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Summary. Algorithms and its parts – instructions – are formalized as el-

ements of if-while algebras. An if-while algebra is a (1-sorted) universal algebra

which has 4 operations: a constant – the empty instruction, a binary catenation

of instructions, a ternary conditional instruction, and a binary while instruction.

An execution function is defined on pairs (s, I), where s is a state (an element of

certain set of states) and I is an instruction, and results in states. The execution

function obeys control structures using the set of distinguished true states, i.e. a

condition instruction is executed and the continuation of execution depends on

if the resulting state is in true states or not. Termination is also defined for pairs

(s, I) and depends on the execution function. The existence of execution func-

tion determined on elementary instructions and its uniqueness for terminating

instructions are shown.
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1. Binary Operations, Orbits, and Iterations

(1) Let f , g, h be functions and A be a set. Suppose A ⊆ dom f and

A ⊆ dom g and rng h ⊆ A and for every set x such that x ∈ A holds

f(x) = g(x). Then f · h = g · h.
Let x, y be non empty sets. Observe that 〈x, y〉 is non-empty.

Let p, q be non-empty finite sequences. One can check that p a q is non-

empty.

Let f be a homogeneous function and let x be a set. We say that x is a

unity w.r.t. f if and only if:

(Def. 1) For all sets y, z such that 〈y, z〉 ∈ dom f or 〈z, y〉 ∈ dom f holds 〈x,
y〉 ∈ dom f and f(〈x, y〉) = y and 〈y, x〉 ∈ dom f and f(〈y, x〉) = y.

Let f be a homogeneous function. We say that f is associative if and only

if:

(Def. 2) For all sets x, y, z such that 〈x, y〉 ∈ dom f and 〈y, z〉 ∈ dom f and 〈f(〈x,
y〉), z〉 ∈ dom f and 〈x, f(〈y, z〉)〉 ∈ dom f holds f(〈f(〈x, y〉), z〉) = f(〈x,
f(〈y, z〉)〉).

We say that f is unital if and only if:

(Def. 3) There exists a set which is a unity w.r.t. f .

Let X be a set, let Y be a non empty set, let Z be a set of finite sequences

of X, and let y be an element of Y . Then Z 7−→ y is a partial function from X ∗

to Y .

Let X be a non empty set, let x be an element of X, and let n be a natural

number. Observe that Xn 7−→ x is non empty, quasi total, and homogeneous.

One can prove the following proposition

(2) For every non empty set X and for every element x of X and for every

natural number n holds arity(Xn 7−→ x) = n.

Let X be a non empty set and let x be an element of X. One can check the

following observations:

∗ X0 7−→ x is nullary,

∗ X1 7−→ x is unary,

∗ X2 7−→ x is binary, and

∗ X3 7−→ x is ternary.

Let X be a non empty set. One can check the following observations:

∗ there exists a non empty quasi total homogeneous partial function from

X∗ to X which is binary, associative, and unital,

∗ there exists a non empty quasi total homogeneous partial function from

X∗ to X which is nullary, and
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∗ there exists a non empty quasi total homogeneous partial function from

X∗ to X which is ternary.

Next we state the proposition

(3) Let X be a non empty set, p be a finite sequence of elements of

FinTrees(X), and x, t be sets. If t ∈ rng p, then t 6= x-tree(p).

Let f , g be functions and let X be a set. The functor f+·Xg yields a function

and is defined as follows:

(Def. 4) f+·Xg = g+·f�X.
We now state two propositions:

(4) For all functions f , g and for all sets x, X such that x ∈ X and X ⊆
dom f holds (f+·Xg)(x) = f(x).

(5) For all functions f , g and for all sets x, X such that x 6∈ X and x ∈ dom g

holds (f+·Xg)(x) = g(x).

Let X, Y be non empty sets, let f , g be elements of Y X , and let A be a set.

Then f+·Ag is an element of Y X .

Let X, Y , Z be non empty sets, let f be an element of Y X , and let g be an

element of ZY . Then g · f is an element of ZX .

Let f be a function and let x be a set. The functor f -orbit(x) is defined by:

(Def. 5) f -orbit(x) = {fn(x);n ranges over elements of N: x ∈ dom(f n)}.
We now state four propositions:

(6) For every function f and for every set x such that x ∈ dom f holds

x ∈ f -orbit(x).

(7) For every function f and for all sets x, y such that rng f ⊆ dom f and

y ∈ f -orbit(x) holds f(y) ∈ f -orbit(x).

(8) For every function f and for every set x such that x ∈ dom f holds

f(x) ∈ f -orbit(x).

(9) For every function f and for every set x such that x ∈ dom f and f(x) ∈
dom f holds f -orbit(f(x)) ⊆ f -orbit(x).

Let f be a function. Let us assume that rng f ⊆ dom f. Let A be a set and

let x be a set. The functor f ∗A→x yielding a function is defined by the conditions

(Def. 6).

(Def. 6)(i) dom(f ∗A→x) = dom f, and

(ii) for every set a such that a ∈ dom f holds if f -orbit(a) ⊆ A, then

f∗A→x(a) = x and for every natural number n such that f n(a) 6∈ A and for

every natural number i such that i < n holds f i(a) ∈ A holds f ∗A→x(a) =

fn(a).

Let f be a function. Let us assume that rng f ⊆ dom f. Let A be a set and

let g be a function. The functor f ∗A→g yields a function and is defined by the

conditions (Def. 7).
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(Def. 7)(i) dom(f ∗A→g) = dom f, and

(ii) for every set a such that a ∈ dom f holds if f -orbit(a) ⊆ A, then

f∗A→g(a) = g(a) and for every natural number n such that f n(a) 6∈ A

and for every natural number i such that i < n holds f i(a) ∈ A holds

f∗A→g(a) = fn(a).

The following propositions are true:

(10) Let f , g be functions and a, A be sets. Suppose rng f ⊆ dom f and

a ∈ dom f. Suppose f -orbit(a) 6⊆ A. Then there exists a natural number n

such that f ∗A→g(a) = fn(a) and fn(a) 6∈ A and for every natural number

i such that i < n holds f i(a) ∈ A.
(11) Let f , g be functions and a, A be sets. If rng f ⊆ dom f and a ∈ dom f

and g · f = g, then if a ∈ A, then f ∗A→g(a) = f∗A→g(f(a)).

(12) For all functions f , g and for all sets a, A such that rng f ⊆ dom f and

a ∈ dom f holds if a 6∈ A, then f ∗A→g(a) = a.

Let X be a non empty set, let f be an element of XX , let A be a set, and

let g be an element of XX . Then f ∗A→g is an element of XX .

2. Free Universal Algebras

We now state three propositions:

(13) Let X be a non empty set and S be a non empty finite sequence of

elements of N. Then there exists a universal algebra A such that the

carrier of A = X and signatureA = S.

