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Summary. This Mizar paper presents the definition of a “Preordered

Coherent Space” (PCS). Furthermore, the paper defines a number of operations

on PCS’s and states and proves a number of elementary lemmas about these

operations. PCS’s have many useful properties which could qualify them for

mathematical study in their own right. PCS’s were invented, however, to con-

struct Scott domains, to solve domain equations, and to construct models of

various versions of lambda calculus.

For more on PCS’s, see [11]. The present Mizar paper defines the operations

on PCS’s used in Chapter 8 of [3].

MML identifier: PCS 0, version: 7.8.05 4.87.985

The articles [16], [20], [7], [17], [15], [21], [4], [6], [22], [23], [14], [1], [13], [5],

[18], [9], [19], [12], [8], [2], and [10] provide the notation and terminology for this

paper.

1. Preliminaries

Let R1, R2 be sets and let R be a relation between R1 and R2. Then fieldR

is a subset of R1 ∪R2.
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Let R1, R2, S1, S2 be sets, let R be a relation between R1 and R2, and let

S be a relation between S1 and S2. Then R ∪ S is a relation between R1 ∪ S1

and R2 ∪ S2.

Let R1, S1 be sets, let R be a total binary relation on R1, and let S be a

total binary relation on S1. Note that R ∪ S is total.

Let R1, S1 be sets, let R be a reflexive binary relation on R1, and let S be

a reflexive binary relation on S1. Observe that R ∪ S is reflexive.

Let R1, S1 be sets, let R be a symmetric binary relation on R1, and let S

be a symmetric binary relation on S1. Observe that R ∪ S is symmetric.

One can prove the following proposition

(1) Let R1, S1 be sets, R be a transitive binary relation on R1, and S be a

transitive binary relation on S1. If R1 misses S1, then R∪ S is transitive.

Let A be an empty set and let B be a set. One can check that ∅A,B is total.

Let I be a non empty set and let C be a 1-sorted yielding many sorted set

indexed by I. Then the support of C can be characterized by the condition:

(Def. 1) For every element i of I holds (the support of C)(i) = the carrier of

C(i).

Let R1, R2, S1, S2 be sets, let R be a relation between R1 and R2, and let S

be a relation between S1 and S2. The functor [̂ R,S ]̂ yields a relation between

[:R1, S1 :] and [:R2, S2 :] and is defined by the condition (Def. 2).

(Def. 2) Let x, y be sets. Then 〈〈x, y〉〉 ∈ [̂ R,S ]̂ if and only if there exist sets r1,

s1, r2, s2 such that x = 〈〈r1, s1〉〉 and y = 〈〈r2, s2〉〉 and r1 ∈ R1 and s1 ∈ S1

and r2 ∈ R2 and s2 ∈ S2 and 〈〈r1, r2〉〉 ∈ R or 〈〈s1, s2〉〉 ∈ S.
Let R1, R2, S1, S2 be non empty sets, let R be a relation between R1 and R2,

and let S be a relation between S1 and S2. Then [̂ R,S ]̂ can be characterized

by the condition:

(Def. 3) Let r1 be an element of R1, r2 be an element of R2, s1 be an element of

S1, and s2 be an element of S2. Then 〈〈〈〈r1, s1〉〉, 〈〈r2, s2〉〉〉〉 ∈ [̂ R,S ]̂ if and

only if 〈〈r1, r2〉〉 ∈ R or 〈〈s1, s2〉〉 ∈ S.
Let R1, S1 be sets, let R be a total binary relation on R1, and let S be a

total binary relation on S1. Note that [̂ R,S ]̂ is total.

Let R1, S1 be sets, let R be a reflexive binary relation on R1, and let S be

a reflexive binary relation on S1. One can check that [̂ R,S ]̂ is reflexive.

Let R1, S1 be sets, let R be a binary relation on R1, and let S be a total

reflexive binary relation on S1. Observe that [̂ R,S ]̂ is reflexive.

Let R1, S1 be sets, let R be a total reflexive binary relation on R1, and let

S be a binary relation on S1. Observe that [̂ R,S ]̂ is reflexive.

Let R1, S1 be sets, let R be a symmetric binary relation on R1, and let S

be a symmetric binary relation on S1. Note that [̂ R,S ]̂ is symmetric.
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2. Relational Structures

Let us observe that every relational structure which is empty is also total.

Let R be a binary relation. We say that R is transitive-yielding if and only

if:

(Def. 4) For every relational structure S such that S ∈ rngR holds S is transitive.

Let us note that every binary relation which is poset-yielding is also

transitive-yielding.

Let us mention that there exists a function which is poset-yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is poset-yielding.

Let I be a set and let C be a relational structure yielding many sorted set

indexed by I. The functor pcs-InternalRelsC yields a many sorted set indexed

by I and is defined by the condition (Def. 5).

(Def. 5) Let i be a set. Suppose i ∈ I. Then there exists a relational structure P

such that P = C(i) and (pcs-InternalRelsC)(i) = the internal relation of

P .

