## Inferior Limit, Superior Limit and Convergence of Sequences of Extended Real Numbers

Hiroshi Yamazaki Shinshu University Nagano, Japan Noboru Endou Gifu National College of Technology Japan

Yasunari Shidama Shinshu University Nagano, Japan Hiroyuki Okazaki Shinshu University Nagano, Japan

**Summary.** In this article, we extended properties of sequences of real numbers to sequences of extended real numbers. We also introduced basic properties of the inferior limit, superior limit and convergence of sequences of extended real numbers.

MML identifier: RINFSUP2, version: 7.8.05 4.87.985

The notation and terminology used in this paper are introduced in the following articles: [18], [19], [1], [17], [20], [5], [21], [6], [7], [16], [2], [3], [8], [15], [13], [14], [12], [11], [22], [4], [10], and [9].

We adopt the following convention: n, m, k are elements of  $\mathbb{N}$ , X is a non empty subset of  $\overline{\mathbb{R}}$ , and Y is a non empty subset of  $\mathbb{R}$ .

Next we state four propositions:

- (1) If X = Y and Y is upper bounded, then X is upper bounded and  $\sup X = \sup Y$ .
- (2) If X = Y and X is upper bounded, then Y is upper bounded and  $\sup X = \sup Y$ .
- (3) If X = Y and Y is lower bounded, then X is lower bounded and  $\inf X = \inf Y$ .
- (4) If X = Y and X is lower bounded, then Y is lower bounded and  $\inf X = \inf Y$ .

C 2007 University of Białystok ISSN 1426-2630 Let  $s_1$  be a sequence of extended reals. The functor  $\sup s_1$  yields an element of  $\overline{\mathbb{R}}$  and is defined by:

(Def. 1)  $\sup s_1 = \sup \operatorname{rng} s_1$ .

The functor  $\inf s_1$  yields an element of  $\overline{\mathbb{R}}$  and is defined as follows:

(Def. 2)  $\inf s_1 = \inf \operatorname{rng} s_1$ .

Let  $s_1$  be a sequence of extended reals. We say that  $s_1$  is lower bounded if and only if:

(Def. 3)  $\operatorname{rng} s_1$  is lower bounded.

We say that  $s_1$  is upper bounded if and only if:

(Def. 4)  $\operatorname{rng} s_1$  is upper bounded.

Let  $s_1$  be a sequence of extended reals. We say that  $s_1$  is bounded if and only if:

(Def. 5)  $s_1$  is upper bounded and lower bounded.

In the sequel  $s_1$  is a sequence of extended reals.

One can prove the following proposition

(5) For all  $s_1$ , n holds  $\{s_1(k); k \text{ ranges over elements of } \mathbb{N}: n \leq k\}$  is a non empty subset of  $\overline{\mathbb{R}}$ .

Let  $s_1$  be a sequence of extended reals. The inferior realsequence  $s_1$  yields a sequence of extended reals and is defined by the condition (Def. 6).

(Def. 6) Let n be an element of  $\mathbb{N}$ . Then there exists a non empty subset Y of  $\overline{\mathbb{R}}$  such that  $Y = \{s_1(k); k \text{ ranges over elements of } \mathbb{N}: n \leq k\}$  and (the inferior realsequence  $s_1(n) = \inf Y$ .

Let  $s_1$  be a sequence of extended reals. The superior realsequence  $s_1$  yields a sequence of extended reals and is defined by the condition (Def. 7).

(Def. 7) Let *n* be an element of  $\mathbb{N}$ . Then there exists a non empty subset *Y* of  $\overline{\mathbb{R}}$  such that  $Y = \{s_1(k); k \text{ ranges over elements of } \mathbb{N}: n \leq k\}$  and (the superior realsequence  $s_1(n) = \sup Y$ .

We now state the proposition

(6) If  $s_1$  is finite, then  $s_1$  is a sequence of real numbers.

Let f be a partial function from  $\mathbb{N}$  to  $\overline{\mathbb{R}}$ . We say that f is increasing if and only if:

(Def. 8) For all m, n such that  $m \in \text{dom } f$  and  $n \in \text{dom } f$  and m < n holds f(m) < f(n).

We say that f is decreasing if and only if:

(Def. 9) For all m, n such that  $m \in \text{dom } f$  and  $n \in \text{dom } f$  and m < n holds f(m) > f(n).

We say that f is non-decreasing if and only if:

(Def. 10) For all m, n such that  $m \in \text{dom } f$  and  $n \in \text{dom } f$  and  $m \leq n$  holds  $f(m) \leq f(n)$ .