(14) Let S be a non empty finite sequence of elements of N. Then there exists

a universal algebra A such that

(i) the carrier of A = N,
(ii) signatureA = S, and

(iii) for all natural numbers i, j such that i ∈ domS and j = S(i) holds

(the characteristic of A)(i) = Nj 7−→ i.

(15) Let S be a non empty finite sequence of elements of N and i, j be natural

numbers. Suppose i ∈ domS and j = S(i). Let X be a non empty set and

f be a function from Xj into X. Then there exists a universal algebra A

such that the carrier of A = X and signatureA = S and (the characteristic

of A)(i) = f.

Let f be a non empty finite sequence of elements of N and let D be a non

empty missing N set. Observe that every element of FreeUnivAlgNSG(f,D) is

relation-like and function-like.

Let f be a non empty finite sequence of elements of N and let D be a non

empty missing N set. One can verify that every element of FreeUnivAlgNSG(f,D)
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is decorated tree-like and every finite sequence of elements of FreeUnivAlgNSG(f,

D) is decorated tree yielding.

We now state two propositions:

(16) Let G be a non empty tree construction structure and t be a set. Suppose

t ∈ TS(G). Then

(i) there exists a symbol d of G such that d ∈ the terminals of G and

t = the root tree of d, or

(ii) there exists a symbol o of G and there exists a finite sequence p of

elements of TS(G) such that o⇒ the roots of p and t = o-tree(p).

(17) Let X be a missing N non empty set, S be a non empty finite sequence

of elements of N, and i be a natural number. Suppose i ∈ domS. Let

p be a finite sequence of elements of FreeUnivAlgNSG(S,X). If len p =

S(i), then (Den(i(∈ dom (the characteristic of FreeUnivAlgNSG(S,X))),

FreeUnivAlgNSG(S,X)))(p) = i-tree(p).

Let A be a non-empty universal algebra structure, let B be a subset of A,

and let n be a natural number. The functor Bn yielding a subset of A is defined

by the condition (Def. 8).

(Def. 8) There exists a function F from N into 2the carrier of A such that

(i) Bn = F (n),

(ii) F (0) = B, and

(iii) for every natural number n holds F (n+1) = F (n)∪{(Den(o,A))(p); o

ranges over elements of dom (the characteristic of A), p ranges over ele-

ments of (the carrier of A)∗: p ∈ dom Den(o,A) ∧ rng p ⊆ F (n)}.
Next we state several propositions:

(18) For every universal algebra A and for every subset B of A holds B0 = B.

(19) Let A be a universal algebra, B be a subset of A, and n be a natural

number. Then Bn+1 = Bn ∪ {(Den(o,A))(p); o ranges over elements of

dom (the characteristic of A), p ranges over elements of (the carrier of A)∗:
p ∈ dom Den(o,A) ∧ rng p ⊆ Bn}.

(20) Let A be a universal algebra, B be a subset of A, n be a natural number,

and x be a set. Then x ∈ Bn+1 if and only if one of the following conditions

is satisfied:

(i) x ∈ Bn, or

(ii) there exists an element o of dom (the characteristic of A) and there

exists an element p of (the carrier of A)∗ such that x = (Den(o,A))(p)

and p ∈ dom Den(o,A) and rng p ⊆ Bn.

(21) Let A be a universal algebra, B be a subset of A, and n, m be natural

numbers. If n ≤ m, then Bn ⊆ Bm.

(22) Let A be a universal algebra and B1, B2 be subsets of A. If B1 ⊆ B2,

then for every natural number n holds B1
n ⊆ B2

n.
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(23) Let A be a universal algebra, B be a subset of A, n be a natural number,

and x be a set. Then x ∈ Bn+1 if and only if one of the following conditions

is satisfied:

(i) x ∈ B, or

(ii) there exists an element o of dom (the characteristic of A) and there

exists an element p of (the carrier of A)∗ such that x = (Den(o,A))(p)

and p ∈ dom Den(o,A) and rng p ⊆ Bn.

The scheme MaxVal deals with a non empty set A, a set B, and a binary

predicate P, and states that:

There exists a natural number n such that for every element x of

A such that x ∈ B holds P[x, n]

provided the following conditions are satisfied:

• B is finite,

• For every element x of A such that x ∈ B there exists a natural

number n such that P[x, n], and

• For every element x of A and for all natural numbers n, m such

that P[x, n] and n ≤ m holds P[x,m].

We now state two propositions:

(24) Let A be a universal algebra and B be a subset of A. Then there exists

a subset C of A such that C =
⋃{Bn : n ranges over elements of N} and

C is operations closed.

(25) Let A be a universal algebra and B, C be subsets of A. Suppose C is

operations closed and B ⊆ C. Then
⋃{Bn : n ranges over elements of

N} ⊆ C.
Let A be a universal algebra. The functor GeneratorsA yielding a subset of

A is defined by:

(Def. 9) GeneratorsA = (the carrier of A) \ ⋃{rng o : o ranges over elements of

Operations(A)}.
Next we state several propositions:

(26) Let A be a universal algebra and a be an element of A. Then a ∈
GeneratorsA if and only if it is not true that there exists an element o of

Operations(A) such that a ∈ rng o.

(27) For every universal algebra A and for every subset B of A such that B

is operations closed holds Constants(A) ⊆ B.
(28) For every universal algebra A such that Constants(A) = ∅ holds ∅A is

operations closed.

(29) For every universal algebra A such that Constants(A) = ∅ and for every

generator set G of A holds G 6= ∅.
(30) Let A be a universal algebra and G be a subset of A. Then G is a

generator set of A if and only if for every element I of A there exists a
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natural number n such that I ∈ Gn.

(31) Let A be a universal algebra, B be a subset of A, and G be a generator

set of A. If G ⊆ B, then B is a generator set of A.

(32) Let A be a universal algebra, G be a generator set of A, and a be an ele-

ment of A. If it is not true that there exists an element o of Operations(A)

such that a ∈ rng o, then a ∈ G.
(33) For every universal algebra A and for every generator set G of A holds

GeneratorsA ⊆ G.
(34) For every free universal algebra A and for every free generator set G of

A holds G = GeneratorsA.

Let A be a free universal algebra. Note that GeneratorsA is free.

Let A be a free universal algebra. Then GeneratorsA is a generator set of

A.

Let A, B be sets. Note that [:A, B :] is missing N.

One can prove the following propositions:

(35) Let A be a free universal algebra, G be a generator set of A, B be a

universal algebra, and h1, h2 be functions from A into B. Suppose h1 is a

homomorphism of A into B and h2 is a homomorphism of A into B and

h1�G = h2�G. Then h1 = h2.

(36) Let A be a free universal algebra, o1, o2 be operation symbols of A, and

p1, p2 be finite sequences. If p1 ∈ dom Den(o1, A) and p2 ∈ dom Den(o2,

A), then if (Den(o1, A))(p1) = (Den(o2, A))(p2), then o1 = o2 and p1 = p2.