Let I be a non empty set and let C be a relational structure yielding many

sorted set indexed by I. Then pcs-InternalRelsC can be characterized by the

condition:

(Def. 6) For every element i of I holds (pcs-InternalRelsC)(i) = the internal

relation of C(i).

Let I be a set and let C be a relational structure yielding many sorted set

indexed by I. One can check that pcs-InternalRelsC is binary relation yielding.

Let I be a non empty set, let C be a transitive-yielding relational structure

yielding many sorted set indexed by I, and let i be an element of I. Note that

C(i) is transitive.

3. Tolerance Structures

We introduce alternative relational structures which are extensions of 1-

sorted structure and are systems

〈 a carrier, an alternative relation 〉,
where the carrier is a set and the alternative relation is a binary relation on the

carrier.

Let P be an alternative relational structure and let p, q be elements of P .

The predicate p ∼ q is defined by:

(Def. 7) 〈〈p, q〉〉 ∈ the alternative relation of P .

Let P be an alternative relational structure. We say that P is β-total if and

only if:
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(Def. 8) The alternative relation of P is total.

We say that P is β-reflexive if and only if:

(Def. 9) The alternative relation of P is reflexive in the carrier of P .

We say that P is β-irreflexive if and only if:

(Def. 10) The alternative relation of P is irreflexive in the carrier of P .

We say that P is β-symmetric if and only if:

(Def. 11) The alternative relation of P is symmetric in the carrier of P .

The alternative relational structure emptyTolStr is defined as follows:

(Def. 12) emptyTolStr = 〈∅, ∅∅,∅〉.
One can check that emptyTolStr is empty and strict.

The following proposition is true

(2) Let P be an alternative relational structure. If P is empty, then the

alternative relational structure of P = emptyTolStr .

One can check that every alternative relational structure which is β-reflexive

is also β-total.

Let us note that every alternative relational structure which is empty is also

β-reflexive, β-irreflexive, and β-symmetric.

Let us note that there exists an alternative relational structure which is

empty.

Let P be a β-total alternative relational structure. Observe that the alter-

native relation of P is total.

Let P be a β-reflexive alternative relational structure. One can check that

the alternative relation of P is reflexive.

Let P be a β-irreflexive alternative relational structure. One can verify that

the alternative relation of P is irreflexive.

Let P be a β-symmetric alternative relational structure. One can verify that

the alternative relation of P is symmetric.

Let L be a β-total alternative relational structure. Note that the alternative

relational structure of L is β-total.

Let P be a β-symmetric alternative relational structure and let p, q be

elements of P . Let us note that the predicate p ∼ q is symmetric.

Let D be a set. Note that 〈D,∇D〉 is β-reflexive and β-symmetric.

Let D be a set. Note that 〈D, ∅D,D〉 is β-irreflexive and β-symmetric.

Let us note that there exists an alternative relational structure which is

strict, non empty, β-reflexive, and β-symmetric.

One can check that there exists an alternative relational structure which is

strict, non empty, β-irreflexive, and β-symmetric.

Let R be a binary relation. We say that R is alternative relational structure

yielding if and only if:
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(Def. 13) For every set P such that P ∈ rngR holds P is an alternative relational

structure.

Let f be a function. Let us observe that f is alternative relational structure

yielding if and only if:

(Def. 14) For every set x such that x ∈ dom f holds f(x) is an alternative relational

structure.

Let I be a set and let f be a many sorted set indexed by I. Let us observe

that f is alternative relational structure yielding if and only if:

(Def. 15) For every set x such that x ∈ I holds f(x) is an alternative relational

structure.

Let R be a binary relation. We say that R is β-reflexive yielding if and only

if:

(Def. 16) For every alternative relational structure S such that S ∈ rngR holds S

is β-reflexive.

We say that R is β-irreflexive yielding if and only if:

(Def. 17) For every alternative relational structure S such that S ∈ rngR holds S

is β-irreflexive.

We say that R is β-symmetric yielding if and only if:

(Def. 18) For every alternative relational structure S such that S ∈ rngR holds S

is β-symmetric.

One can check that every binary relation which is empty is also β-reflexive

yielding, β-irreflexive yielding, and β-symmetric yielding.

Let I be a set and let P be an alternative relational structure. Note that

I 7−→ P is alternative relational structure yielding.

Let I be a set and let P be a β-reflexive alternative relational structure.

Observe that I 7−→ P is β-reflexive yielding.

Let I be a set and let P be a β-irreflexive alternative relational structure.

One can check that I 7−→ P is β-irreflexive yielding.

Let I be a set and let P be a β-symmetric alternative relational structure.

One can verify that I 7−→ P is β-symmetric yielding.

Let us observe that every function which is alternative relational structure

yielding is also 1-sorted yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is β-reflexive yielding, β-symmetric yielding, and alternative relational

structure yielding.

