used in this paper are introduced in the following

articles: [18], [19], [1], [17], [20], [5], [21], [6], [7], [16], [2], [3], [8], [15], [13], [14],

[12], [11], [22], [4], [10], and [9].

We adopt the following convention: n, m, k are elements of N, X is a non

empty subset of R, and Y is a non empty subset of R.

Next we state four propositions:

(1) If X = Y and Y is upper bounded, then X is upper bounded and

supX = supY.

(2) If X = Y and X is upper bounded, then Y is upper bounded and

supX = supY.

(3) If X = Y and Y is lower bounded, then X is lower bounded and infX =

inf Y.

(4) If X = Y and X is lower bounded, then Y is lower bounded and infX =

inf Y.
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Let s1 be a sequence of extended reals. The functor sup s1 yields an element

of R and is defined by:

(Def. 1) sup s1 = sup rng s1.

The functor inf s1 yields an element of R and is defined as follows:

(Def. 2) inf s1 = inf rng s1.

Let s1 be a sequence of extended reals. We say that s1 is lower bounded if

and only if:

(Def. 3) rng s1 is lower bounded.

We say that s1 is upper bounded if and only if:

(Def. 4) rng s1 is upper bounded.

Let s1 be a sequence of extended reals. We say that s1 is bounded if and

only if:

(Def. 5) s1 is upper bounded and lower bounded.

In the sequel s1 is a sequence of extended reals.

One can prove the following proposition

(5) For all s1, n holds {s1(k); k ranges over elements of N: n ≤ k} is a non

empty subset of R.

Let s1 be a sequence of extended reals. The inferior realsequence s1 yields

a sequence of extended reals and is defined by the condition (Def. 6).

(Def. 6) Let n be an element of N. Then there exists a non empty subset Y of

R such that Y = {s1(k); k ranges over elements of N: n ≤ k} and (the

inferior realsequence s1)(n) = inf Y.

Let s1 be a sequence of extended reals. The superior realsequence s1 yields

a sequence of extended reals and is defined by the condition (Def. 7).

(Def. 7) Let n be an element of N. Then there exists a non empty subset Y of

R such that Y = {s1(k); k ranges over elements of N: n ≤ k} and (the

superior realsequence s1)(n) = supY.

We now state the proposition

(6) If s1 is finite, then s1 is a sequence of real numbers.

Let f be a partial function from N to R. We say that f is increasing if and

only if:

(Def. 8) For all m, n such that m ∈ dom f and n ∈ dom f and m < n holds

f(m) < f(n).

We say that f is decreasing if and only if:

(Def. 9) For all m, n such that m ∈ dom f and n ∈ dom f and m < n holds

f(m) > f(n).

We say that f is non-decreasing if and only if:
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(Def. 10) For all m, n such that m ∈ dom f and n ∈ dom f and m ≤ n holds

f(m) ≤ f(n).

We say that f is non-increasing if and only if:

(Def. 11) For all m, n such that m ∈ dom f and n ∈ dom f and m ≤ n holds

f(m) ≥ f(n).

One can prove the following two propositions:

(7)(i) s1 is increasing iff for all elements n, m of N such that m < n holds

s1(m) < s1(n),

(ii) s1 is decreasing iff for all elements n, m of N such that m < n holds

s1(n) < s1(m),

(iii) s1 is non-decreasing iff for all elements n, m of N such that m ≤ n

holds s1(m) ≤ s1(n), and

(iv) s1 is non-increasing iff for all elements n, m of N such that m ≤ n holds

s1(n) ≤ s1(m).

(8) (The inferior realsequence s1)(n) ≤ s1(n) and s1(n) ≤ (the superior

realsequence s1)(n).

Let us consider s1. Observe that the superior realsequence s1 is non-

increasing and the inferior realsequence s1 is non-decreasing.

Let s1 be a sequence of extended reals. The functor lim sup s1 yields an

element of R and is defined by:

(Def. 12) lim sup s1 = inf (the superior realsequence s1).

The functor lim inf s1 yields an element of R and is defined by:

(Def. 13) lim inf s1 = sup (the inferior realsequence s1).

In the sequel r1 is a sequence of real numbers.

The following propositions are true:

(9) If s1 = r1 and r1 is bounded, then the superior realsequence s1 = the

superior realsequence r1 and lim sup s1 = lim sup r1.