(37) Let A be a free universal algebra, o1, o2 be elements of Operations(A),

and p1, p2 be finite sequences. If p1 ∈ dom o1 and p2 ∈ dom o2, then if

o1(p1) = o2(p2), then o1 = o2 and p1 = p2.

(38) Let A be a free universal algebra, o be an operation symbol of A, and p

be a finite sequence. If p ∈ dom Den(o,A), then for every set a such that

a ∈ rng p holds a 6= (Den(o,A))(p).

(39) Let A be a free universal algebra, G be a generator set of A, and o be

an operation symbol of A. Suppose that for every operation symbol o′

of A and for every finite sequence p such that p ∈ dom Den(o′, A) and

(Den(o′, A))(p) ∈ G holds o′ 6= o. Let p be a finite sequence. Suppose

p ∈ dom Den(o,A). Let n be a natural number. If (Den(o,A))(p) ∈ Gn+1,

then rng p ⊆ Gn.
(40) Let A be a free universal algebra, o be an operation symbol of A, and p be

a finite sequence. Suppose p ∈ dom Den(o,A). Let n be a natural number.

If (Den(o,A))(p) ∈ (GeneratorsA)n+1, then rng p ⊆ (GeneratorsA)n.
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3. If-while Algebra

Let S be a non empty universal algebra structure. We say that S has empty-

instruction if and only if the conditions (Def. 10) are satisfied.

(Def. 10)(i) 1 ∈ dom (the characteristic of S), and

(ii) (the characteristic of S)(1) is a nullary non empty homogeneous quasi

total partial function from (the carrier of S)∗ to the carrier of S.

We say that S has catenation if and only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) 2 ∈ dom (the characteristic of S), and

(ii) (the characteristic of S)(2) is a binary non empty homogeneous quasi

total partial function from (the carrier of S)∗ to the carrier of S.

We say that S has if-instruction if and only if the conditions (Def. 12) are

satisfied.

(Def. 12)(i) 3 ∈ dom (the characteristic of S), and

(ii) (the characteristic of S)(3) is a ternary non empty homogeneous quasi

total partial function from (the carrier of S)∗ to the carrier of S.

We say that S has while-instruction if and only if the conditions (Def. 13) are

satisfied.

(Def. 13)(i) 4 ∈ dom (the characteristic of S), and

(ii) (the characteristic of S)(4) is a binary non empty homogeneous quasi

total partial function from (the carrier of S)∗ to the carrier of S.

We say that S is associative if and only if the condition (Def. 14) is satisfied.

(Def. 14) (The characteristic of S)(2) is a binary associative non empty homoge-

neous quasi total partial function from (the carrier of S)∗ to the carrier of

S.

Let S be a non-empty universal algebra structure. We say that S is unital

if and only if the condition (Def. 15) is satisfied.

(Def. 15) There exists a binary non empty homogeneous quasi total partial func-

tion f from (the carrier of S)∗ to the carrier of S such that f = (the

characteristic of S)(2) and (Den(1(∈ dom (the characteristic of S)), S))(∅)
is a unity w.r.t. f .

One can prove the following proposition

(41) Let X be a non empty set, x be an element of X, and c be a binary

associative unital non empty quasi total homogeneous partial function

from X∗ to X. Suppose x is a unity w.r.t. c. Let i be a ternary non

empty quasi total homogeneous partial function from X ∗ to X and w be

a binary non empty quasi total homogeneous partial function from X ∗ to

X. Then there exists a non-empty strict universal algebra structure S

such that

(i) the carrier of S = X,
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(ii) the characteristic of S = 〈X0 7−→ x, c〉 a 〈i, w〉, and

(iii) S is unital, associative, quasi total, and partial and has empty-

instruction, catenation, if-instruction, and while-instruction.

Let us note that there exists a quasi total partial non-empty strict universal

algebra structure which is unital and associative and has empty-instruction,

catenation, if-instruction, and while-instruction.

A pre-if-while algebra is a universal algebra with empty-instruction, catena-

tion, if-instruction, and while-instruction.

For simplicity, we use the following convention: A is a pre-if-while algebra,

C, I, J are elements of A, S is a non empty set, T is a subset of S, and s is an

element of S.

Let A be a non empty universal algebra structure. An algorithm of A is an

element of A.

The following proposition is true

(42) Let A be a non-empty universal algebra structure with empty-

instruction. Then dom Den(1(∈ dom (the characteristic of A)), A) = {∅}.
Let A be a non-empty universal algebra structure with empty-instruction.

The functor EmptyInsA yielding an algorithm of A is defined as follows:

(Def. 16) EmptyInsA = (Den(1(∈ dom (the characteristic of A)), A))(∅).
The following two propositions are true:

(43) Let A be a universal algebra with empty-instruction and o be an element

of Operations(A). If o = Den(1(∈ dom (the characteristic of A)), A), then

arity o = 0 and EmptyInsA ∈ rng o.

(44) Let A be a non-empty universal algebra structure with catenation. Then

dom Den(2(∈ dom (the characteristic of A)), A) = (the carrier of A)2.

Let A be a non-empty universal algebra structure with catenation and let I1,

I2 be algorithms of A. The functor I1; I2 yielding an algorithm of A is defined

as follows:

(Def. 17) I1; I2 = (Den(2(∈ dom (the characteristic of A)), A))(〈I1, I2〉).
The following propositions are true:

(45) Let A be a unital non-empty universal algebra structure with

empty-instruction and catenation and I be an element of A. Then

EmptyInsA; I = I and I; EmptyInsA = I.

(46) Let A be an associative non-empty universal algebra structure with cate-

nation and I1, I2, I3 be elements of A. Then (I1; I2); I3 = I1; (I2; I3).

(47) Let A be a non-empty universal algebra structure with if-instruction.

Then dom Den(3(∈ dom (the characteristic of A)), A) = (the carrier of

A)3.

Let A be a non-empty universal algebra structure with if-instruction and let

C, I1, I2 be algorithms of A. The functor if C then I1 else I2 yields an algorithm



96 grzegorz bancerek

of A and is defined as follows:

(Def. 18) if C then I1 else I2 = (Den(3(∈ dom (the characteristic of A)), A))(〈C, I1 ,

I2〉).
Let A be a non-empty universal algebra structure with empty-instruction

and if-instruction and let C, I be algorithms of A. The functor if C thenI yields

an algorithm of A and is defined as follows:

(Def. 19) if C then I = if C then I else (EmptyInsA).

We now state the proposition

(48) Let A be a non-empty universal algebra structure with while-instruction.

Then dom Den(4(∈ dom (the characteristic of A)), A) = (the carrier of

A)2.