Let I be a set. Note that there exists a many sorted set indexed by I which is

β-irreflexive yielding, β-symmetric yielding, and alternative relational structure

yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is alternative relational structure yielding.
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Let I be a non empty set, let C be an alternative relational structure yielding

many sorted set indexed by I, and let i be an element of I. Then C(i) is an

alternative relational structure.

Let I be a set and let C be an alternative relational structure yielding many

sorted set indexed by I. The functor pcs-ToleranceRelsC yields a many sorted

set indexed by I and is defined by the condition (Def. 19).

(Def. 19) Let i be a set. Suppose i ∈ I. Then there exists an alternative rela-

tional structure P such that P = C(i) and (pcs-ToleranceRelsC)(i) = the

alternative relation of P .

Let I be a non empty set and let C be an alternative relational structure

yielding many sorted set indexed by I. Then pcs-ToleranceRelsC can be char-

acterized by the condition:

(Def. 20) For every element i of I holds (pcs-ToleranceRelsC)(i) = the alternative

relation of C(i).

Let I be a set and let C be an alternative relational structure yielding

many sorted set indexed by I. Note that pcs-ToleranceRelsC is binary relation

yielding.

Let I be a non empty set, let C be a β-reflexive yielding alternative relational

structure yielding many sorted set indexed by I, and let i be an element of I.

One can verify that C(i) is β-reflexive.

Let I be a non empty set, let C be a β-irreflexive yielding alternative rela-

tional structure yielding many sorted set indexed by I, and let i be an element

of I. Note that C(i) is β-irreflexive.

Let I be a non empty set, let C be a β-symmetric yielding alternative rela-

tional structure yielding many sorted set indexed by I, and let i be an element

of I. Observe that C(i) is β-symmetric.

The following propositions are true:

(3) Let P , Q be alternative relational structures. Suppose that

(i) the alternative relational structure of P = the alternative relational

structure of Q, and

(ii) P is β-reflexive.

Then Q is β-reflexive.

(4) Let P , Q be alternative relational structures. Suppose that

(i) the alternative relational structure of P = the alternative relational

structure of Q, and

(ii) P is β-irreflexive.

Then Q is β-irreflexive.

(5) Let P , Q be alternative relational structures. Suppose that

(i) the alternative relational structure of P = the alternative relational

structure of Q, and

(ii) P is β-symmetric.
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Then Q is β-symmetric.

Let P , Q be alternative relational structures. The functor [̂ P,Q ]̂ yields an

alternative relational structure and is defined by the condition (Def. 21).

(Def. 21) [̂ P,Q ]̂ = 〈[: the carrier of P , the carrier of Q :], [̂ the alternative relation

of P , the alternative relation of Q ]̂〉.
Let P , Q be alternative relational structures, let p be an element of P , and

let q be an element of Q. We introduce [̂ p, q ]̂ as a synonym of 〈〈p, q〉〉.
Let P , Q be non empty alternative relational structures, let p be an element

of P , and let q be an element of Q. Then [̂ p, q ]̂ is an element of [̂ P,Q ]̂.

Let P , Q be alternative relational structures and let p be an element of

[̂ P,Q ]̂. We introduce p‘1 as a synonym of p1. We introduce p‘2 as a synonym

of p2.

Let P , Q be non empty alternative relational structures and let p be an

element of [̂ P,Q ]̂. Then p‘1 is an element of P . Then p‘2 is an element of Q.

We now state two propositions:

(6) Let S1, S2 be non empty alternative relational structures, a, c be ele-

ments of S1, and b, d be elements of S2. Then [̂ a, b̂ ] ∼ [̂ c, d̂ ] if and only

if a ∼ c or b ∼ d.
(7) Let S1, S2 be non empty alternative relational structures and x, y be

elements of [̂ S1, S2 ]̂. Then x ∼ y if and only if one of the following

conditions is satisfied:

(i) x‘1 ∼ y‘1, or

(ii) x‘2 ∼ y‘2.

Let P be an alternative relational structure and let Q be a β-reflexive alter-

native relational structure. Note that [̂ P,Q ]̂ is β-reflexive.

Let P be a β-reflexive alternative relational structure and let Q be an alter-

native relational structure. Observe that [̂ P,Q ]̂ is β-reflexive.

Let P , Q be β-symmetric alternative relational structures. One can check

that [̂ P,Q ]̂ is β-symmetric.

4. PCS’s

We introduce pcs structures which are extensions of relational structure and

alternative relational structure and are systems

〈 a carrier, an internal relation, an alternative relation 〉,
where the carrier is a set, the internal relation is a binary relation on the carrier,

and the alternative relation is a binary relation on the carrier.

Let P be a pcs structure. We say that P is compatible if and only if:

(Def. 22) For all elements p, p′, q, q′ of P such that p ∼ q and p′ ≤ p and q′ ≤ q

holds p′ ∼ q′.
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Let P be a pcs structure. We say that P is pcs-like if and only if:

(Def. 23) P is reflexive, transitive, β-reflexive, β-symmetric, and compatible.

