Several Differentiation Formulas of Special Functions. Part V

Peng Wang Qingdao University of Science and Technology China Bo Li Qingdao University of Science and Technology China

Summary. In this article, we give several differentiation formulas of special and composite functions including trigonometric, polynomial and logarithmic functions.

MML identifier: FDIFF_9, version: 7.8.05 4.84.971

The articles [13], [15], [1], [16], [2], [4], [10], [11], [17], [5], [14], [12], [3], [7], [6], [9], and [8] provide the notation and terminology for this paper.

The partial function sec from $\mathbb R$ to $\mathbb R$ is defined as follows:

(Def. 1) $\sec = \frac{1}{\text{the function } \cos}$.

The partial function cosec from \mathbb{R} to \mathbb{R} is defined by:

(Def. 2) $\operatorname{cosec} = \frac{1}{\operatorname{the function sin}}$

For simplicity, we follow the rules: x, a, b, c are real numbers, n is a natural number, Z is an open subset of \mathbb{R} , and f, f_1, f_2 are partial functions from \mathbb{R} to \mathbb{R} .

One can prove the following propositions:

- (1) If (the function $\cos)(x) \neq 0$, then sec is differentiable in x and $(\sec)'(x) = \frac{(\text{the function } \sin)(x)}{(\text{the function } \cos)(x)^2}$.
- (2) If (the function $\sin(x) \neq 0$, then cosec is differentiable in x and $(\operatorname{cosec})'(x) = -\frac{(\operatorname{the function } \cos)(x)}{(\operatorname{the function } \sin)(x)^2}.$
- $(3) \quad (\frac{1}{x})^n_{\mathbb{Z}} = \frac{1}{x^n_{\mathbb{Z}}}.$
- (4) Suppose $Z \subseteq \text{dom sec}$. Then sec is differentiable on Z and for every x such that $x \in Z$ holds $(\sec)'_{\uparrow Z}(x) = \frac{(\text{the function } \sin)(x)}{(\text{the function } \cos)(x)^2}$.

C 2007 University of Białystok ISSN 1426-2630

- (5) Suppose $Z \subseteq \text{dom cosec}$. Then cosec is differentiable on Z and for every x such that $x \in Z$ holds $(\text{cosec})'_{\uparrow Z}(x) = -\frac{(\text{the function } \cos)(x)}{(\text{the function } \sin)(x)^2}$.
- (6) Suppose $Z \subseteq \text{dom}(\sec \cdot f)$ and for every x such that $x \in Z$ holds $f(x) = a \cdot x + b$. Then
- (i) $\sec \cdot f$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\sec \cdot f)'_{\uparrow Z}(x) = \frac{a \cdot (\text{the function } \sin)(a \cdot x + b)}{(\text{the function } \cos)(a \cdot x + b)^2}$.
- (7) Suppose $Z \subseteq \text{dom}(\text{cosec} \cdot f)$ and for every x such that $x \in Z$ holds $f(x) = a \cdot x + b$. Then
- (i) $\operatorname{cosec} \cdot f$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot f)'_{\uparrow Z}(x) = -\frac{a \cdot (\operatorname{the function} \cos)(a \cdot x + b)}{(\operatorname{the function} \sin)(a \cdot x + b)^2}$.
- (8) Suppose $Z \subseteq \operatorname{dom}(\operatorname{sec} \cdot \frac{1}{f})$ and for every x such that $x \in Z$ holds f(x) = x. Then
- (i) $\sec \cdot \frac{1}{f}$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\sec \cdot \frac{1}{f})'_{\uparrow Z}(x) = -\frac{(\text{the function } \sin)(\frac{1}{x})}{x^2 \cdot (\text{the function } \cos)(\frac{1}{x})^2}.$
- (9) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot \frac{1}{f})$ and for every x such that $x \in Z$ holds f(x) = x. Then
- (i) $\operatorname{cosec} \cdot \frac{1}{f}$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot \frac{1}{f})'_{\uparrow Z}(x) = \frac{(\operatorname{the function } \cos)(\frac{1}{x})}{x^2 \cdot (\operatorname{the function } \sin)(\frac{1}{x})^2}.$
- (10) Suppose $Z \subseteq \text{dom}(\sec (f_1 + c f_2))$ and $f_2 = \frac{2}{\mathbb{Z}}$ and for every x such that $x \in Z$ holds $f_1(x) = a + b \cdot x$. Then
 - (i) $\sec (f_1 + c f_2)$ is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(\sec \cdot (f_1 + c f_2))'_{\uparrow Z}(x) = \frac{(b+2\cdot c \cdot x) \cdot (\text{the function } \sin)(a+b\cdot x+c \cdot x^2)}{(\text{the function } \cos)(a+b\cdot x+c \cdot x^2)^2}$.
- (11) Suppose $Z \subseteq \text{dom}(\text{cosec} \cdot (f_1 + c f_2))$ and $f_2 = \frac{2}{\mathbb{Z}}$ and for every x such that $x \in Z$ holds $f_1(x) = a + b \cdot x$. Then
 - (i) $\operatorname{cosec} \cdot (f_1 + c f_2)$ is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot (f_1 + c f_2))'_{\upharpoonright Z}(x) = -\frac{(b+2\cdot c \cdot x) \cdot (\operatorname{the function } \cos)(a+b\cdot x+c \cdot x^2)}{(\operatorname{the function } \sin)(a+b\cdot x+c \cdot x^2)^2}.$
- (12) Suppose $Z \subseteq \operatorname{dom}(\operatorname{sec} \cdot (\operatorname{the function} \exp))$. Then
 - (i) $\sec \cdot (\text{the function exp})$ is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(\sec \cdot (\text{the function } \exp))'_{\uparrow Z}(x) = \frac{(\text{the function } \exp)(x) \cdot (\text{the function } \sin)((\text{the function } \exp)(x))}{(\text{the function } \cos)((\text{the function } \exp)(x))^2}$.
- (13) Suppose $Z \subseteq \text{dom}(\text{cosec} \cdot (\text{the function exp}))$. Then
 - (i) $\operatorname{cosec} \cdot (\operatorname{the function exp})$ is differentiable on Z, and