Let A be a non-empty universal algebra structure with while-instruction and

let C, I be algorithms of A. The functor whileC do I yields an algorithm of A

and is defined as follows:

(Def. 20) whileC do I = (Den(4(∈ dom (the characteristic of A)), A))(〈C, I〉).
Let A be a pre-if-while algebra and let I0, C, I, J be elements of A. The

functor for I0 until C step J do I yields an element of A and is defined by:

(Def. 21) for I0 until C step J do I = I0; whileC do (I; J).

Let A be a pre-if-while algebra. The functor ElementaryInstructionsA yields

a subset of A and is defined by the condition (Def. 22).

(Def. 22) ElementaryInstructionsA = (the carrier of A) \ {EmptyInsA} \
rng Den(3(∈ dom (the characteristic of A)), A) \ rng Den(4(∈ dom (the

characteristic of A)), A) \ {I1; I2; I1 ranges over algorithms of A, I2 ranges

over algorithms of A: I1 6= I1; I2 ∧ I2 6= I1; I2}.
Next we state several propositions:

(49) For every pre-if-while algebra A holds

EmptyInsA 6∈ ElementaryInstructionsA .

(50) For every pre-if-while algebra A and for all elements I1, I2 of A such

that I1 6= I1; I2 and I2 6= I1; I2 holds I1; I2 6∈ ElementaryInstructionsA .

(51) For every pre-if-while algebra A and for all elements C, I1, I2 of A holds

if C then I1 else I2 6∈ ElementaryInstructionsA .

(52) For every pre-if-while algebra A and for all elements C, I of A holds

whileC do I 6∈ ElementaryInstructionsA .

(53) Let A be a pre-if-while algebra and I be an element of A. Suppose

I 6∈ ElementaryInstructionsA . Then

(i) I = EmptyInsA, or

(ii) there exist elements I1, I2 of A such that I = I1; I2 and I1 6= I1; I2 and

I2 6= I1; I2, or

(iii) there exist elements C, I1, I2 of A such that I = if C then I1 else I2, or
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(iv) there exist elements C, J of A such that I = whileC do J.

Let A be a pre-if-while algebra. We say that A is infinite if and only if:

(Def. 23) ElementaryInstructionsA is infinite.

We say that A is degenerated if and only if the conditions (Def. 24) are satisfied.

(Def. 24)(i) There exist elements I1, I2 of A such that I1 6= EmptyInsA and

I1; I2 = I2 or I2 6= EmptyInsA and I1; I2 = I1 or I1 6= EmptyInsA or

I2 6= EmptyInsA but I1; I2 = EmptyInsA, or

(ii) there exist elements C, I1, I2 of A such that if C then I1 else I2 =

EmptyInsA, or

(iii) there exist elements C, I of A such that whileC do I = EmptyInsA, or

(iv) there exist elements I1, I2, C, J1, J2 of A such that I1 6= EmptyInsA
and I2 6= EmptyInsA and I1; I2 = if C then J1 else J2, or

(v) there exist elements I1, I2, C, J of A such that I1 6= EmptyInsA and

I2 6= EmptyInsA and I1; I2 = whileC do J, or

(vi) there exist elements C1, I1, I2, C2, J of A such that if C1thenI1elseI2 =

whileC2 do J.

We say that A is well founded if and only if:

(Def. 25) ElementaryInstructionsA is a generator set of A.

The non empty finite sequence ECIW-signature of elements of N is defined

by:

(Def. 26) ECIW-signature = 〈0, 2〉 a 〈3, 2〉.
We now state the proposition

(54) len ECIW-signature = 4 and dom ECIW-signature = Seg 4 and

(ECIW-signature)(1) = 0 and (ECIW-signature)(2) = 2 and

(ECIW-signature)(3) = 3 and (ECIW-signature)(4) = 2.

Let A be a partial non-empty non empty universal algebra structure. We

say that A is E.C.I.W.-strict if and only if:

(Def. 27) signatureA = ECIW-signature .

Next we state the proposition

(55) Let A be a partial non-empty non empty universal algebra structure.

Suppose A is E.C.I.W.-strict. Let o be an operation symbol of A. Then

o = 1 or o = 2 or o = 3 or o = 4.

Let X be a missing N non empty set. One can verify that

FreeUnivAlgNSG(ECIW-signature, X) has empty-instruction, catenation, if-

instruction, and while-instruction.

We now state a number of propositions:

(56) Let X be a missing N non empty set and I be an element of

FreeUnivAlgNSG(ECIW-signature, X). Then

(i) there exists an element x of X such that I = the root tree of x, or
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(ii) there exists a natural number n and there exists a finite sequence p

of elements of FreeUnivAlgNSG(ECIW-signature, X) such that n ∈ Seg 4

and I = n-tree(p) and len p = (ECIW-signature)(n).

(57) For every missing N non empty set X holds

EmptyInsFreeUnivAlgNSG(ECIW-signature,X) = 1-tree(∅).
(58) Let X be a missing N non empty set and p be a finite sequence of elements

of FreeUnivAlgNSG(ECIW-signature, X). If 1-tree(p) is an element of

FreeUnivAlgNSG(ECIW-signature, X), then p = ∅.
(59) For every missing N non empty set X and for all elements I1, I2 of

FreeUnivAlgNSG(ECIW-signature, X) holds I1; I2 = 2-tree(I1, I2).

(60) Let X be a missing N non empty set and p be a finite sequence of elements

of FreeUnivAlgNSG(ECIW-signature, X). Suppose 2-tree(p) is an element

of FreeUnivAlgNSG(ECIW-signature, X). Then there exist elements I1,

I2 of FreeUnivAlgNSG(ECIW-signature, X) such that p = 〈I1, I2〉.
(61) For every missing N non empty set X and for all elements I1, I2 of

FreeUnivAlgNSG(ECIW-signature, X) holds I1; I2 6= I1 and I1; I2 6= I2.

(62) Let X be a missing N non empty set and I1, I2, J1, J2 be elements of

FreeUnivAlgNSG(ECIW-signature, X). If I1; I2 = J1; J2, then I1 = J1

and I2 = J2.

(63) For every missing N non empty set X and for all elements C, I1,

I2 of FreeUnivAlgNSG(ECIW-signature, X) holds if C then I1 else I2 =

3-tree(〈C, I1, I2〉).
(64) Let X be a missing N non empty set and p be a finite sequence of elements

of FreeUnivAlgNSG(ECIW-signature, X). Suppose 3-tree(p) is an element

of FreeUnivAlgNSG(ECIW-signature, X). Then there exist elements C,

I1, I2 of FreeUnivAlgNSG(ECIW-signature, X) such that p = 〈C, I1, I2〉.
(65) Let X be a missing N non empty set and C1, C2, I1, I2, J1, J2 be

elements of FreeUnivAlgNSG(ECIW-signature, X). If if C1thenI1elseI2 =

if C2 then J1 else J2, then C1 = C2 and I1 = J1 and I2 = J2.