We say that P is anti-pcs-like if and only if:

(Def. 24) P is reflexive, transitive, β-irreflexive, β-symmetric, and compatible.

One can verify the following observations:

∗ every pcs structure which is pcs-like is also reflexive, transitive, β-

reflexive, β-symmetric, and compatible,

∗ every pcs structure which is reflexive, transitive, β-reflexive, β-

symmetric, and compatible is also pcs-like,

∗ every pcs structure which is anti-pcs-like is also reflexive, transitive, β-

irreflexive, β-symmetric, and compatible, and

∗ every pcs structure which is reflexive, transitive, β-irreflexive, β-

symmetric, and compatible is also anti-pcs-like.

Let D be a set. The functor TotalPCSD yields a pcs structure and is defined

as follows:

(Def. 25) TotalPCSD = 〈D,∇D,∇D〉.
Let D be a set. Observe that TotalPCSD is strict.

Let D be a non empty set. One can verify that TotalPCSD is non empty.

Let D be a set. One can check that TotalPCSD is reflexive, transitive,

β-reflexive, and β-symmetric.

Let D be a set. Note that TotalPCSD is pcs-like.

Let D be a set. One can verify that 〈D,∇D, ∅D,D〉 is anti-pcs-like.

One can verify that there exists a pcs structure which is strict, non empty,

and pcs-like and there exists a pcs structure which is strict, non empty, and

anti-pcs-like.

A pcs is a pcs-like pcs structure. An anti-pcs is an anti-pcs-like pcs structure.

The pcs structure EmptyPCS is defined by:

(Def. 26) EmptyPCS = TotalPCS 0.

Let us mention that EmptyPCS is strict, empty, and pcs-like.

Let p be a set. The functor SingletonPCS p yielding a pcs structure is defined

by:

(Def. 27) SingletonPCS p = TotalPCS{p}.
Let p be a set. Observe that SingletonPCS p is strict, non empty, and pcs-

like.

Let R be a binary relation. We say that R is pcs structure yielding if and

only if:

(Def. 28) For every set P such that P ∈ rngR holds P is a pcs structure.

We say that R is pcs-yielding if and only if:

(Def. 29) For every set P such that P ∈ rngR holds P is a pcs.
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Let f be a function. Let us observe that f is pcs structure yielding if and

only if:

(Def. 30) For every set x such that x ∈ dom f holds f(x) is a pcs structure.

Let us observe that f is pcs-yielding if and only if:

(Def. 31) For every set x such that x ∈ dom f holds f(x) is a pcs.

Let I be a set and let f be a many sorted set indexed by I. Let us observe

that f is pcs structure yielding if and only if:

(Def. 32) For every set x such that x ∈ I holds f(x) is a pcs structure.

Let us observe that f is pcs-yielding if and only if:

(Def. 33) For every set x such that x ∈ I holds f(x) is a pcs.

One can verify the following observations:

∗ every binary relation which is pcs structure yielding is also alternative

relational structure yielding and relational structure yielding,

∗ every binary relation which is pcs-yielding is also pcs structure yielding,

and

∗ every binary relation which is pcs-yielding is also reflexive-yielding,

transitive-yielding, β-reflexive yielding, and β-symmetric yielding.

Let I be a set and let P be a pcs. Note that I 7−→ P is pcs-yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is pcs-yielding.

Let I be a non empty set, let C be a pcs structure yielding many sorted set

indexed by I, and let i be an element of I. Then C(i) is a pcs structure.

Let I be a non empty set, let C be a pcs-yielding many sorted set indexed

by I, and let i be an element of I. Then C(i) is a pcs.

Let P , Q be pcs structures. The predicate P ⊆ Q is defined by the conditions

(Def. 34).

(Def. 34)(i) The carrier of P ⊆ the carrier of Q,

(ii) the internal relation of P ⊆ the internal relation of Q, and

(iii) the alternative relation of P ⊆ the alternative relation of Q.

Let us note that the predicate P ⊆ Q is reflexive.

Next we state two propositions:

(8) Let P , Q be relational structures, p, q be elements of P , and p1, q1 be

elements of Q. Suppose the internal relation of P ⊆ the internal relation

of Q and p = p1 and q = q1 and p ≤ q. Then p1 ≤ q1.

(9) Let P , Q be pcs structures, p, q be elements of P , and p1, q1 be elements

of Q. Suppose the alternative relation of P ⊆ the alternative relation of

Q and p = p1 and q = q1 and p ∼ q. Then p1 ∼ q1.

Let C be a binary relation. We say that C is chain-like if and only if:
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(Def. 35) For all pcs structures P , Q such that P ∈ rngC and Q ∈ rngC holds

P ⊆ Q or Q ⊆ P.
Let I be a set and let P be a pcs structure. Observe that I 7−→ P is

chain-like.