74

- (ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot (\operatorname{the function exp}))'_{\upharpoonright Z}(x) = -\frac{(\operatorname{the function exp})(x) \cdot (\operatorname{the function cos})((\operatorname{the function exp})(x))}{(\operatorname{the function sin})((\operatorname{the function exp})(x))^2}.$
- (14) Suppose $Z \subseteq \operatorname{dom}(\operatorname{sec} \cdot (\operatorname{the function } \ln))$. Then
- (i) $\sec \cdot (\text{the function ln})$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\sec \cdot (\text{the function } \ln))'_{\mid Z}(x) = \frac{(\text{the function } \sin)((\text{the function } \ln)(x))}{x \cdot (\text{the function } \cos)((\text{the function } \ln)(x))^2}$.
- (15) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot (\operatorname{the function } \ln))$. Then
- (i) $\operatorname{cosec} \cdot (\operatorname{the function ln})$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot (\operatorname{the function } \ln))'_{\uparrow Z}(x) = -\frac{(\operatorname{the function } \cos)((\operatorname{the function } \ln)(x))}{x \cdot (\operatorname{the function } \sin)((\operatorname{the function } \ln)(x))^2}.$
- (16) Suppose $Z \subseteq \text{dom}((\text{the function exp}) \cdot \text{sec})$. Then
 - (i) (the function exp) \cdot sec is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function exp) $\cdot \sec)'_{\upharpoonright Z}(x) = \frac{(\text{the function exp})((\sec)(x))\cdot(\text{the function }\sin)(x)}{(\text{the function }\cos)(x)^2}$.
- (17) Suppose $Z \subseteq \text{dom}((\text{the function exp}) \cdot \text{cosec})$. Then
 - (i) (the function exp) \cdot cosec is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function exp) $\cdot \operatorname{cosec})'_{\uparrow Z}(x) = -\frac{(\text{the function exp})((\operatorname{cosec})(x))\cdot(\text{the function } \cos)(x)}{(\text{the function } \sin)(x)^2}.$
- (18) Suppose $Z \subseteq \text{dom}((\text{the function ln}) \cdot \text{sec})$. Then
 - (i) (the function \ln) \cdot sec is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function $\ln) \cdot \sec)'_{\upharpoonright Z}(x) = \frac{(\text{the function } \sin)(x)}{(\text{the function } \cos)(x)}$.
- (19) Suppose $Z \subseteq \text{dom}((\text{the function } \ln) \cdot \text{cosec})$. Then
 - (i) (the function \ln) \cdot cosec is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function $\ln) \cdot \operatorname{cosec})'_{\upharpoonright Z}(x) = -\frac{(\text{the function } \cos)(x)}{(\text{the function } \sin)(x)}$.
- (20) Suppose $Z \subseteq \operatorname{dom}(\binom{n}{\mathbb{Z}}) \cdot \operatorname{sec}$ and $1 \leq n$. Then
- (i) $\binom{n}{\mathbb{Z}} \cdot \text{sec}$ is differentiable on Z, and

(ii) for every x such that
$$x \in Z$$
 holds $\binom{n}{\mathbb{Z}} \cdot \sec'_{|Z|}(x) = \frac{n \cdot (\text{the function } \sin)(x)}{(\text{the function } \cos)(x)_{|X|}^{n+1}}$