(66) For every missing N non empty set X and for all elements C, I of

FreeUnivAlgNSG(ECIW-signature, X) holds whileC do I = 4-tree(C, I).

(67) Let X be a missing N non empty set and p be a finite sequence of

elements of FreeUnivAlgNSG(ECIW-signature, X). Suppose 4-tree(p) is

an element of FreeUnivAlgNSG(ECIW-signature, X).

Then there exist elements C, I of FreeUnivAlgNSG(ECIW-signature, X)

such that p = 〈C, I〉.
(68) Let X be a missing N non empty set and I be an element of

FreeUnivAlgNSG(ECIW-signature, X).

If I ∈ ElementaryInstructionsFreeUnivAlgNSG(ECIW-signature,X), then there

exists an element x of X such that I = x-tree(∅).
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(69) Let X be a missing N non empty set, p be a finite sequence of elements

of FreeUnivAlgNSG(ECIW-signature, X), and x be an element of X. If x-

-tree(p) is an element of FreeUnivAlgNSG(ECIW-signature, X), then p=∅.
(70) For every missing N non empty set X holds

ElementaryInstructionsFreeUnivAlgNSG(ECIW-signature,X) =

FreeGenSetNSG(ECIW-signature, X) and

X = FreeGenSetNSG(ECIW-signature, X) .

Let us observe that there exists a set which is infinite and missing N.

Let X be an infinite missing N set. One can check that

FreeUnivAlgNSG(ECIW-signature, X) is infinite.

Let X be a missing N non empty set. Note that FreeUnivAlgNSG

(ECIW-signature, X) is E.C.I.W.-strict.

The following propositions are true:

(71) For every pre-if-while algebra A holds

GeneratorsA ⊆ ElementaryInstructionsA .

(72) Let A be a pre-if-while algebra. Suppose A is free. Let C, I1, I2 be

elements of A. Then EmptyInsA 6= I1; I2 and EmptyInsA 6= if C then

I1 else I2 and EmptyInsA 6= whileC do I1.

(73) Let A be a pre-if-while algebra. Suppose A is free. Let I1, I2, C, J1, J2

be elements of A. Then I1; I2 6= I1 and I1; I2 6= I2 and if I1; I2 = J1; J2,

then I1 = J1 and I2 = J2 and I1; I2 6= if C then J1 else J2 and I1; I2 6=
whileC do J1.

(74) Let A be a pre-if-while algebra. Suppose A is free. Let C, I1, I2, D, J1,

J2 be elements of A. Then if CthenI1elseI2 6= C and if CthenI1elseI2 6= I1

and if C then I1 else I2 6= I2 and if C then I1 else I2 6= whileD do J1 and

if if C then I1 else I2 = if D then J1 else J2, then C = D and I1 = J1 and

I2 = J2.

(75) Let A be a pre-if-while algebra. Suppose A is free. Let C, I, D, J

be elements of A. Then whileC do I 6= C and whileC do I 6= I and if

whileC do I = whileD do J, then C = D and I = J.

Let us note that every pre-if-while algebra which is free is also well founded

and non degenerated.

Let us mention that there exists a pre-if-while algebra which is infinite, non

degenerated, well founded, E.C.I.W.-strict, free, and strict.

An if-while algebra is a non degenerated well founded E.C.I.W.-strict pre-

if-while algebra.

Let A be an infinite pre-if-while algebra.

Observe that ElementaryInstructionsA is infinite.

One can prove the following four propositions:
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(76) Let A be a pre-if-while algebra, B be a subset of A, and n be a natural

number. Then

(i) EmptyInsA ∈ Bn+1, and

(ii) for all elements C, I1, I2 of A such that C ∈ Bn and I1 ∈ Bn and

I2 ∈ Bn holds I1; I2 ∈ Bn+1 and if C then I1 else I2 ∈ Bn+1 and whileC do

I1 ∈ Bn+1.

(77) Let A be an E.C.I.W.-strict pre-if-while algebra, x be a set, and n be a

natural number. Suppose x ∈ ElementaryInstructionsA
n+1. Then

(i) x ∈ ElementaryInstructionsA
n, or

(ii) x = EmptyInsA, or

(iii) there exist elements I1, I2 of A such that x = I1; I2 and I1 ∈
ElementaryInstructionsA

n and I2 ∈ ElementaryInstructionsA
n, or

(iv) there exist elements C, I1, I2 of A such that x = if C then I1 else I2 and

C ∈ ElementaryInstructionsA
n and I1 ∈ ElementaryInstructionsA

n and

I2 ∈ ElementaryInstructionsA
n, or

(v) there exist elements C, I of A such that x = whileC do I and C ∈
ElementaryInstructionsA

n and I ∈ ElementaryInstructionsA
n.

(78) For every universal algebra A and for every subset B of A holds

Constants(A) ⊆ B1.

(79) Let A be a pre-if-while algebra. Then A is well founded if and only

if for every element I of A there exists a natural number n such that

I ∈ ElementaryInstructionsA
n.

The scheme StructInd deals with a well founded E.C.I.W.-strict pre-if-while

algebra A, an element B of A, and a unary predicate P, and states that:

P[B]

provided the following conditions are satisfied:

• For every element I of A such that I ∈ ElementaryInstructionsA
holds P[I],

• P[EmptyInsA],

• For all elements I1, I2 of A such that P[I1] and P[I2] holds

P[I1; I2],

• For all elements C, I1, I2 of A such that P[C] and P[I1] and P[I2]

holds P[if C then I1 else I2], and

• For all elements C, I of A such that P[C] and P[I] holds

P[whileC do I].

4. Execution Function

Let A be a pre-if-while algebra, let S be a non empty set, and let f be a

function from [:S, the carrier of A :] into S. We say that f is complying-with-

empty-instruction if and only if:
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(Def. 28) For every element s of S holds f(s, EmptyInsA) = s.

We say that f is complying-with-catenation if and only if:

(Def. 29) For every element s of S and for all elements I1, I2 of A holds f(s,

I1; I2) = f(f(s, I1), I2).

Let A be a pre-if-while algebra, let S be a non empty set, let T be a subset

of S, and let f be a function from [:S, the carrier of A :] into S. We say that f

complies with if w.r.t. T if and only if the condition (Def. 30) is satisfied.

(Def. 30) Let s be an element of S and C, I1, I2 be elements of A. Then

(i) if f(s, C) ∈ T, then f(s, if C then I1 else I2) = f(f(s, C), I1), and

(ii) if f(s, C) 6∈ T, then f(s, if C then I1 else I2) = f(f(s, C), I2).

We say that f complies with while w.r.t. T if and only if the condition (Def. 31)

is satisfied.

(Def. 31) Let s be an element of S and C, I be elements of A. Then

(i) if f(s, C) ∈ T, then f(s, whileC doI) = f(f(f(s, C), I), whileC do I),

and

(ii) if f(s, C) 6∈ T, then f(s, whileC do I) = f(s, C).