Let us note that there exists a function which is chain-like and pcs-yielding.

Let I be a set. Note that there exists a many sorted set indexed by I which

is chain-like and pcs-yielding.

Let I be a set. A pcs-chain of I is a chain-like pcs-yielding many sorted set

indexed by I.

Let I be a set and let C be a pcs structure yielding many sorted set indexed

by I. The functor
⋃
C yielding a strict pcs structure is defined by the conditions

(Def. 36).

(Def. 36)(i) The carrier of
⋃
C =

⋃
(the support of C),

(ii) the internal relation of
⋃
C =

⋃
pcs-InternalRelsC, and

(iii) the alternative relation of
⋃
C =

⋃
pcs-ToleranceRelsC.

We now state four propositions:

(10) Let I be a set, C be a pcs structure yielding many sorted set indexed

by I, and p, q be elements of
⋃
C. Then p ≤ q if and only if there exists a

set i and there exists a pcs structure P and there exist elements p′, q′ of

P such that i ∈ I and P = C(i) and p′ = p and q′ = q and p′ ≤ q′.
(11) Let I be a non empty set, C be a pcs structure yielding many sorted set

indexed by I, and p, q be elements of
⋃
C. Then p ≤ q if and only if there

exists an element i of I and there exist elements p′, q′ of C(i) such that

p′ = p and q′ = q and p′ ≤ q′.
(12) Let I be a set, C be a pcs structure yielding many sorted set indexed

by I, and p, q be elements of
⋃
C. Then p ∼ q if and only if there exists a

set i and there exists a pcs structure P and there exist elements p′, q′ of

P such that i ∈ I and P = C(i) and p′ = p and q′ = q and p′ ∼ q′.
(13) Let I be a non empty set, C be a pcs structure yielding many sorted set

indexed by I, and p, q be elements of
⋃
C. Then p ∼ q if and only if there

exists an element i of I and there exist elements p′, q′ of C(i) such that

p′ = p and q′ = q and p′ ∼ q′.
Let I be a set and let C be a reflexive-yielding pcs structure yielding many

sorted set indexed by I. Observe that
⋃
C is reflexive.

Let I be a set and let C be a β-reflexive yielding pcs structure yielding many

sorted set indexed by I. Observe that
⋃
C is β-reflexive.

Let I be a set and let C be a β-symmetric yielding pcs structure yielding

many sorted set indexed by I. Note that
⋃
C is β-symmetric.

Let I be a set and let C be a pcs-chain of I. One can check that
⋃
C is

transitive and compatible.



basic operations on preordered . . . 223

Let p, q be sets. The functor MSSet(p, q) yielding a many sorted set indexed

by {0, 1} is defined by:

(Def. 37) MSSet(p, q) = [0 7−→ p, 1 7−→ q].

Let P , Q be 1-sorted structures. One can check that MSSet(P,Q) is 1-sorted

yielding.

Let P , Q be relational structures. Observe that MSSet(P,Q) is relational

structure yielding.

Let P , Q be alternative relational structures. Observe that MSSet(P,Q) is

alternative relational structure yielding.

Let P , Q be pcs structures. Note that MSSet(P,Q) is pcs structure yielding.

Let P , Q be reflexive pcs structures. Observe that MSSet(P,Q) is reflexive-

yielding.

Let P , Q be transitive pcs structures. One can check that MSSet(P,Q) is

transitive-yielding.

Let P , Q be β-reflexive pcs structures. Note that MSSet(P,Q) is β-reflexive

yielding.

Let P , Q be β-symmetric pcs structures. Observe that MSSet(P,Q) is β-

symmetric yielding.

Let P , Q be pcs’s. Observe that MSSet(P,Q) is pcs-yielding.

Let P , Q be pcs structures. The functor P ⊕Q yielding a pcs structure is

defined by:

(Def. 38) P ⊕Q =
⋃

MSSet(P,Q).

One can prove the following four propositions:

(14) Let P , Q be pcs structures. Then

(i) the carrier of P ⊕Q = (the carrier of P ) ∪ (the carrier of Q),

(ii) the internal relation of P ⊕ Q = (the internal relation of P ) ∪ (the

internal relation of Q), and

(iii) the alternative relation of P ⊕Q = (the alternative relation of P )∪(the

alternative relation of Q).

(15) Let P , Q be pcs structures. Then P ⊕ Q = 〈(the carrier of P ) ∪ (the

carrier of Q), (the internal relation of P ) ∪ (the internal relation of Q),

(the alternative relation of P ) ∪ (the alternative relation of Q)〉.
(16) Let P , Q be pcs structures and p, q be elements of P ⊕Q. Then p ≤ q

if and only if one of the following conditions is satisfied:

(i) there exist elements p′, q′ of P such that p′ = p and q′ = q and p′ ≤ q′,
or

(ii) there exist elements p′, q′ of Q such that p′ = p and q′ = q and p′ ≤ q′.
(17) Let P , Q be pcs structures and p, q be elements of P ⊕Q. Then p ∼ q

if and only if one of the following conditions is satisfied:

(i) there exist elements p′, q′ of P such that p′ = p and q′ = q and p′ ∼ q′,
or
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(ii) there exist elements p′, q′ of Q such that p′ = p and q′ = q and p′ ∼ q′.
Let P , Q be reflexive pcs structures. Observe that P ⊕Q is reflexive.

