The Product Space of Real Normed Spaces and its Properties

Noboru Endou Gifu National College of Technology Japan

Yasunari Shidama Shinshu University Nagano, Japan

Keiichi Miyajima Ibaraki University Hitachi, Japan

Summary. In this article, we define the product space of real linear spaces and real normed spaces. We also describe properties of these spaces.

MML identifier: PRVECT_2, version: 7.8.05 4.84.971

The terminology and notation used here are introduced in the following articles: [20], [9], [22], [2], [1], [19], [5], [23], [7], [10], [8], [4], [13], [12], [21], [14], [3], [6], [16], [11], [15], [17], and [18].

1. The Product Space of Real Linear Spaces

The following propositions are true:

- (1) Let s, t be sequences of real numbers and g be a real number. Suppose that for every element n of \mathbb{N} holds t(n) = |s(n) g|. Then s is convergent and $\lim s = g$ if and only if t is convergent and $\lim t = 0$.
- (2) Let x, y be finite sequences of elements of \mathbb{R} . Suppose len $x = \operatorname{len} y$ and for every element i of \mathbb{N} such that $i \in \operatorname{Seg len} x$ holds $0 \leq x(i)$ and $x(i) \leq y(i)$. Then $|x| \leq |y|$.
- (3) Let F be a finite sequence of elements of \mathbb{R} . If for every element i of \mathbb{N} such that $i \in \text{dom } F$ holds F(i) = 0, then $\sum F = 0$.

C 2007 University of Białystok ISSN 1426-2630 Let f be a function and let X be a set. A function is called a multi-operation of X and f if:

(Def. 1) dom it = dom f and for every set i such that $i \in \text{dom } f$ holds it(i) is a function from [X, f(i)] into f(i).

Let F be a sequence of non empty sets and let X be a set. Observe that every multi-operation of X and F is finite sequence-like.

We now state the proposition

(4) Let X be a set, F be a sequence of non empty sets, and p be a finite sequence. Then p is a multi-operation of X and F if and only if len p = len F and for every set i such that i ∈ dom F holds p(i) is a function from [X, F(i)] into F(i).

Let F be a sequence of non empty sets, let X be a set, let p be a multioperation of X and F, and let i be an element of dom F. Then p(i) is a function from [X, F(i)] into F(i).

Next we state the proposition

(5) Let X be a non empty set, F be a sequence of non empty sets, and f, g be functions from [X, ∏F] into ∏F. Suppose that for every element x of X and for every element d of ∏F and for every element i of dom F holds f(x, d)(i) = g(x, d)(i). Then f = g.

Let F be a sequence of non empty sets, let X be a non empty set, and let p be a multi-operation of X and F. The functor $\prod^{\circ} p$ yielding a function from $[X, \prod F]$ into $\prod F$ is defined as follows:

(Def. 2) For every element x of X and for every element d of $\prod F$ and for every element i of dom F holds $(\prod^{\circ} p)(x, d)(i) = p(i)(x, d(i))$.

Let R be a binary relation. We say that R is real-linear-space-yielding if and only if:

(Def. 3) For every set S such that $S \in \operatorname{rng} R$ holds S is a real linear space.

Let us note that there exists a finite sequence which is non empty and reallinear-space-yielding.

A real linear space-sequence is a non empty real-linear-space-yielding finite sequence.

Let G be a real linear space-sequence and let j be an element of dom G. Then G(j) is a real linear space.

Let G be a real linear space-sequence. The functor \overline{G} yielding a sequence of non empty sets is defined by:

(Def. 4) $\operatorname{len} \overline{G} = \operatorname{len} G$ and for every element j of dom G holds $\overline{G}(j) =$ the carrier of G(j).

Let G be a real linear space-sequence and let j be an element of dom \overline{G} . Then G(j) is a real linear space. Let G be a real linear space-sequence. The functor $\langle +_{G_i} \rangle_i$ yielding a family of binary operations of \overline{G} is defined as follows:

(Def. 5) $\operatorname{len}(\langle +_{G_i} \rangle_i) = \operatorname{len} \overline{G}$ and for every element j of dom \overline{G} holds $\langle +_{G_i} \rangle_i(j) =$ the addition of G(j).

The functor $\langle -G_i \rangle_i$ yields a family of unary operations of \overline{G} and is defined as follows:

(Def. 6) $\operatorname{len}(\langle -G_i \rangle_i) = \operatorname{len} \overline{G}$ and for every element j of dom \overline{G} holds $\langle -G_i \rangle_i(j) = \operatorname{comp} G(j)$.

The functor $\langle 0_{G_i} \rangle_i$ yielding an element of $\prod \overline{G}$ is defined by:

(Def. 7) For every element j of dom \overline{G} holds $\langle 0_{G_i} \rangle_i(j)$ = the zero of G(j).

The functor multop G yields a multi-operation of \mathbb{R} and \overline{G} and is defined by:

(Def. 8) len multop $G = \text{len } \overline{G}$ and for every element j of dom \overline{G} holds (multop G)(j) = the external multiplication of G(j).