One can prove the following two propositions:

(80) Let f be a function from [:S, the carrier of A :] into S. Suppose f is

complying-with-empty-instruction and f complies with if w.r.t. T . Let s

be an element of S. If f(s, C) 6∈ T, then f(s, if C then I) = f(s, C).

(81)(i) π1(S × the carrier of A ) is complying-with-empty-instruction,

(ii) π1(S × the carrier of A ) is complying-with-catenation,

(iii) π1(S × the carrier of A ) complies with if w.r.t. T , and

(iv) π1(S × the carrier of A ) complies with while w.r.t. T .

Let A be a pre-if-while algebra, let S be a non empty set, and let T be

a subset of S. A function from [:S, the carrier of A :] into S is said to be an

execution function of A over S and T if it satisfies the conditions (Def. 32).

(Def. 32)(i) It is complying-with-empty-instruction,

(ii) it is complying-with-catenation,

(iii) it complies with if w.r.t. T , and

(iv) it complies with while w.r.t. T .

Let A be a pre-if-while algebra, let S be a non empty set, and let T be a

subset of S. One can verify that every execution function of A over S and T is

complying-with-empty-instruction and complying-with-catenation.

Let A be a pre-if-while algebra, let I be an element of A, let S be a non

empty set, let s be an element of S, let T be a subset of S, and let f be an

execution function of A over S and T . We say that iteration of f started in I

terminates w.r.t. s if and only if the condition (Def. 33) is satisfied.

(Def. 33) There exists a non empty finite sequence r of elements of S such that

r(1) = s and r(len r) 6∈ T and for every natural number i such that 1 ≤ i
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and i < len r holds r(i) ∈ T and r(i+ 1) = f(r(i), I).

Let A be a pre-if-while algebra, let I be an element of A, let S be a non

empty set, let s be an element of S, let T be a subset of S, and let f be an

execution function of A over S and T . The functor termination-degree(I, s, f)

yields an extended real number and is defined by:

(Def. 34)(i) There exists a non empty finite sequence r of elements of S such that

termination-degree(I, s, f) = len r − 1 and r(1) = s and r(len r) 6∈ T and

for every natural number i such that 1 ≤ i and i < len r holds r(i) ∈ T
and r(i+ 1) = f(r(i), I) if iteration of f started in I terminates w.r.t. s,

(ii) termination-degree(I, s, f) = +∞, otherwise.

In the sequel f denotes an execution function of A over S and T .

We now state four propositions:

(82) Iteration of f started in I terminates w.r.t. s

iff termination-degree(I, s, f) < +∞.
(83) If s 6∈ T, then iteration of f started in I terminates w.r.t. s and

termination-degree(I, s, f) = 0.

(84) Suppose s ∈ T. Then

(i) iteration of f started in I terminates w.r.t. s iff iteration of f started

in I terminates w.r.t. f(s, I), and

(ii) termination-degree(I, s, f) = 1 + termination-degree(I, f(s, I), f).

(85) termination-degree(I, s, f) ≥ 0.

Now we present two schemes. The scheme Termination deals with a pre-if-

while algebra A, an element B of A, a non empty set C, an element D of C, a

subset E of C, an execution function F of A over C and E , a unary functor F
yielding a natural number, and a unary predicate P, and states that:

Iteration of F started in B terminates w.r.t. D
provided the parameters meet the following requirements:

• D ∈ E iff P[D], and

• For every element s of C such that P[s] holds P[F(s, B)] iff F(s,

B) ∈ E and F(F(s, B)) < F(s).

The scheme Termination2 deals with a pre-if-while algebra A, an element

B of A, a non empty set C, an element D of C, a subset E of C, an execution

function F of A over C and E , a unary functor F yielding a natural number,

and two unary predicates P, Q, and states that:

Iteration of F started in B terminates w.r.t. D
provided the following requirements are met:

• P[D],

• D ∈ E iff Q[D], and

• Let s be an element of C. Suppose P[s] and s ∈ E and Q[s]. Then

P[F(s, B)] and Q[F(s, B)] iff F(s, B) ∈ E and F(F(s, B)) <

F(s).
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Next we state two propositions:

(86) Let r be a non empty finite sequence of elements of S. Suppose r(1) =

f(s, C) and r(len r) 6∈ T and for every natural number i such that 1 ≤ i

and i < len r holds r(i) ∈ T and r(i + 1) = f(r(i), I;C). Then f(s,

whileC do I) = r(len r).

(87) Let I be an element of A and s be an element of S. Then iter-

ation of f started in I does not terminate w.r.t. s if and only if

(curry′ f)(I)-orbit(s) ⊆ T.
Now we present two schemes. The scheme InvariantSch deals with a pre-if-

while algebra A, elements B, C of A, a non empty set D, an element E of D,
a subset F of D, an execution function G of A over D and F , and two unary

predicates P, Q, and states that:

P[G(E , whileB do C)] and not Q[G(E , whileB do C)]
provided the following conditions are met:

• P[E ],

• Iteration of G started in C;B terminates w.r.t. G(E , B),

• For every element s of D such that P[s] and s ∈ F and Q[s] holds

P[G(s, C)], and

• For every element s of D such that P[s] holds P[G(s, B)] and G(s,

B) ∈ F iff Q[G(s, B)].

The scheme coInvariantSch deals with a pre-if-while algebra A, elements B,
C of A, a non empty set D, an element E of D, a subset F of D, an execution

function G of A over D and F , and a unary predicate P, and states that:

P[E ]

provided the following conditions are met:

• P[G(E , whileB do C)],
• Iteration of G started in C;B terminates w.r.t. G(E , B),

• For every element s of D such that P[G(G(s, B), C)] and G(s,

B) ∈ F holds P[G(s, B)], and

• For every element s of D such that P[G(s, B)] holds P[s].

Next we state three propositions:

(88) Let A be a free pre-if-while algebra, I1, I2 be elements of A, and

n be a natural number. Suppose I1; I2 ∈ ElementaryInstructionsA
n.

Then there exists a natural number i such that n = i + 1 and I1 ∈
ElementaryInstructionsA

i and I2 ∈ ElementaryInstructionsA
i.

(89) Let A be a free pre-if-while algebra, C, I1, I2 be elements of A, and n be

a natural number. Suppose if C thenI1elseI2 ∈ ElementaryInstructionsA
n.

Then there exists a natural number i such that n = i + 1 and C ∈
ElementaryInstructionsA

i and I1 ∈ ElementaryInstructionsA
i and I2 ∈

ElementaryInstructionsA
i.
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(90) Let A be a free pre-if-while algebra, C, I be elements of A, and n be

a natural number. Suppose whileC do I ∈ ElementaryInstructionsA
n.

Then there exists a natural number i such that n = i + 1 and C ∈
ElementaryInstructionsA

i and I ∈ ElementaryInstructionsA
i.