Let P , Q be β-reflexive pcs structures. One can verify that P ⊕ Q is β-

reflexive.

Let P , Q be β-symmetric pcs structures. Observe that P⊕Q is β-symmetric.

The following three propositions are true:

(18) For all pcs’s P , Q such that P misses Q holds the internal relation of

P ⊕Q is transitive.

(19) For all pcs’s P , Q such that P misses Q holds P ⊕Q is compatible.

(20) For all pcs’s P , Q such that P misses Q holds P ⊕Q is a pcs.

Let P be a pcs structure and let a be a set. The functor Pa yields a strict

pcs structure and is defined by the conditions (Def. 39).

(Def. 39)(i) The carrier of Pa = {a} ∪ the carrier of P ,

(ii) the internal relation of Pa = [: {a}, the carrier of Pa :] ∪ the internal

relation of P , and

(iii) the alternative relation of Pa = [: {a}, the carrier of Pa :] ∪ [: the carrier

of Pa, {a} :] ∪ the alternative relation of P .

Let P be a pcs structure and let a be a set. Observe that Pa is non empty.

The following propositions are true:

(21) Let P be a pcs structure and a be a set. Then

(i) the carrier of P ⊆ the carrier of Pa,

(ii) the internal relation of P ⊆ the internal relation of Pa, and

(iii) the alternative relation of P ⊆ the alternative relation of Pa.

(22) For every pcs structure P and for every set a and for all elements p, q

of Pa such that p = a holds p ≤ q.
(23) Let P be a pcs structure, a be a set, p, q be elements of P , and p1, q1

be elements of Pa. If p = p1 and q = q1 and p ≤ q, then p1 ≤ q1.

(24) Let P be a pcs structure, a be a set, p be an element of P , and p1, q1

be elements of Pa. Suppose p = p1 and p 6= a and p1 ≤ q1 and a /∈ the

carrier of P . Then q1 ∈ the carrier of P and q1 6= a.

(25) Let P be a pcs structure, a be a set, and p be an element of Pa. If p 6= a,

then p ∈ the carrier of P .

(26) Let P be a pcs structure, a be a set, p, q be elements of P , and p1, q1 be

elements of Pa. If p = p1 and q = q1 and p 6= a and p1 ≤ q1, then p ≤ q.
(27) For every pcs structure P and for every set a and for all elements p, q

of Pa such that p = a holds p ∼ q and q ∼ p.
(28) Let P be a pcs structure, a be a set, p, q be elements of P , and p1, q1

be elements of Pa. If p = p1 and q = q1 and p ∼ q, then p1 ∼ q1.
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(29) Let P be a pcs structure, a be a set, p, q be elements of P , and p1, q1

be elements of Pa. If p = p1 and q = q1 and p 6= a and q 6= a and p1 ∼ q1,

then p ∼ q.
Let P be a reflexive pcs structure and let a be a set. Observe that Pa is

reflexive.

The following proposition is true

(30) For every transitive pcs structure P and for every set a such that a /∈ the

carrier of P holds Pa is transitive.

Let P be a β-reflexive pcs structure and let a be a set. One can verify that

Pa is β-reflexive.

Let P be a β-symmetric pcs structure and let a be a set. One can check

that Pa is β-symmetric.

Next we state two propositions:

(31) For every compatible pcs structure P and for every set a such that

a /∈ the carrier of P holds Pa is compatible.

(32) For every pcs P and for every set a such that a /∈ the carrier of P holds

Pa is a pcs.

Let P be a pcs structure. The functor lP yields a strict pcs structure and

is defined by the conditions (Def. 40).

(Def. 40)(i) The carrier of lP = the carrier of P ,

(ii) the internal relation of lP = (the internal relation of P )`, and

(iii) the alternative relation of lP = (the alternative relation of P )c.

Let P be a non empty pcs structure. One can check that lP is non empty.

Next we state three propositions:

(33) Let P be a pcs structure, p, q be elements of P , and p′, q′ be elements

of lP. If p = p′ and q = q′, then p ≤ q iff q′ ≤ p′.
(34) Let P be a pcs structure, p, q be elements of P , and p′, q′ be elements

of lP. If p = p′ and q = q′, then if p ∼ q, then p′ 6∼ q′.
(35) Let P be a non empty pcs structure, p, q be elements of P , and p′, q′ be

elements of lP. If p = p′ and q = q′, then if p′ 6∼ q′, then p ∼ q.
Let P be a reflexive pcs structure. One can check that lP is reflexive.