- (21) Suppose $Z \subseteq \operatorname{dom}(\binom{n}{\mathbb{Z}}) \cdot \operatorname{cosec}$ and $1 \leq n$. Then
- (i) $\binom{n}{\mathbb{Z}} \cdot \text{cosec}$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\binom{n}{\mathbb{Z}} \cdot \operatorname{cosec})'_{\restriction Z}(x) = -\frac{n \cdot (\operatorname{the function } \cos)(x)}{(\operatorname{the function } \sin)(x)^{n+1}_{\mathbb{Z}}}.$
- (22) Suppose $Z \subseteq \operatorname{dom}(\operatorname{sec}-\operatorname{id}_Z)$. Then
- (i) $\sec -id_Z$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\sec -id_Z)'_{\upharpoonright Z}(x) = \frac{(\text{the function } \sin)(x) (\text{the function } \cos)(x)^2}{(\text{the function } \cos)(x)^2}$.

- (23) Suppose $Z \subseteq \operatorname{dom}(-\operatorname{cosec} \operatorname{id}_Z)$. Then
 - (i) $-\operatorname{cosec} \operatorname{id}_Z$ is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(-\operatorname{cosec} \operatorname{id}_Z)'_{\restriction Z}(x) = \frac{(\operatorname{the function } \cos)(x) (\operatorname{the function } \sin)(x)^2}{(\operatorname{the function } \sin)(x)^2}.$
- (24) Suppose $Z \subseteq \text{dom}((\text{the function exp}) \text{ sec})$. Then
 - (i) (the function exp) sec is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function exp) $\sec)'_{\uparrow Z}(x) = \frac{(\text{the function exp})(x)}{(\text{the function <math>\cos)(x)}} + \frac{(\text{the function } \exp)(x) \cdot (\text{the function } \sin)(x)}{(\text{the function } \cos)(x)^2}.$
- (25) Suppose $Z \subseteq \operatorname{dom}((\text{the function exp}) \text{ cosec})$. Then
 - (i) (the function exp) cosec is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function exp) $\operatorname{cosec})'_{\uparrow Z}(x) = \frac{(\operatorname{the function exp})(x)}{(\operatorname{the function sin})(x)} \frac{(\operatorname{the function exp})(x) \cdot (\operatorname{the function cos})(x)}{(\operatorname{the function sin})(x)^2}.$
- (26) Suppose $Z \subseteq \operatorname{dom}(\frac{1}{a}(\operatorname{sec} \cdot f) \operatorname{id}_Z)$ and for every x such that $x \in Z$ holds $f(x) = a \cdot x$ and $a \neq 0$. Then
 - (i) $\frac{1}{a}(\sec \cdot f) \operatorname{id}_Z$ is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(\frac{1}{a}(\sec \cdot f) \operatorname{id}_Z)'_{\upharpoonright Z}(x) = \frac{(\operatorname{the function } \sin)(a \cdot x) (\operatorname{the function } \cos)(a \cdot x)^2}{(\operatorname{the function } \cos)(a \cdot x)^2}.$
- (27) Suppose $Z \subseteq \operatorname{dom}((-\frac{1}{a})(\operatorname{cosec} \cdot f) \operatorname{id}_Z)$ and for every x such that $x \in Z$ holds $f(x) = a \cdot x$ and $a \neq 0$. Then
 - (i) $\left(-\frac{1}{a}\right)\left(\operatorname{cosec} \cdot f\right) \operatorname{id}_Z$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $\left(\left(-\frac{1}{a}\right)\left(\operatorname{cosec} \cdot f\right) \operatorname{id}_Z\right)'_{\uparrow Z}(x) = \frac{(\operatorname{the function } \cos)(a \cdot x) (\operatorname{the function } \sin)(a \cdot x)^2}{(\operatorname{the function } \sin)(a \cdot x)^2}.$
- (28) Suppose $Z \subseteq \text{dom}(f \text{ sec})$ and for every x such that $x \in Z$ holds $f(x) = a \cdot x + b$. Then
 - (i) f sec is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(f \sec)'_{\mid Z}(x) = \frac{a}{(\text{the function } \cos)(x)} + \frac{(a \cdot x + b) \cdot (\text{the function } \sin)(x)}{(\text{the function } \cos)(x)^2}$.
- (29) Suppose $Z \subseteq \text{dom}(f \text{ cosec})$ and for every x such that $x \in Z$ holds $f(x) = a \cdot x + b$. Then
 - (i) f cosec is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(f \operatorname{cosec})'_{\upharpoonright Z}(x) = \frac{a}{(\operatorname{the function sin})(x)} \frac{(a \cdot x + b) \cdot (\operatorname{the function cos})(x)}{(\operatorname{the function sin})(x)^2}$.
- (30) Suppose $Z \subseteq \text{dom}((\text{the function ln}) \text{ sec})$. Then
 - (i) (the function \ln) sec is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function ln) $\operatorname{sec})'_{\restriction Z}(x) = \frac{1}{\frac{1}{(\text{the function } \cos)(x)}} + \frac{(\text{the function } \ln)(x) \cdot (\text{the function } \sin)(x)}{(\text{the function } \cos)(x)^2}.$
- (31) Suppose $Z \subseteq \text{dom}((\text{the function ln}) \text{ cosec})$. Then