5. Existence and Uniqueness of Execution Function and

Termination

The scheme IndDef deals with a free E.C.I.W.-strict pre-if-while algebra A,
a non empty set B, an element C of B, a unary functor F yielding a set, two

binary functors G andH yielding elements of B, and a ternary functor I yielding

an element of B, and states that:

There exists a function f from the carrier of A into B such that

(i) for every element I ofA such that I ∈ ElementaryInstructionsA
holds f(I) = F(I),

(ii) f(EmptyInsA) = C,
(iii) for all elements I1, I2 of A holds f(I1; I2) = G(f(I1), f(I2)),

(iv) for all elements C, I1, I2 of A holds f(if C then I1 else I2) =

I(f(C), f(I1), f(I2)), and

(v) for all elements C, I of A holds f(whileC do I) =

H(f(C), f(I))

provided the following requirement is met:

• For every element I of A such that I ∈ ElementaryInstructionsA
holds F(I) ∈ B.

We now state three propositions:

(91) Let A be a free E.C.I.W.-strict pre-if-while algebra, g be a function from

[:S, ElementaryInstructionsA :] into S, and s0 be an element of S. Then

there exists an execution function f of A over S and T such that

(i) f�[:S, ElementaryInstructionsA :] = g, and

(ii) for every element s of S and for all elements C, I of A such that

iteration of f started in I;C does not terminate w.r.t. f(s, C) holds f(s,

whileC do I) = s0.

(92) Let A be a free E.C.I.W.-strict pre-if-while algebra, g be a function from

[:S, ElementaryInstructionsA :] into S, and F be a function from SS into

SS . Suppose that for every element h of SS holds F (h) · h = F (h). Then

there exists an execution function f of A over S and T such that

(i) f�[:S, ElementaryInstructionsA :] = g, and

(ii) for all elements C, I of A and for every element s of S such that

iteration of f started in I;C does not terminate w.r.t. f(s, C) holds f(s,

whileC do I) = F ((curry′ f)(I;C))(f(s, C)).
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(93) Let A be a free E.C.I.W.-strict pre-if-while algebra and f1, f2 be execu-

tion functions of A over S and T . Suppose that

(i) f1�[:S, ElementaryInstructionsA :] = f2�[:S, ElementaryInstructionsA :],

and

(ii) for every element s of S and for all elements C, I of A such that

iteration of f1 started in I;C does not terminate w.r.t. f1(s, C) holds

f1(s, whileC do I) = f2(s, whileC do I).

Then f1 = f2.

Let A be a pre-if-while algebra, let S be a non empty set, let T be a subset

of S, and let f be an execution function of A over S and T . The functor

TerminatingPrograms(A,S, T, f) yielding a subset of [:S, the carrier of A :] is

defined by the conditions (Def. 35).

(Def. 35)(i) [:S, ElementaryInstructionsA :] ⊆ TerminatingPrograms(A,S, T, f),

(ii) [:S, {EmptyInsA} :] ⊆ TerminatingPrograms(A,S, T, f),

(iii) for every element s of S and for all elements C, I,

J of A holds if 〈〈s, I〉〉 ∈ TerminatingPrograms(A,S, T, f) and

〈〈f(s, I), J〉〉 ∈ TerminatingPrograms(A,S, T, f), then 〈〈s, I; J〉〉 ∈
TerminatingPrograms(A,S, T, f) and if 〈〈s, C〉〉 ∈ TerminatingPrograms(A,

S, T, f) and 〈〈f(s, C), I〉〉 ∈ TerminatingPrograms(A,S, T, f) and f(s,

C) ∈ T, then 〈〈s, if C then I else J〉〉 ∈ TerminatingPrograms(A,S, T, f)

and if 〈〈s, C〉〉 ∈ TerminatingPrograms(A,S, T, f) and 〈〈f(s, C),

J〉〉 ∈ TerminatingPrograms(A,S, T, f) and f(s, C) 6∈ T, then 〈〈s,
if C then I else J〉〉 ∈ TerminatingPrograms(A,S, T, f) and if 〈〈s, C〉〉 ∈
TerminatingPrograms(A,S, T, f) and there exists a non empty finite se-

quence r of elements of S such that r(1) = f(s, C) and r(len r) 6∈ T and

for every natural number i such that 1 ≤ i and i < len r holds r(i) ∈ T
and 〈〈r(i), I;C〉〉 ∈ TerminatingPrograms(A,S, T, f) and r(i+ 1) = f(r(i),

I;C), then 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f), and

(iv) for every subset P of [:S, the carrier of A :] such that [:S,

ElementaryInstructionsA :] ⊆ P and [:S, {EmptyInsA} :] ⊆ P and for ev-

ery element s of S and for all elements C, I, J of A holds if 〈〈s, I〉〉 ∈ P
and 〈〈f(s, I), J〉〉 ∈ P, then 〈〈s, I; J〉〉 ∈ P and if 〈〈s, C〉〉 ∈ P and 〈〈f(s, C),

I〉〉 ∈ P and f(s, C) ∈ T, then 〈〈s, if C then I else J〉〉 ∈ P and if 〈〈s, C〉〉 ∈ P
and 〈〈f(s, C), J〉〉 ∈ P and f(s, C) 6∈ T, then 〈〈s, if C then I else J〉〉 ∈ P

and if 〈〈s, C〉〉 ∈ P and there exists a non empty finite sequence r of el-

ements of S such that r(1) = f(s, C) and r(len r) 6∈ T and for every

natural number i such that 1 ≤ i and i < len r holds r(i) ∈ T and 〈〈r(i),
I;C〉〉 ∈ P and r(i + 1) = f(r(i), I;C), then 〈〈s, whileC do I〉〉 ∈ P holds

TerminatingPrograms(A,S, T, f) ⊆ P.
Let A be a pre-if-while algebra and let I be an element of A. We say that I

is absolutely-terminating if and only if the condition (Def. 36) is satisfied.
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(Def. 36) Let S be a non empty set, s be an element of S, T be a subset of

S, and f be an execution function of A over S and T . Then 〈〈s, I〉〉 ∈
TerminatingPrograms(A,S, T, f).

Let A be a pre-if-while algebra, let S be a non empty set, let T be a subset

of S, let I be an element of A, and let f be an execution function of A over S

and T . We say that I is terminating w.r.t. f if and only if:

(Def. 37) For every element s of S holds 〈〈s, I〉〉 ∈ TerminatingPrograms(A,S, T, f).

Let A be a pre-if-while algebra, let S be a non empty set, let T be a subset

of S, let I be an element of A, let f be an execution function of A over S and

T , and let Z be a set. We say that I is terminating w.r.t. f and Z if and only

if:

(Def. 38) For every element s of S such that s ∈ Z holds 〈〈s, I〉〉 ∈
TerminatingPrograms(A,S, T, f).