Let P be a transitive pcs structure. Observe that lP is transitive.

Let P be a β-reflexive pcs structure. One can verify that lP is β-irreflexive.

Let P be a β-irreflexive pcs structure. One can check that lP is β-reflexive.

Let P be a β-symmetric pcs structure. One can verify that lP is β-

symmetric.

Let P be a compatible pcs structure. Note that lP is compatible.

Let P , Q be pcs structures. The functor P ⊗Q yielding a pcs structure is

defined by the condition (Def. 41).
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(Def. 41) P ⊗ Q = 〈[: the carrier of P , the carrier of Q :], (the internal relation

of P ) × (the internal relation of Q), [̂ the alternative relation of P , the

alternative relation of Q ]̂〉.
Let P , Q be pcs structures. One can check that P ⊗Q is strict.

Let P , Q be non empty pcs structures. Note that P ⊗Q is non empty.

One can prove the following propositions:

(36) Let P , Q be pcs structures, p, q be elements of P ⊗Q, p1, p2 be elements

of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2, q2〉〉, then

p ≤ q iff p1 ≤ p2 and q1 ≤ q2.

(37) Let P , Q be pcs structures, p, q be elements of P ⊗Q, p1, p2 be elements

of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2, q2〉〉, then if

p ∼ q, then p1 ∼ p2 or q1 ∼ q2.

(38) Let P , Q be non empty pcs structures, p, q be elements of P ⊗Q, p1, p2

be elements of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2,

q2〉〉, then if p1 ∼ p2 or q1 ∼ q2, then p ∼ q.
Let P , Q be reflexive pcs structures. Observe that P ⊗Q is reflexive.

Let P , Q be transitive pcs structures. One can check that P⊗Q is transitive.

Let P be a pcs structure and let Q be a β-reflexive pcs structure. One can

check that P ⊗Q is β-reflexive.

Let P be a β-reflexive pcs structure and let Q be a pcs structure. One can

check that P ⊗Q is β-reflexive.

Let P , Q be β-symmetric pcs structures. One can verify that P ⊗ Q is

β-symmetric.

Let P , Q be compatible pcs structures. Observe that P ⊗Q is compatible.

Let P , Q be pcs structures. The functor P 7−→ Q yielding a pcs structure

is defined as follows:

(Def. 42) P 7−→ Q = lP ⊗Q.
Let P , Q be pcs structures. One can check that P 7−→ Q is strict.

Let P , Q be non empty pcs structures. Note that P 7−→ Q is non empty.

Next we state three propositions:

(39) Let P , Q be pcs structures, p, q be elements of P 7−→ Q, p1, p2 be

elements of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2,

q2〉〉, then p ≤ q iff p2 ≤ p1 and q1 ≤ q2.

(40) Let P , Q be pcs structures, p, q be elements of P 7−→ Q, p1, p2 be

elements of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and q = 〈〈p2,

q2〉〉, then if p ∼ q, then p1 6∼ p2 or q1 ∼ q2.

(41) Let P , Q be non empty pcs structures, p, q be elements of P 7−→ Q,

p1, p2 be elements of P , and q1, q2 be elements of Q. If p = 〈〈p1, q1〉〉 and

q = 〈〈p2, q2〉〉, then if p1 6∼ p2 or q1 ∼ q2, then p ∼ q.
Let P , Q be reflexive pcs structures. One can check that P 7−→ Q is reflexive.
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Let P , Q be transitive pcs structures. Observe that P 7−→ Q is transitive.

Let P be a pcs structure and let Q be a β-reflexive pcs structure. Note that

P 7−→ Q is β-reflexive.

Let P be a β-irreflexive pcs structure and let Q be a pcs structure. One can

verify that P 7−→ Q is β-reflexive.

Let P , Q be β-symmetric pcs structures. Note that P 7−→ Q is β-symmetric.

Let P , Q be compatible pcs structures. Note that P 7−→ Q is compatible.

Let P , Q be pcs’s. Note that P 7−→ Q is pcs-like.

Let P be a pcs structure and let S be a subset of P . We say that S is

self-coherent if and only if:

(Def. 43) For all elements x, y of P such that x ∈ S and y ∈ S holds x ∼ y.
Let P be a pcs structure. Observe that every subset of P which is empty is

also self-coherent.

Let P be a pcs structure. One can check that there exists a subset of P

which is empty.

Let P be a pcs structure and let F be a family of subsets of P . We say that

F is self-coherent-membered if and only if:

(Def. 44) For every subset S of P such that S ∈ F holds S is self-coherent.

Let P be a pcs structure. Observe that there exists a family of subsets of P

which is non empty and self-coherent-membered.

Let P be a pcs structure and let D be a set. The functor PIR(P,D) yields

a binary relation on D and is defined by the condition (Def. 45).

