Several Differentiation Formulas of Special Functions. Part V

Peng Wang
Qingdao University of Science and Technology
China

Bo Li
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we give several differentiation formulas of special and composite functions including trigonometric, polynomial and logarithmic functions.

MML identifier: FDIFF_9, version: 7.8.05 4.84.971

The articles [13], [15], [1], [16], [2], [4], [10], [11], [17], [5], [14], [12], [3], [7], [6], [9], and [8] provide the notation and terminology for this paper.

The partial function sec from \mathbb{R} to \mathbb{R} is defined as follows:
(Def. 1) $\sec =\frac{1}{\text { the function cos }}$.
The partial function cosec from \mathbb{R} to \mathbb{R} is defined by:
(Def. 2) $\quad \operatorname{cosec}=\frac{1}{\text { the function } \sin }$.
For simplicity, we follow the rules: x, a, b, c are real numbers, n is a natural number, Z is an open subset of \mathbb{R}, and f, f_{1}, f_{2} are partial functions from \mathbb{R} to \mathbb{R}.

One can prove the following propositions:
(1) If (the function $\cos)(x) \neq 0$, then sec is differentiable in x and $(\sec)^{\prime}(x)=$ $\frac{(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$.
(2) If (the function $\sin)(x) \neq 0$, then cosec is differentiable in x and $(\operatorname{cosec})^{\prime}(x)=-\frac{(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{2}}$.
(3) $\left(\frac{1}{x}\right)_{\mathbb{Z}}^{n}=\frac{1}{x_{\mathbb{Z}}^{n}}$.
(4) Suppose $Z \subseteq$ domsec. Then sec is differentiable on Z and for every x such that $x \in Z$ holds $(\sec)^{\prime}{ }_{Y}(x)=\frac{\text { (the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$.
(5) Suppose $Z \subseteq$ dom cosec. Then cosec is differentiable on Z and for every x such that $x \in Z$ holds $(\operatorname{cosec})^{\prime}{ }^{\prime}(x)=-\frac{(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{2}}$.
(6) Suppose $Z \subseteq \operatorname{dom}(\sec \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=$ $a \cdot x+b$. Then
(i) sec $\cdot f$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\sec \cdot f)^{\prime}{ }_{\mid Z}(x)=\frac{a \cdot(\text { the function } \sin)(a \cdot x+b)}{(\text { the function } \cos)(a \cdot x+b)^{2}}$.
(7) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x+b$. Then
(i) cosec $\cdot f$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot f)_{{ }_{Y}}^{\prime}(x)=$ $-\frac{a \cdot \text { (the function } \cos)(a \cdot x+b)}{\text { (the function } \sin)(a \cdot x+b)^{2}}$.
(8) Suppose $Z \subseteq \operatorname{dom}\left(\sec \cdot \frac{1}{f}\right)$ and for every x such that $x \in Z$ holds $f(x)=$ x. Then
(i) $\sec \cdot \frac{1}{f}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\sec \cdot \frac{1}{f}\right)^{\prime}{ }_{Z}(x)=$ $-\frac{(\text { the function } \sin)\left(\frac{1}{x}\right)}{x^{2} \cdot(\text { the function } \cos)\left(\frac{1}{x}\right)^{2}}$.
(9) \quad Suppose $Z \subseteq \operatorname{dom}\left(\operatorname{cosec} \cdot \frac{1}{f}\right)$ and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) $\operatorname{cosec} \cdot \frac{1}{f}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\operatorname{cosec} \cdot \frac{1}{f}\right)^{\prime}{ }_{Y}(x)=$ $\frac{(\text { the function } \cos)\left(\frac{1}{x}\right)}{\left.x^{2} \text {.(the function } \sin \right)\left(\frac{1}{x}\right)^{2}}$.
(10) \quad Suppose $Z \subseteq \operatorname{dom}\left(\sec \cdot\left(f_{1}+c f_{2}\right)\right)$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+b \cdot x$. Then
(i) $\sec \cdot\left(f_{1}+c f_{2}\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\sec \cdot\left(f_{1}+c f_{2}\right)\right)_{Y Z}^{\prime}(x)=$ $\frac{(b+2 \cdot c \cdot x) \cdot(\text { the function } \sin)\left(a+b \cdot x+c \cdot x^{2}\right)}{(\text { the function } \cos)\left(a+b \cdot x+c \cdot x^{2}\right)^{2}}$.
(11) Suppose $Z \subseteq \operatorname{dom}\left(\operatorname{cosec} \cdot\left(f_{1}+c f_{2}\right)\right)$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+b \cdot x$. Then
(i) $\operatorname{cosec} \cdot\left(f_{1}+c f_{2}\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\operatorname{cosec} \cdot\left(f_{1}+c f_{2}\right)\right)_{\mid Z}^{\prime}(x)=$ $-\frac{(b+2 \cdot c \cdot x) \cdot(\text { the function } \cos)\left(a+b \cdot x+c \cdot x^{2}\right)}{(\text { the function } \sin)\left(a+b \cdot x+c \cdot x^{2}\right)^{2}}$.