Let G be a real linear space-sequence. The functor $\prod G$ yielding a strict non empty RLS structure is defined by:

(Def. 9) $\prod G = \langle \prod \overline{G}, \langle 0_{G_i} \rangle_i, \prod^{\circ} (\langle +_{G_i} \rangle_i), \prod^{\circ} \operatorname{multop} G \rangle.$

Let G be a real linear space-sequence. One can check that $\prod G$ is Abelian, add-associative, right zeroed, right complementable, and real linear space-like.

2. The Product Space of Real Normed Spaces

Let R be a binary relation. We say that R is real-norm-space-yielding if and only if:

(Def. 10) For every set x such that $x \in \operatorname{rng} R$ holds x is a real normed space.

One can check that there exists a finite sequence which is non empty and real-norm-space-yielding.

A real norm space-sequence is a non empty real-norm-space-yielding finite sequence.

Let G be a real norm space-sequence and let j be an element of dom G. Then G(j) is a real normed space.

Let us note that every finite sequence which is real-norm-space-yielding is also real-linear-space-yielding.

Let G be a real norm space-sequence and let x be an element of $\prod \overline{G}$. The functor normsequence (G, x) yields an element of $\mathcal{R}^{\operatorname{len} G}$ and is defined as follows:

(Def. 11) len normsequence(G, x) = len G and for every element j of dom G holds (normsequence(G, x))(j) = (the norm of G(j))(x(j)).

Let G be a real norm space-sequence. The functor productnorm G yields a function from $\prod \overline{(G \text{ qua real linear space-sequence})}$ into \mathbb{R} and is defined by:

(Def. 12) For every element x of $\prod \overline{G}$ holds (productnorm G)(x) = | normsequence(G, x)|. Let G be a real norm space-sequence. The functor $\prod G$ yielding a strict non empty normed structure is defined as follows:

(Def. 13) The RLS structure of $\prod G = \prod (G \text{ qua real linear space-sequence})$ and the norm of $\prod G = \text{productnorm } G$.

In the sequel G is a real norm space-sequence.

We now state four propositions:

- (6) $\prod G = \langle \prod \overline{G}, \langle 0_{G_i} \rangle_i, \prod^{\circ} (\langle +_{G_i} \rangle_i), \prod^{\circ} \operatorname{multop} G, \operatorname{productnorm} G \rangle.$
- (7) For every vector x of $\prod G$ and for every element y of $\prod \overline{G}$ such that x = y holds $||x|| = |\operatorname{normsequence}(G, y)|$.
- (8) For all elements x, y, z of $\prod \overline{G}$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} x$ and $z = (\prod^{\circ}(\langle +_{G_i} \rangle_i))(x, y)$ holds $(\operatorname{normsequence}(G, z))(i) \leq (\operatorname{normsequence}(G, x) + \operatorname{normsequence}(G, y))(i).$
- (9) For every element x of $\prod \overline{G}$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} x$ holds $0 \leq (\operatorname{normsequence}(G, x))(i)$.

Let G be a real norm space-sequence. Observe that $\prod G$ is real normed space-like, real linear space-like, Abelian, add-associative, right zeroed, and right complementable.

One can prove the following propositions:

- (10) Let G be a real norm space-sequence, i be an element of dom G, x be a point of $\prod G$, y be an element of $\prod \overline{G}$, and x_1 be a point of G(i). If y = x and $x_1 = y(i)$, then $||x_1|| \le ||x||$.
- (11) Let G be a real norm space-sequence, i be an element of dom G, x, y be points of $\prod G$, x_1 , y_1 be points of G(i), and z_1 , z_2 be elements of $\prod \overline{G}$. If $x_1 = z_1(i)$ and $z_1 = x$ and $y_1 = z_2(i)$ and $z_2 = y$, then $||y_1 x_1|| \le ||y x||$.
- (12) Let G be a real norm space-sequence, s_1 be a sequence of $\prod G$, x_0 be a point of $\prod G$, and y_0 be an element of $\prod \overline{G}$. Suppose $x_0 = y_0$ and s_1 is convergent and $\lim s_1 = x_0$. Let *i* be an element of dom *G*. Then there exists a sequence s_2 of G(i) such that s_2 is convergent and $y_0(i) = \lim s_2$ and for every element *m* of \mathbb{N} there exists an element s_3 of $\prod \overline{G}$ such that $s_3 = s_1(m)$ and $s_2(m) = s_3(i)$.
- (13) Let G be a real norm space-sequence, s_1 be a sequence of $\prod G$, x_0 be a point of $\prod G$, and y_0 be an element of $\prod \overline{G}$. Suppose that
 - (i) $x_0 = y_0$, and
 - (ii) for every element *i* of dom *G* there exists a sequence s_2 of G(i) such that s_2 is convergent and $y_0(i) = \lim s_2$ and for every element *m* of \mathbb{N} there exists an element s_3 of $\prod \overline{G}$ such that $s_3 = s_1(m)$ and $s_2(m) = s_3(i)$. Then s_1 is convergent and $\lim s_1 = x_0$.
- (14) For every real norm space-sequence G such that for every element i of dom G holds G(i) is complete holds $\prod G$ is complete.

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [14] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [15] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235–240, 1992.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [17] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [18] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004.
- [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received July 9, 2007