We say that f is non-increasing if and only if:

(Def. 11) For all m, n such that  $m \in \text{dom } f$  and  $n \in \text{dom } f$  and  $m \leq n$  holds  $f(m) \geq f(n)$ .

One can prove the following two propositions:

- (7)(i)  $s_1$  is increasing iff for all elements n, m of  $\mathbb{N}$  such that m < n holds  $s_1(m) < s_1(n)$ ,
- (ii)  $s_1$  is decreasing iff for all elements n, m of  $\mathbb{N}$  such that m < n holds  $s_1(n) < s_1(m)$ ,
- (iii)  $s_1$  is non-decreasing iff for all elements n, m of  $\mathbb{N}$  such that  $m \leq n$  holds  $s_1(m) \leq s_1(n)$ , and
- (iv)  $s_1$  is non-increasing iff for all elements n, m of  $\mathbb{N}$  such that  $m \leq n$  holds  $s_1(n) \leq s_1(m)$ .
- (8) (The inferior realsequence  $s_1$ ) $(n) \leq s_1(n)$  and  $s_1(n) \leq$  (the superior realsequence  $s_1$ )(n).

Let us consider  $s_1$ . Observe that the superior real sequence  $s_1$  is non-increasing and the inferior real sequence  $s_1$  is non-decreasing.

Let  $s_1$  be a sequence of extended reals. The functor  $\limsup s_1$  yields an element of  $\overline{\mathbb{R}}$  and is defined by:

(Def. 12)  $\limsup s_1 = \inf$  (the superior real sequence  $s_1$ ).

The functor  $\liminf s_1$  yields an element of  $\mathbb{R}$  and is defined by:

(Def. 13)  $\liminf s_1 = \sup (\text{the inferior real sequence } s_1).$ 

In the sequel  $r_1$  is a sequence of real numbers.

The following propositions are true:

- (9) If  $s_1 = r_1$  and  $r_1$  is bounded, then the superior realsequence  $s_1 =$  the superior realsequence  $r_1$  and  $\limsup s_1 = \limsup r_1$ .
- (10) If  $s_1 = r_1$  and  $r_1$  is bounded, then the inferior realsequence  $s_1 =$  the inferior realsequence  $r_1$  and  $\liminf s_1 = \liminf r_1$ .
- (11) If  $s_1$  is bounded, then  $s_1$  is a sequence of real numbers.
- (12) If  $s_1 = r_1$ , then  $s_1$  is upper bounded iff  $r_1$  is upper bounded.
- (13) If  $s_1 = r_1$ , then  $s_1$  is lower bounded iff  $r_1$  is lower bounded.
- (14) If  $s_1 = r_1$  and  $r_1$  is convergent, then  $s_1$  is convergent to finite number and convergent and  $\lim s_1 = \lim r_1$ .
- (15) If  $s_1 = r_1$  and  $s_1$  is convergent to finite number, then  $r_1$  is convergent and  $\lim s_1 = \lim r_1$ .
- (16) If  $s_1 \uparrow k$  is convergent to finite number, then  $s_1$  is convergent to finite number and convergent and  $\lim s_1 = \lim(s_1 \uparrow k)$ .
- (17) If  $s_1 \uparrow k$  is convergent, then  $s_1$  is convergent and  $\lim s_1 = \lim(s_1 \uparrow k)$ .