We say that Z is invariant w.r.t. I and f if and only if:

(Def. 39) For every element s of S such that s ∈ Z holds f(s, I) ∈ Z.
One can prove the following propositions:

(94) If I ∈ ElementaryInstructionsA, then

〈〈s, I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(95) If I ∈ ElementaryInstructionsA, then I is absolutely-terminating.

(96) 〈〈s, EmptyInsA 〉〉 ∈ TerminatingPrograms(A,S, T, f).

Let us consider A. Observe that EmptyInsA is absolutely-terminating.

Let us consider A. Observe that there exists an element of A which is

absolutely-terminating.

Next we state the proposition

(97) If A is free and 〈〈s, I; J〉〉 ∈ TerminatingPrograms(A,S, T, f),

then 〈〈s, I〉〉 ∈ TerminatingPrograms(A,S, T, f) and 〈〈f(s, I), J〉〉 ∈
TerminatingPrograms(A,S, T, f).

Let us consider A and let I, J be absolutely-terminating elements of A. One

can verify that I; J is absolutely-terminating.

We now state the proposition

(98) Suppose A is free and

〈〈s, if C then I else J〉〉 ∈ TerminatingPrograms(A,S, T, f). Then 〈〈s, C〉〉 ∈
TerminatingPrograms(A,S, T, f) and if f(s, C) ∈ T, then 〈〈f(s, C), I〉〉 ∈
TerminatingPrograms(A,S, T, f) and if f(s, C) 6∈ T, then 〈〈f(s, C), J〉〉 ∈
TerminatingPrograms(A,S, T, f).

Let us consider A and let C, I, J be absolutely-terminating elements of A.

Note that if C then I else J is absolutely-terminating.

Let us consider A and let C, I be absolutely-terminating elements of A.

Note that if C then I is absolutely-terminating.

The following propositions are true:
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(99) SupposeA is free and 〈〈s, whileCdoI〉〉 ∈ TerminatingPrograms(A,S, T, f).

Then

(i) 〈〈s, C〉〉 ∈ TerminatingPrograms(A,S, T, f), and

(ii) there exists a non empty finite sequence r of elements of S such

that r(1) = f(s, C) and r(len r) 6∈ T and for every natural number

i such that 1 ≤ i and i < len r holds r(i) ∈ T and 〈〈r(i), I;C〉〉 ∈
TerminatingPrograms(A,S, T, f) and r(i+ 1) = f(r(i), I;C).

(100) If A is free and 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f) and

f(s, C) ∈ T, then 〈〈f(s, C), I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(101) Let C, I be absolutely-terminating elements of A. Suppose iteration

of f started in I;C terminates w.r.t. f(s, C). Then 〈〈s, whileC do I〉〉 ∈
TerminatingPrograms(A,S, T, f).

(102) Let A be a free E.C.I.W.-strict pre-if-while algebra and f1,

f2 be execution functions of A over S and T . If f1�[:S,
ElementaryInstructionsA :] = f2�[:S, ElementaryInstructionsA :], then

TerminatingPrograms(A,S, T, f1) = TerminatingPrograms(A,S, T, f2).

(103) Let A be a free E.C.I.W.-strict pre-if-while algebra and f1, f2

be execution functions of A over S and T . Suppose f1�[:S,
ElementaryInstructionsA :] = f2�[:S, ElementaryInstructionsA :]. Let s

be an element of S and I be an element of A. If 〈〈s, I〉〉 ∈
TerminatingPrograms(A,S, T, f1), then f1(s, I) = f2(s, I).

(104) Every absolutely-terminating element of A is terminating w.r.t. f .

(105) For every element I of A holds I is terminating w.r.t. f iff I is termi-

nating w.r.t. f and S.

(106) Let I be an element of A. Suppose I is terminating w.r.t. f . Let P be

a set. Then I is terminating w.r.t. f and P .

(107) For every absolutely-terminating element I of A and for every set P

holds I is terminating w.r.t. f and P .

(108) For every element I of A holds S is invariant w.r.t. I and f .

(109) Let P be a set and I, J be elements of A. Suppose P is invariant w.r.t.

I and f and invariant w.r.t. J and f . Then P is invariant w.r.t. I; J and

f .

(110) Let I, J be elements of A. Suppose I is terminating w.r.t. f and J is

terminating w.r.t. f . Then I; J is terminating w.r.t. f .

(111) Let P be a set and I, J be elements of A. Suppose I is terminating

w.r.t. f and P and J is terminating w.r.t. f and P and P is invariant

w.r.t. I and f . Then I; J is terminating w.r.t. f and P .

(112) Let C, I, J be elements of A. Suppose C is terminating w.r.t. f and I is

terminating w.r.t. f and J is terminating w.r.t. f . Then if C then I else J

is terminating w.r.t. f .
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(113) Let P be a set and C, I, J be elements of A. Suppose that

(i) C is terminating w.r.t. f and P ,

(ii) I is terminating w.r.t. f and P ,

(iii) J is terminating w.r.t. f and P , and

(iv) P is invariant w.r.t. C and f .

Then if C then I else J is terminating w.r.t. f and P .

(114) Let C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f ,

(ii) I is terminating w.r.t. f , and

(iii) iteration of f started in I;C terminates w.r.t. f(s, C).

Then 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(115) Let P be a set and C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f and P ,

(ii) I is terminating w.r.t. f and P ,

(iii) P is invariant w.r.t. C and f and invariant w.r.t. I and f ,

(iv) iteration of f started in I;C terminates w.r.t. f(s, C), and

(v) s ∈ P.
Then 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(116) Let P be a set and C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f ,

(ii) I is terminating w.r.t. f and P ,

(iii) P is invariant w.r.t. C and f ,

(iv) for every s such that s ∈ P and f(f(s, I), C) ∈ T holds f(s, I) ∈ P,
(v) iteration of f started in I;C terminates w.r.t. f(s, C), and

(vi) s ∈ P.
Then 〈〈s, whileC do I〉〉 ∈ TerminatingPrograms(A,S, T, f).

(117) Let C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f ,

(ii) I is terminating w.r.t. f , and

(iii) for every s holds iteration of f started in I;C terminates w.r.t. s.

Then whileC do I is terminating w.r.t. f .

(118) Let P be a set and C, I be elements of A. Suppose that

(i) C is terminating w.r.t. f ,

(ii) I is terminating w.r.t. f and P ,

(iii) P is invariant w.r.t. C and f ,

(iv) for every s such that s ∈ P and f(f(s, I), C) ∈ T holds f(s, I) ∈ P,
and

(v) for every s such that f(s, C) ∈ P holds iteration of f started in I;C

terminates w.r.t. f(s, C).

Then whileC do I is terminating w.r.t. f and P .
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[16] Józef Bia las. Infimum and supremum of the set of real numbers. Measure theory. For-

malized Mathematics, 2(1):163–171, 1991.
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