(Def. 45) Let A, B be sets. Then 〈〈A, B〉〉 ∈ PIR(P,D) if and only if the following

conditions are satisfied:

(i) A ∈ D,
(ii) B ∈ D, and

(iii) for every set a such that a ∈ A there exists a set b such that b ∈ B and

〈〈a, b〉〉 ∈ the internal relation of P .

The functor PTR(P,D) yielding a binary relation on D is defined by the condi-

tion (Def. 46).

(Def. 46) Let A, B be sets. Then 〈〈A, B〉〉 ∈ PTR(P,D) if and only if the following

conditions are satisfied:

(i) A ∈ D,
(ii) B ∈ D, and

(iii) for all sets a, b such that a ∈ A and b ∈ B holds 〈〈a, b〉〉 ∈ the alternative

relation of P .

Next we state two propositions:

(42) Let P be a pcs structure, D be a family of subsets of P , and A, B be

sets. Then 〈〈A, B〉〉 ∈ PIR(P,D) if and only if the following conditions are

satisfied:
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(i) A ∈ D,
(ii) B ∈ D, and

(iii) for every element a of P such that a ∈ A there exists an element b of

P such that b ∈ B and a ≤ b.
(43) Let P be a pcs structure, D be a family of subsets of P , and A, B be

sets. Then 〈〈A, B〉〉 ∈ PTR(P,D) if and only if the following conditions are

satisfied:

(i) A ∈ D,
(ii) B ∈ D, and

(iii) for all elements a, b of P such that a ∈ A and b ∈ B holds a ∼ b.
Let P be a pcs structure and let D be a set. The functor P(P,D) yielding

a pcs structure is defined by:

(Def. 47) P(P,D) = 〈D,PIR(P,D),PTR(P,D)〉.
Let P be a pcs structure and let D be a family of subsets of P . We introduce

P(D) as a synonym of P(P,D).

Let P be a pcs structure and let D be a non empty set. Observe that P(P,D)

is non empty.

Next we state four propositions:

(44) Let P be a pcs structure, D be a set, and p, q be elements of P(P,D).

Suppose p ≤ q. Let p′ be an element of P . If p′ ∈ p, then there exists an

element q′ of P such that q′ ∈ q and p′ ≤ q′.
(45) Let P be a pcs structure, D be a non empty family of subsets of P , and

p, q be elements of P(D). Suppose that for every element p′ of P such

that p′ ∈ p there exists an element q′ of P such that q′ ∈ q and p′ ≤ q′.
Then p ≤ q.

(46) Let P be a pcs structure, D be a set, and p, q be elements of P(P,D).

Suppose p ∼ q. Let p′, q′ be elements of P . If p′ ∈ p and q′ ∈ q, then

p′ ∼ q′.
(47) Let P be a pcs structure, D be a non empty family of subsets of P , and

p, q be elements of P(D). Suppose that for all elements p′, q′ of P such

that p′ ∈ p and q′ ∈ q holds p′ ∼ q′. Then p ∼ q.
Let P be a pcs structure and let D be a set. One can check that P(P,D) is

strict.

Let P be a reflexive pcs structure and let D be a family of subsets of P .

Note that P(D) is reflexive.

Let P be a transitive pcs structure and let D be a set. One can check that

P(P,D) is transitive.

Let P be a β-reflexive pcs structure and let D be a self-coherent-membered

family of subsets of P . One can check that P(D) is β-reflexive.
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Let P be a β-symmetric pcs structure and let D be a family of subsets of

P . Observe that P(D) is β-symmetric.

Let P be a compatible pcs structure and let D be a family of subsets of P .

Note that P(D) is compatible.

Let P be a pcs structure. The functor pcs-coherent-powerP yields a set and

is defined as follows:

(Def. 48) pcs-coherent-powerP = {X;X ranges over subsets of P : X is self-

coherent}.
We now state the proposition

(48) For every pcs structure P and for every set X such that X ∈
pcs-coherent-powerP holds X is a self-coherent subset of P .

Let P be a pcs structure. Note that pcs-coherent-powerP is non empty.

Let P be a pcs structure. Then pcs-coherent-powerP is a family of subsets

of P .

Let P be a pcs structure. Observe that pcs-coherent-powerP is self-coherent-

membered.

Let P be a pcs structure. The functor P(P ) yielding a pcs structure is

defined by:

(Def. 49) P(P ) = P(pcs-coherent-powerP ).

Let P be a pcs structure. Note that P(P ) is strict.

Let P be a pcs structure. Note that P(P ) is non empty.

Let P be a reflexive pcs structure. One can verify that P(P ) is reflexive.

Let P be a transitive pcs structure. One can check that P(P ) is transitive.

Let P be a β-reflexive pcs structure. Note that P(P ) is β-reflexive.

Let P be a β-symmetric pcs structure. Note that P(P ) is β-symmetric.

Let P be a compatible pcs structure. Note that P(P ) is compatible.

Let P be a pcs. Observe that P(P ) is pcs-like.
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