Arrow's Impossibility Theorem

Freek Wiedijk
Institute for Computing and Information Sciences
Radboud University Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Summary. A formalization of the first proof from [6].

MML identifier: ARROW, version: 7.8.05 4.87.985

The terminology and notation used here are introduced in the following articles: [11], [13], [12], [10], [9], [5], [2], [3], [1], [8], [4], and [7].

1. Preliminaries

Let A, B^{\prime} be non empty sets, let B be a non empty subset of B^{\prime}, let f be a function from A into B, and let x be an element of A. Then $f(x)$ is an element of B.

Next we state two propositions:
(1) For every finite set A such that card $A \geq 2$ and for every element a of A there exists an element b of A such that $b \neq a$.
(2) Let A be a finite set. Suppose card $A \geq 3$. Let a, b be elements of A. Then there exists an element c of A such that $c \neq a$ and $c \neq b$.

2. Linear Preorders and Linear Orders

In the sequel A denotes a non empty set and a, b, c denote elements of A.
Let us consider A. The functor LinPreorders A is defined by the condition (Def. 1).
(Def. 1) Let R be a set. Then $R \in \operatorname{LinPreorders} A$ if and only if the following conditions are satisfied:
(i) $\quad R$ is a binary relation on A,
(ii) for all a, b holds $\langle a, b\rangle \in R$ or $\langle b, a\rangle \in R$, and
(iii) for all a, b, c such that $\langle a, b\rangle \in R$ and $\langle b, c\rangle \in R$ holds $\langle a, c\rangle \in R$.

Let us consider A. Note that LinPreorders A is non empty.
Let us consider A. The functor LinOrders A yielding a subset of LinPreorders A is defined by:
(Def. 2) For every element R of LinPreorders A holds $R \in \operatorname{LinOrders} A$ iff for all a, b such that $\langle a, b\rangle \in R$ and $\langle b, a\rangle \in R$ holds $a=b$.
Let A be a set. One can verify that there exists an order in A which is connected.

Let us consider A. Then LinOrders A can be characterized by the condition:
(Def. 3) For every set R holds $R \in \operatorname{LinOrders} A$ iff R is a connected order in A.
Let us consider A. One can verify that LinOrders A is non empty.
In the sequel o, o^{\prime} are elements of LinPreorders A and $o^{\prime \prime}$ is an element of LinOrders A.

Let us consider A, o, a, b. The predicate $a \leq_{o} b$ is defined by:
(Def. 4) $\langle a, b\rangle \in o$.
Let us consider A, o, a, b. We introduce $b \geq_{o} a$ as a synonym of $a \leq_{o} b$. We introduce $b<_{o} a$ as an antonym of $a \leq_{o} b$. We introduce $a>_{o} b$ as an antonym of $a \leq_{o} b$.

We now state a number of propositions:
(3) $a \leq_{o} a$.
(4) $a \leq_{o} b$ or $b \leq_{o} a$.
(5) If $a \leq_{o} b$ or $a<_{o} b$ and if $b \leq_{o} c$ or $b<_{o} c$, then $a \leq_{o} c$.
(6) If $a \leq_{o^{\prime \prime}} b$ and $b \leq_{o^{\prime \prime}} a$, then $a=b$.
(7) If $a \neq b$ and $b \neq c$ and $a \neq c$, then there exists o such that $a<_{o} b$ and $b<{ }_{o} c$.
(8) There exists o such that for every a such that $a \neq b$ holds $b<_{o} a$.
(9) There exists o such that for every a such that $a \neq b$ holds $a<_{o} b$.
(10) If $a \neq b$ and $a \neq c$, then there exists o such that $a<_{o} b$ and $a<_{o} c$ and $b<_{o} c$ iff $b<_{o^{\prime}} c$ and $c<_{o} b$ iff $c<_{o^{\prime}} b$.
(11) If $a \neq b$ and $a \neq c$, then there exists o such that $b<_{o} a$ and $c<_{o} a$ and $b<_{o} c$ iff $b<_{o^{\prime}} c$ and $c<_{o} b$ iff $c<_{o^{\prime}} b$.
(12) Let o, o^{\prime} be elements of LinOrders A. Then $a<_{o} b$ iff $a<_{o^{\prime}} b$ and $b<_{o} a$ iff $b<_{o^{\prime}} a$ if and only if $a<_{o} b$ iff $a<_{o^{\prime}} b$.
(13) Let o be an element of LinOrders A and o^{\prime} be an element of LinPreorders A. Then for all a, b such that $a<_{o} b$ holds $a<_{o^{\prime}} b$ if and only
if for all a, b holds $a<_{o} b$ iff $a<_{o^{\prime}} b$.

3. Arrow's Theorem

For simplicity, we follow the rules: A, N are finite non empty sets, a, b are elements of A, i, n are elements of N, p, p^{\prime} are elements of $(\operatorname{LinPreorders} A)^{N}$, and f is a function from $(\operatorname{LinPreorders} A)^{N}$ into LinPreorders A.

We now state the proposition
(14) Suppose that
(i) for all p, a, b such that for every i holds $a<_{p(i)} b$ holds $a<_{f(p)} b$,
(ii) for all p, p^{\prime}, a, b such that for every i holds $a<_{p(i)} b$ iff $a<_{p^{\prime}(i)} b$ and $b<_{p(i)} a$ iff $b<_{p^{\prime}(i)} a$ holds $a<_{f(p)} b$ iff $a<_{f\left(p^{\prime}\right)} b$, and
(iii) $\quad \operatorname{card} A \geq 3$.

Then there exists n such that for all p, a, b such that $a<_{p(n)} b$ holds $a<_{f(p)} b$.
In the sequel p, p^{\prime} denote elements of $(\operatorname{LinOrders} A)^{N}$ and f denotes a function from $(\text { LinOrders } A)^{N}$ into LinPreorders A.

One can prove the following proposition

(15) Suppose that

(i) for all p, a, b such that for every i holds $a<_{p(i)} b$ holds $a<_{f(p)} b$,
(ii) for all p, p^{\prime}, a, b such that for every i holds $a<_{p(i)} b$ iff $a<_{p^{\prime}(i)} b$ holds $a<_{f(p)} b$ iff $a<_{f\left(p^{\prime}\right)} b$, and
(iii) $\quad \operatorname{card} A \geq 3$.

Then there exists n such that for all p, a, b holds $a<_{p(n)} b$ iff $a<_{f(p)} b$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] John Geanakoplos. Three brief proofs of arrow's impossibility theorem. Cowles Foundation Discussion Papers 1123R3, Cowles Foundation, Yale University, April 1996. Available at http://ideas.repec.org/p/cwl/cwldpp/1123r3.html.
[7] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[8] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[13] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received August 13, 2007

