
FORMALIZED MATHEMATICS

2007, Vol. 15, No. 3, Pages 81–85

DOI: 10. 2478/v10037-007-0010-y

The Product Space of Real Normed Spaces

and its Properties

Noboru Endou
Gifu National College of Technology

Japan

Yasunari Shidama
Shinshu University

Nagano, Japan

Keiichi Miyajima
Ibaraki University

Hitachi, Japan

Summary. In this article, we define the product space of real linear spaces

and real normed spaces. We also describe properties of these spaces.
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The terminology and notation used here are introduced in the following articles:

[20], [9], [22], [2], [1], [19], [5], [23], [7], [10], [8], [4], [13], [12], [21], [14], [3], [6],

[16], [11], [15], [17], and [18].

1. The Product Space of Real Linear Spaces

The following propositions are true:

(1) Let s, t be sequences of real numbers and g be a real number. Suppose

that for every element n of N holds t(n) = |s(n)− g|. Then s is convergent

and lim s = g if and only if t is convergent and lim t = 0.

(2) Let x, y be finite sequences of elements of R. Suppose lenx = len y

and for every element i of N such that i ∈ Seg lenx holds 0 ≤ x(i) and

x(i) ≤ y(i). Then |x| ≤ |y|.
(3) Let F be a finite sequence of elements of R. If for every element i of N

such that i ∈ domF holds F (i) = 0, then
∑
F = 0.
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Let f be a function and let X be a set. A function is called a multi-operation

of X and f if:

(Def. 1) dom it = dom f and for every set i such that i ∈ dom f holds it(i) is a

function from [:X, f(i) :] into f(i).

Let F be a sequence of non empty sets and let X be a set. Observe that

every multi-operation of X and F is finite sequence-like.

We now state the proposition

(4) Let X be a set, F be a sequence of non empty sets, and p be a finite

sequence. Then p is a multi-operation of X and F if and only if len p =

lenF and for every set i such that i ∈ domF holds p(i) is a function from

[:X, F (i) :] into F (i).

Let F be a sequence of non empty sets, let X be a set, let p be a multi-

operation of X and F , and let i be an element of domF. Then p(i) is a function

from [:X, F (i) :] into F (i).

Next we state the proposition

(5) Let X be a non empty set, F be a sequence of non empty sets, and f ,

g be functions from [:X,
∏
F :] into

∏
F. Suppose that for every element

x of X and for every element d of
∏
F and for every element i of domF

holds f(x, d)(i) = g(x, d)(i). Then f = g.

Let F be a sequence of non empty sets, let X be a non empty set, and let

p be a multi-operation of X and F . The functor
∏◦ p yielding a function from

[:X,
∏
F :] into

∏
F is defined as follows:

(Def. 2) For every element x of X and for every element d of
∏
F and for every

element i of domF holds (
∏◦ p)(x, d)(i) = p(i)(x, d(i)).

Let R be a binary relation. We say that R is real-linear-space-yielding if and

only if:

(Def. 3) For every set S such that S ∈ rngR holds S is a real linear space.

Let us note that there exists a finite sequence which is non empty and real-

linear-space-yielding.

A real linear space-sequence is a non empty real-linear-space-yielding finite

sequence.

Let G be a real linear space-sequence and let j be an element of domG.

Then G(j) is a real linear space.

Let G be a real linear space-sequence. The functor G yielding a sequence of

non empty sets is defined by:

(Def. 4) lenG = lenG and for every element j of domG holds G(j) = the carrier

of G(j).

Let G be a real linear space-sequence and let j be an element of domG.

Then G(j) is a real linear space.
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Let G be a real linear space-sequence. The functor 〈+Gi〉i yielding a family

of binary operations of G is defined as follows:

(Def. 5) len(〈+Gi〉i) = lenG and for every element j of domG holds 〈+Gi〉i(j) =

the addition of G(j).

The functor 〈−Gi〉i yields a family of unary operations of G and is defined as

follows:

(Def. 6) len(〈−Gi〉i) = lenG and for every element j of domG holds 〈−Gi〉i(j) =

compG(j).

The functor 〈0Gi〉i yielding an element of
∏
G is defined by:

(Def. 7) For every element j of domG holds 〈0Gi〉i(j) = the zero of G(j).

The functor multopG yields a multi-operation of R and G and is defined by:

(Def. 8) len multopG = lenG and for every element j of domG holds

(multopG)(j) = the external multiplication of G(j).