(12) Suppose $Z \subseteq \operatorname{dom}(\sec \cdot($ the function $\exp))$. Then
(i) $\sec \cdot($ the function $\exp)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (sec $\cdot($ the function $\exp))^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \exp)(x) \cdot(\text { the function } \sin)((\text { the function } \exp)(x))}{\text { (the function } \cos)((\text { the function } \exp)(x))^{2}}$.
(13) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot($ the function $\exp))$. Then
(i) $\operatorname{cosec} \cdot($ the function $\exp)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot(\text { the function } \exp))^{\prime}{ }_{Z}(x)=$ $-\frac{(\text { the function } \exp)(x) \cdot(\text { the function } \cos)((\text { the function } \exp)(x))}{(\text { the function sin })((\text { the function } \exp)(x))^{2}}$.
(14) Suppose $Z \subseteq \operatorname{dom}(\sec \cdot($ the function $\ln))$. Then
(i) $\mathrm{sec} \cdot($ the function $\ln)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\sec \cdot(\text { the function } \ln))^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \sin)((\text { the function } \ln)(x))}{x \cdot(\text { the function } \cos)((\text { the function } \ln)(x))^{2}}$.
(15) \quad Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot($ the function $\ln))$. Then
(i) cosec $\cdot($ the function $\ln)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot(\text { the function } \ln))^{\prime}{ }_{Z}(x)=$ $-\frac{(\text { the function } \cos)((\text { the function } \ln)(x))}{x \cdot(\text { the function } \sin)((\text { the function } \ln)(x))^{2}}$.
(16) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot$ sec $)$. Then
(i) (the function $\exp) \cdot \mathrm{sec}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $((\text { the function } \exp) \cdot \sec)^{\prime}{ }_{Z}(x)=$ (the function $\exp)((\sec)(x)) \cdot($ the function $\sin)(x)$.
(17) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot \operatorname{cosec})$. Then
(i) (the function exp) • cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $((\text { the function } \exp) \cdot \operatorname{cosec})^{\prime}{ }_{Z}(x)=$ $-\frac{(\text { the function } \exp)((\operatorname{cosec})(x)) \cdot(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{2}}$.
(18) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot \sec)$. Then
(i) (the function \ln) $\cdot \mathrm{sec}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $((\text { the function } \ln) \cdot \sec)^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)}$.
(19) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot \operatorname{cosec})$. Then
(i) (the function \ln) \cdot cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $((\text { the function } \ln) \cdot \operatorname{cosec})^{\prime}{ }_{Z}(x)=$ $-\frac{(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)}$.
(20) Suppose $Z \subseteq \operatorname{dom}\left(\binom{n}{\mathbb{Z}} \cdot \sec \right)$ and $1 \leq n$. Then
(i) $\binom{n}{\mathbb{Z}} \cdot \mathrm{sec}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left({ }_{\mathbb{Z}}^{n}\right) \cdot \sec \right)^{\prime}{ }_{Z}(x)=\frac{n \cdot(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)_{\mathbb{Z}}^{n+1}}$.
(21) Suppose $Z \subseteq \operatorname{dom}\left(\binom{n}{\mathbb{Z}} \cdot \operatorname{cosec}\right)$ and $1 \leq n$. Then
(i) $\binom{n}{\mathbb{Z}} \cdot$ cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left({ }_{\mathbb{Z}}^{n}\right) \cdot \operatorname{cosec}\right)^{\prime}{ }_{Z}(x)=$ $-\frac{n \cdot(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)_{\mathbb{Z}}^{n+1}}$.
(22) Suppose $Z \subseteq \operatorname{dom}\left(\sec -\mathrm{id}_{Z}\right)$. Then
(i) $\sec -\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\sec -\mathrm{id}_{Z}\right)_{{ }_{Y}}^{\prime}(x)=$ $\frac{(\text { the function } \sin)(x)-(\text { the function } \cos)(x)^{2}}{(\text { the function } \cos)(x)^{2}}$.
(23) Suppose $Z \subseteq \operatorname{dom}\left(-\operatorname{cosec}-\operatorname{id}_{Z}\right)$. Then
(i) $-\operatorname{cosec}-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-\operatorname{cosec}-\operatorname{id}_{Z}\right)_{\mid Z}^{\prime}(x)=$ $\frac{(\text { the function } \cos)(x)-(\text { the function } \sin)(x)^{2}}{(\text { the function } \sin)(x)^{2}}$.