(10) If s1 = r1 and r1 is bounded, then the inferior realsequence s1 = the

inferior realsequence r1 and lim inf s1 = lim inf r1.

(11) If s1 is bounded, then s1 is a sequence of real numbers.

(12) If s1 = r1, then s1 is upper bounded iff r1 is upper bounded.

(13) If s1 = r1, then s1 is lower bounded iff r1 is lower bounded.

(14) If s1 = r1 and r1 is convergent, then s1 is convergent to finite number

and convergent and lim s1 = lim r1.

(15) If s1 = r1 and s1 is convergent to finite number, then r1 is convergent

and lim s1 = lim r1.

(16) If s1 ↑ k is convergent to finite number, then s1 is convergent to finite

number and convergent and lim s1 = lim(s1 ↑ k).

(17) If s1 ↑ k is convergent, then s1 is convergent and lim s1 = lim(s1 ↑ k).
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(18) If lim sup s1 = lim inf s1 and lim inf s1 ∈ R, then there exists k such that

s1 ↑ k is bounded.

(19) If s1 is convergent to finite number, then there exists k such that s1 ↑ k
is bounded.

(20) Suppose s1 is convergent to finite number. Then s1 ↑ k is convergent to

finite number and s1 ↑ k is convergent and lim s1 = lim(s1 ↑ k).

(21) If s1 is convergent, then s1 ↑ k is convergent and lim s1 = lim(s1 ↑ k).

(22) If s1 is upper bounded, then s1 ↑ k is upper bounded and if s1 is lower

bounded, then s1 ↑ k is lower bounded.

(23) inf s1 ≤ s1(n) and s1(n) ≤ sup s1.

(24) inf s1 ≤ sup s1.

(25) If s1 is non-increasing, then s1↑k is non-increasing and inf s1 = inf(s1↑k).

(26) If s1 is non-decreasing, then s1↑k is non-decreasing and sup s1 = sup(s1↑
k).

(27) (The superior realsequence s1)(n) = sup(s1 ↑ n) and (the inferior realse-

quence s1)(n) = inf(s1 ↑ n).

(28) Let s1 be a sequence of extended reals and j be an element of N. Then

the superior realsequence s1 ↑ j = (the superior realsequence s1) ↑ j and

lim sup(s1 ↑ j) = lim sup s1.

(29) Let s1 be a sequence of extended reals and j be an element of N. Then

the inferior realsequence s1 ↑ j = (the inferior realsequence s1) ↑ j and

lim inf(s1 ↑ j) = lim inf s1.

(30) Let s1 be a sequence of extended reals and k be an element of N. Suppose

s1 is non-increasing and −∞ < s1(k) and s1(k) < +∞. Then s1↑k is upper

bounded and sup(s1 ↑ k) = s1(k).

(31) Let s1 be a sequence of extended reals and k be an element of N. Suppose

s1 is non-decreasing and −∞ < s1(k) and s1(k) < +∞. Then s1↑k is lower

bounded and inf(s1 ↑ k) = s1(k).

(32) Let s1 be a sequence of extended reals. Suppose that for every element

n of N holds +∞ ≤ s1(n). Then s1 is convergent to +∞.

(33) Let s1 be a sequence of extended reals. Suppose that for every element

n of N holds s1(n) ≤ −∞. Then s1 is convergent to −∞.

(34) Let s1 be a sequence of extended reals. Suppose s1 is non-increasing and

−∞ = inf s1. Then s1 is convergent to −∞ and lim s1 = −∞.
(35) Let s1 be a sequence of extended reals. Suppose s1 is non-decreasing

and +∞ = sup s1. Then s1 is convergent to +∞ and lim s1 = +∞.
(36) For every sequence s1 of extended reals such that s1 is non-increasing

holds s1 is convergent and lim s1 = inf s1.
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(37) For every sequence s1 of extended reals such that s1 is non-decreasing

holds s1 is convergent and lim s1 = sup s1.

(38) Let s2, s3 be sequences of extended reals. Suppose s2 is convergent and

s3 is convergent and for every element n of N holds s2(n) ≤ s3(n). Then

lim s2 ≤ lim s3.

(39) For every sequence s1 of extended reals holds lim inf s1 ≤ lim sup s1.

(40) For every sequence s1 of extended reals holds s1 is convergent iff

lim inf s1 = lim sup s1.

(41) For every sequence s1 of extended reals such that s1 is convergent holds

lim s1 = lim inf s1 and lim s1 = lim sup s1.
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