76

- (i) (the function \ln) cosec is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function ln) $\operatorname{cosec})'_{\uparrow Z}(x) = \frac{1}{\frac{(\operatorname{the function sin}(x))}{x}} \frac{(\operatorname{the function ln})(x) \cdot (\operatorname{the function cos})(x)}{(\operatorname{the function sin})(x)^2}.$
- (32) Suppose $Z \subseteq \operatorname{dom}(\frac{1}{f} \operatorname{sec})$ and for every x such that $x \in Z$ holds f(x) = x. Then
 - (i) $\frac{1}{f}$ sec is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\frac{1}{f} \sec)'_{\upharpoonright Z}(x) = -\frac{\frac{1}{(\text{the function } \cos)(x)}}{x^2} + \frac{\frac{(\text{the function } \sin)(x)}{x}}{(\text{the function } \cos)(x)^2}.$
- (33) Suppose $Z \subseteq \text{dom}(\frac{1}{f} \text{ cosec})$ and for every x such that $x \in Z$ holds f(x) = x. Then
 - (i) $\frac{1}{f}$ cosec is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\frac{1}{f} \operatorname{cosec})'_{\restriction Z}(x) = -\frac{\frac{1}{(\operatorname{the function sin}(x))}}{x^2} \frac{\frac{(\operatorname{the function cos})(x)}{x^2}}{(\operatorname{the function sin})(x)^2}$.
- (34) Suppose $Z \subseteq \operatorname{dom}(\operatorname{sec} \cdot (\operatorname{the function sin}))$. Then
- (i) $\sec \cdot (\text{the function sin})$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\sec \cdot (\text{the function } \sin))'_{|Z}(x) = \frac{(\text{the function } \cos)(x) \cdot (\text{the function } \sin)((\text{the function } \sin)(x))}{(\text{the function } \cos)((\text{the function } \sin)(x))^2}$.
- (35) Suppose $Z \subseteq \text{dom}(\text{sec} \cdot (\text{the function cos}))$. Then
 - (i) $\sec \cdot (\text{the function } \cos)$ is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(\sec \cdot (\text{the function } \cos))'_{\upharpoonright Z}(x) = -\frac{(\text{the function } \sin)(x) \cdot (\text{the function } \sin)((\text{the function } \cos)(x))}{(\text{the function } \cos)((\text{the function } \cos)(x))^2}$.
- (36) Suppose $Z \subseteq \text{dom}(\text{cosec} \cdot (\text{the function sin}))$. Then
 - (i) $\operatorname{cosec} \cdot (\operatorname{the function sin})$ is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot (\operatorname{the function sin}))'_{\uparrow Z}(x) = -\frac{(\operatorname{the function } \cos)(x) \cdot (\operatorname{the function } \cos)((\operatorname{the function } \sin)(x))}{(\operatorname{the function } \sin)((\operatorname{the function } \sin)(x))^2}.$
- (37) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot (\operatorname{the function } \cos))$. Then
 - (i) $\operatorname{cosec} \cdot (\operatorname{the function cos})$ is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot (\operatorname{the function } \cos))'_{\uparrow Z}(x) = \frac{(\operatorname{the function } \sin)(x) \cdot (\operatorname{the function } \cos)((\operatorname{the function } \cos)(x))}{(\operatorname{the function } \sin)((\operatorname{the function } \cos)(x))^2}.$
- (38) Suppose $Z \subseteq \operatorname{dom}(\operatorname{sec} \cdot (\operatorname{the function } \operatorname{tan}))$. Then
 - (i) sec \cdot (the function tan) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds $(\sec \cdot (\text{the function } \tan))'_{\uparrow Z}(x) = \frac{(\text{the function } \sin)((\text{the function } \tan)(x))}{(\text{the function } \cos)(x)^2}$.

(39) Suppose $Z \subseteq \operatorname{dom}(\operatorname{sec} \cdot (\operatorname{the function } \operatorname{cot}))$. Then

(i) $\sec \cdot (\text{the function cot})$ is differentiable on Z, and

PENG WANG AND BO LI

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1):35–40, 1990.
- [4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

78

- [7] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887–890, 1990.
- [8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–130, 1991.
 [9] Konrad Raczkowski and Pauel Sadawski. Real function differentiability. Formalized
- [9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195–200, 2004.
- [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
 [17] Vurning Vang and Vagunari Shidama. Triggmentric functions and evictores of single
- [17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received July 9, 2007