(24) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp)$ sec). Then
(i) (the function exp) sec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function exp) $\sec)^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \exp)(x)}{(\text { the function } \cos)(x)}+\frac{(\text { the function } \exp)(x) \cdot(\text { the function } \sin)(x)}{\text { (the function } \cos)(x)^{2}}$.
(25) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp)$ cosec $)$. Then
(i) (the function exp) cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\exp) \operatorname{cosec}^{\prime}{ }_{\mid Z}^{\prime}(x)=$ $\frac{(\text { the function } \exp)(x)}{(\text { the function } \sin)(x)}-\frac{(\text { the function } \exp)(x) \cdot(\text { the function } \cos)(x)}{\text { (the function } \sin)(x)^{2}}$.
(26) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{a}(\sec \cdot f)-\operatorname{id}_{Z}\right)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x$ and $a \neq 0$. Then
(i) $\frac{1}{a}(\mathrm{sec} \cdot f)-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{a}(\sec \cdot f)-\mathrm{id}_{Z}\right)^{\prime}{ }_{Z}(x)=$ $\frac{\text { (the function } \sin)(a \cdot x)-(\text { the function } \cos)(a \cdot x)^{2}}{\text { (the function } \cos)(a \cdot x)^{2}}$.
(27) Suppose $Z \subseteq \operatorname{dom}\left(\left(-\frac{1}{a}\right)(\operatorname{cosec} \cdot f)-\operatorname{id}_{Z}\right)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x$ and $a \neq 0$. Then
(i) $\left(-\frac{1}{a}\right)(\operatorname{cosec} \cdot f)-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(-\frac{1}{a}\right)(\operatorname{cosec} \cdot f)-\operatorname{id}_{Z}\right)^{\prime} Z(x)=$ $\frac{(\text { the function } \cos)(a \cdot x)-(\text { the function } \sin)(a \cdot x)^{2}}{(\text { the function } \sin)(a \cdot x)^{2}}$.
(28) Suppose $Z \subseteq \operatorname{dom}(f$ sec $)$ and for every x such that $x \in Z$ holds $f(x)=$ $a \cdot x+b$. Then
(i) $\quad f$ sec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(f \sec)^{\prime}{ }_{Y}(x)=\frac{a}{(\text { the function } \cos)(x)}+$ $\frac{(a \cdot x+b) \cdot(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$.
(29) Suppose $Z \subseteq \operatorname{dom}(f$ cosec $)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x+b$. Then
(i) f cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(f \operatorname{cosec})^{\prime}{ }_{Z}(x)=\frac{a}{(\text { the function sin)(x) }}-$ $\frac{(a \cdot x+b) \cdot(\text { the } \text { function } \cos)(x)}{(\text { the function } \sin)(x)^{2}}$.
(30) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln)$ sec). Then
(i) (the function \ln) sec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\ln) \sec)^{1}{ }_{Z}(x)=$ $\frac{\frac{1}{(\text { the function } \cos)(x)}}{x}+\frac{(\text { the function } \ln)(x) \cdot(\text { the function } \sin)(x)}{\text { (the function } \cos)(x)^{2}}$.
(31) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln)$ cosec $)$. Then
(i) (the function \ln) cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $((\text { the function } \ln) \operatorname{cosec})^{\prime}{ }_{Z}(x)=$ $\frac{\frac{1}{(\text { the function } \sin)(x)}}{x}-\frac{(\text { the function } \ln)(x) \cdot(\text { the function } \cos)(x)}{\text { (the function } \sin)(x)^{2}}$.
(32) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{f} \sec \right)$ and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) $\frac{1}{f} \sec$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{f} \sec \right)^{\prime}{ }^{\prime}(x)=-\frac{\frac{1}{(\text { the function } \cos)(x)}}{x^{2}}+$ $\frac{\frac{(\text { the function } \sin)(x)}{x}}{(\text { the function } \cos)(x)^{2}}$.
(33) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{f} \operatorname{cosec}\right)$ and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) $\frac{1}{f}$ cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{f} \operatorname{cosec}\right)^{\prime}{ }_{Z}(x)=-\frac{\frac{1}{\left(\frac{\text { the function sin) }(x)}{}\right.}-}{x^{2}}-$ $\frac{(\text { the function } \cos)(x)}{x}$.
(34) Suppose $Z \subseteq \operatorname{dom}(\sec \cdot($ the function $\sin))$. Then
(i) $\sec \cdot($ the function $\sin)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (sec.(the function $\sin))^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \cos)(x) \cdot(\text { the function } \sin)((\text { the function } \sin)(x))}{(\text { the function cos })(\text { (the function } \sin)(x))^{2}}$.