## HIROSHI YAMAZAKI et al.

- (18) If  $\limsup s_1 = \liminf s_1$  and  $\liminf s_1 \in \mathbb{R}$ , then there exists k such that  $s_1 \uparrow k$  is bounded.
- (19) If  $s_1$  is convergent to finite number, then there exists k such that  $s_1 \uparrow k$  is bounded.
- (20) Suppose  $s_1$  is convergent to finite number. Then  $s_1 \uparrow k$  is convergent to finite number and  $s_1 \uparrow k$  is convergent and  $\lim s_1 = \lim (s_1 \uparrow k)$ .
- (21) If  $s_1$  is convergent, then  $s_1 \uparrow k$  is convergent and  $\lim s_1 = \lim(s_1 \uparrow k)$ .
- (22) If  $s_1$  is upper bounded, then  $s_1 \uparrow k$  is upper bounded and if  $s_1$  is lower bounded, then  $s_1 \uparrow k$  is lower bounded.
- (23) inf  $s_1 \le s_1(n)$  and  $s_1(n) \le \sup s_1$ .
- (24)  $\inf s_1 \leq \sup s_1$ .
- (25) If  $s_1$  is non-increasing, then  $s_1 \uparrow k$  is non-increasing and  $\inf s_1 = \inf(s_1 \uparrow k)$ .
- (26) If  $s_1$  is non-decreasing, then  $s_1 \uparrow k$  is non-decreasing and  $\sup s_1 = \sup(s_1 \uparrow k)$ .
- (27) (The superior realsequence  $s_1$ ) $(n) = \sup(s_1 \uparrow n)$  and (the inferior realsequence  $s_1$ ) $(n) = \inf(s_1 \uparrow n)$ .
- (28) Let  $s_1$  be a sequence of extended reals and j be an element of  $\mathbb{N}$ . Then the superior realsequence  $s_1 \uparrow j = (\text{the superior realsequence } s_1) \uparrow j$  and  $\limsup(s_1 \uparrow j) = \limsup s_1.$
- (29) Let  $s_1$  be a sequence of extended reals and j be an element of  $\mathbb{N}$ . Then the inferior realsequence  $s_1 \uparrow j =$  (the inferior realsequence  $s_1) \uparrow j$  and  $\liminf(s_1 \uparrow j) = \liminf s_1$ .
- (30) Let  $s_1$  be a sequence of extended reals and k be an element of  $\mathbb{N}$ . Suppose  $s_1$  is non-increasing and  $-\infty < s_1(k)$  and  $s_1(k) < +\infty$ . Then  $s_1 \uparrow k$  is upper bounded and  $\sup(s_1 \uparrow k) = s_1(k)$ .
- (31) Let  $s_1$  be a sequence of extended reals and k be an element of  $\mathbb{N}$ . Suppose  $s_1$  is non-decreasing and  $-\infty < s_1(k)$  and  $s_1(k) < +\infty$ . Then  $s_1 \uparrow k$  is lower bounded and  $\inf(s_1 \uparrow k) = s_1(k)$ .
- (32) Let  $s_1$  be a sequence of extended reals. Suppose that for every element n of  $\mathbb{N}$  holds  $+\infty \leq s_1(n)$ . Then  $s_1$  is convergent to  $+\infty$ .
- (33) Let  $s_1$  be a sequence of extended reals. Suppose that for every element n of  $\mathbb{N}$  holds  $s_1(n) \leq -\infty$ . Then  $s_1$  is convergent to  $-\infty$ .
- (34) Let  $s_1$  be a sequence of extended reals. Suppose  $s_1$  is non-increasing and  $-\infty = \inf s_1$ . Then  $s_1$  is convergent to  $-\infty$  and  $\lim s_1 = -\infty$ .
- (35) Let  $s_1$  be a sequence of extended reals. Suppose  $s_1$  is non-decreasing and  $+\infty = \sup s_1$ . Then  $s_1$  is convergent to  $+\infty$  and  $\lim s_1 = +\infty$ .
- (36) For every sequence  $s_1$  of extended reals such that  $s_1$  is non-increasing holds  $s_1$  is convergent and  $\lim s_1 = \inf s_1$ .

234

- (37) For every sequence  $s_1$  of extended reals such that  $s_1$  is non-decreasing holds  $s_1$  is convergent and  $\lim s_1 = \sup s_1$ .
- (38) Let  $s_2$ ,  $s_3$  be sequences of extended reals. Suppose  $s_2$  is convergent and  $s_3$  is convergent and for every element n of N holds  $s_2(n) \leq s_3(n)$ . Then  $\lim s_2 \leq \lim s_3$ .
- (39) For every sequence  $s_1$  of extended reals holds  $\liminf s_1 \leq \limsup s_1$ .
- (40) For every sequence  $s_1$  of extended reals holds  $s_1$  is convergent iff  $\liminf s_1 = \limsup s_1.$
- (41) For every sequence  $s_1$  of extended reals such that  $s_1$  is convergent holds  $\lim s_1 = \lim \inf s_1$  and  $\lim s_1 = \limsup s_1$ .

## References

- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163–171, 1991.
- [3] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [4] Józef Białas. The  $\sigma$ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in  $\mathcal{E}^2$ . Formalized [8] Mathematics, 6(3):427-440, 1997.
- Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Math*ematics*, 14(**2**):53–70, 2006.
- [10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495–500, 2001.
- [11] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.
- [12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [13] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Math*ematics*, 1(2):273–275, 1990.
- [14] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [16] Andrzej Nędzusiak.  $\sigma$ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
  [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990
- [22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375-381, 2005.

Received August 28, 2007