Let G be a real linear space-sequence. The functor
∏
G yielding a strict non

empty RLS structure is defined by:

(Def. 9)
∏
G = 〈∏G, 〈0Gi〉i,

∏◦(〈+Gi〉i),
∏◦multopG〉.

Let G be a real linear space-sequence. One can check that
∏
G is Abelian,

add-associative, right zeroed, right complementable, and real linear space-like.

2. The Product Space of Real Normed Spaces

Let R be a binary relation. We say that R is real-norm-space-yielding if and

only if:

(Def. 10) For every set x such that x ∈ rngR holds x is a real normed space.

One can check that there exists a finite sequence which is non empty and

real-norm-space-yielding.

A real norm space-sequence is a non empty real-norm-space-yielding finite

sequence.

Let G be a real norm space-sequence and let j be an element of domG. Then

G(j) is a real normed space.

Let us note that every finite sequence which is real-norm-space-yielding is

also real-linear-space-yielding.

Let G be a real norm space-sequence and let x be an element of
∏
G. The

functor normsequence(G, x) yields an element of RlenG and is defined as follows:

(Def. 11) len normsequence(G, x) = lenG and for every element j of domG holds

(normsequence(G, x))(j) = (the norm of G(j))(x(j)).

Let G be a real norm space-sequence. The functor productnormG yields a

function from
∏

(G qua real linear space-sequence) into R and is defined by:

(Def. 12) For every element x of
∏
G holds

(productnormG)(x) = |normsequence(G, x)|.
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Let G be a real norm space-sequence. The functor
∏
G yielding a strict non

empty normed structure is defined as follows:

(Def. 13) The RLS structure of
∏
G =

∏
(G qua real linear space-sequence) and

the norm of
∏
G = productnormG.

In the sequel G is a real norm space-sequence.

We now state four propositions:

(6)
∏
G = 〈∏G, 〈0Gi〉i,

∏◦(〈+Gi〉i),
∏◦multopG,productnormG〉.

(7) For every vector x of
∏
G and for every element y of

∏
G such that

x = y holds ‖x‖ = |normsequence(G, y)|.
(8) For all elements x, y, z of

∏
G and for every element i of N such that

i ∈ domx and z = (
∏◦(〈+Gi〉i))(x, y) holds (normsequence(G, z))(i) ≤

(normsequence(G, x) + normsequence(G, y))(i).

(9) For every element x of
∏
G and for every element i of N such that

i ∈ domx holds 0 ≤ (normsequence(G, x))(i).

Let G be a real norm space-sequence. Observe that
∏
G is real normed

space-like, real linear space-like, Abelian, add-associative, right zeroed, and right

complementable.

One can prove the following propositions:

(10) Let G be a real norm space-sequence, i be an element of domG, x be a

point of
∏
G, y be an element of

∏
G, and x1 be a point of G(i). If y = x

and x1 = y(i), then ‖x1‖ ≤ ‖x‖.
(11) Let G be a real norm space-sequence, i be an element of domG, x, y be

points of
∏
G, x1, y1 be points of G(i), and z1, z2 be elements of

∏
G. If

x1 = z1(i) and z1 = x and y1 = z2(i) and z2 = y, then ‖y1−x1‖ ≤ ‖y−x‖.
(12) Let G be a real norm space-sequence, s1 be a sequence of

∏
G, x0 be

a point of
∏
G, and y0 be an element of

∏
G. Suppose x0 = y0 and s1

is convergent and lim s1 = x0. Let i be an element of domG. Then there

exists a sequence s2 of G(i) such that s2 is convergent and y0(i) = lim s2

and for every element m of N there exists an element s3 of
∏
G such that

s3 = s1(m) and s2(m) = s3(i).

(13) Let G be a real norm space-sequence, s1 be a sequence of
∏
G, x0 be a

point of
∏
G, and y0 be an element of

∏
G. Suppose that

(i) x0 = y0, and

(ii) for every element i of domG there exists a sequence s2 of G(i) such

that s2 is convergent and y0(i) = lim s2 and for every element m of N there

exists an element s3 of
∏
G such that s3 = s1(m) and s2(m) = s3(i).

Then s1 is convergent and lim s1 = x0.

(14) For every real norm space-sequence G such that for every element i of

domG holds G(i) is complete holds
∏
G is complete.
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[6] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
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