(35) Suppose $Z \subseteq \operatorname{dom}(\sec \cdot($ the function $\cos))$. Then
(i) $\sec \cdot($ the function cos) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\sec \cdot(\text { the function } \cos))^{\prime}{ }_{Y}(x)=$ $-\frac{(\text { the function } \sin)(x) \cdot(\text { the function } \sin)((\text { the function } \cos)(x))}{(\text { the function } \cos)((\text { the function } \cos)(x))^{2}}$.
(36) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot($ the function $\sin))$. Then
(i) cosec $\cdot($ the function $\sin)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot(\text { the function } \sin))^{\prime}{ }_{Z}(x)=$ $-\frac{(\text { the function } \cos)(x) \cdot(\text { the function } \cos)((\text { the function } \sin)(x))}{(\text { the function } \sin)((\text { the function } \sin)(x))^{2}}$.
(37) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot($ the function $\cos))$. Then
(i) $\operatorname{cosec} \cdot($ the function cos) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot(\text { the function } \cos))^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \sin)(x) \cdot(\text { the function } \cos)((\text { the function } \cos)(x))}{\text { (the function } \sin)((\text { the function } \cos)(x))^{2}}$.
(38) Suppose $Z \subseteq \operatorname{dom}(\sec \cdot($ the function $\tan)$). Then
(i) $\mathrm{sec} \cdot($ the function $\tan)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\sec \cdot(\text { the function } \tan))^{\prime}{ }_{Z}(x)=$ $($ the function $\sin)(($ the function $\tan)(x))$ $\frac{\left.\frac{\text { (the function } \cos)(x)^{2}}{(\text { the }} \text { function } \cos \right)(\text { (the function tan)(x) })^{2}}{}$.
(39) Suppose $Z \subseteq \operatorname{dom}(\mathrm{sec} \cdot($ the function cot)). Then
(i) $\sec \cdot($ the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\sec \cdot(\text { the function } \cot))^{\prime}{ }_{Z}(x)=$ (the function $\sin)(($ the function $\cot)(x))$ $-\frac{\frac{(\text { the function } \sin)(\text { (the function } \cot)(x))}{\left(\text { the function sin) }(x)^{2}\right.}}{(\text { the function } \cos)(\text { (the function } \cot)(x))^{2}}$.
(40) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot($ the function $\tan))$. Then
(i) cosec \cdot (the function tan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot(\text { the function } \tan))^{\prime}{ }_{Z}(x)=$ $($ the function $\cos)(($ the function $\tan)(x))$
$-\frac{\frac{(\text { the function cos })(\text { the function } \tan)(x))}{\left(\text { the function coss }(x)^{2}\right.}}{(\text { the function } \sin)((\text { the function } \tan)(x))^{2}}$.
(41) Suppose $Z \subseteq \operatorname{dom}(\operatorname{cosec} \cdot($ the function cot)). Then
(i) $\operatorname{cosec} \cdot($ the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(\operatorname{cosec} \cdot(\text { the function } \cot))^{\prime}{ }_{Z}(x)=$ (the function cos) ((the function cot) $(x))$ $\frac{\frac{(\text { the function } \sin)(x)^{2}}{(\text { the function } \sin)((\text { the function } \cot)(x))^{2}}}{}$.
(42) Suppose $Z \subseteq \operatorname{dom}(($ the function tan $)$ sec). Then
(i) (the function tan) sec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function tan) $\sec)^{\prime}{ }_{Z}(x)=$ $\frac{\frac{1}{(\text { the function } \cos)(x)^{\mathbf{2}}}}{(\text { the function } \cos)(x)}+\frac{(\text { the function } \tan)(x) \cdot(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$.
(43) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) sec). Then
(i) (the function cot) sec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\cot) \sec)^{\prime}{ }_{Y}(x)=$ $-\frac{\frac{1}{(\text { the function } \sin)(x)^{2}}}{(\text { the function } \cos)(x)}+\frac{(\text { the function } \cot)(x) \cdot(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$.
(44) Suppose $Z \subseteq \operatorname{dom}(($ the function tan $)$ cosec $)$. Then
(i) (the function tan) cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function tan) $\operatorname{cosec}^{)^{\prime}}{ }_{Y}(x)=$ $\frac{\frac{1}{(\text { the function } \cos)(x)^{2}}}{(\text { (the function } \sin)(x)}-\frac{(\text { the function } \tan)(x) \cdot(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{2}}$.
(45) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) cosec). Then
(i) (the function cot) cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function cot) $\operatorname{cosec})^{\prime}{ }_{Z}(x)=$ $-\frac{\frac{1}{(\text { the function } \sin)(x)^{\mathbf{2}}}}{(\text { the function } \sin)(x)}-\frac{(\text { the function } \cot)(x) \cdot(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{\mathbf{2}}}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[7] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991
[9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received July 9, 2007

