Laplace Expansion

Karol Pa̧k
Institute of Computer Science
University of Białystok
Poland

Andrzej Trybulec
Institute of Computer Science
University of Białystok
Poland

Summary. In the article the formula for Laplace expansion is proved.

MML identifier: LAPLACE, version: 7.8.05 4.87.985

The notation and terminology used in this paper are introduced in the following articles: [23], [11], [29], [20], [12], [30], [31], [6], [9], [7], [3], [4], [21], [28], [26], [15], [22], [10], [5], [13], [24], [14], [33], [25], [18], [34], [1], [8], [2], [16], [17], [27], [19], and [32].

1. Preliminaries

For simplicity, we follow the rules: x, y are sets, N is an element of \mathbb{N}, c, i, j, k, m, n are natural numbers, D is a non empty set, s is an element of $2 \operatorname{Set} \operatorname{Seg}(n+2), p$ is an element of the permutations of n-element set, p_{1}, q_{1} are elements of the permutations of $(n+1)$-element set, p_{2} is an element of the permutations of $(n+2)$-element set, K is a field, a, b are elements of K, f is a finite sequence of elements of K, A is a matrix over K, A_{1} is a matrix over D of dimension $n \times m, p_{3}$ is a finite sequence of elements of D, and M is a matrix over K of dimension n.

The following propositions are true:
(1) For every finite sequence f and for every natural number i such that $i \in \operatorname{dom} f$ holds $\operatorname{len}\left(f_{\mid i}\right)=\operatorname{len} f-^{\prime} 1$.
(2) Let i, j, n be natural numbers and M be a matrix over K of dimension n. If $i \in \operatorname{dom} M$, then len (the deleting of i-row and j-column in M) $=n-^{\prime} 1$.
(3) If $j \in \operatorname{Seg}$ width A, then width (the deleting of j-column in A) $=$ width $A-^{\prime} 1$.
(4) For every natural number i such that len $A>1$ holds width $A=$ width (the deleting of i-row in A).
(5) For every natural number i such that $j \in \operatorname{Seg}$ width M holds width (the deleting of i-row and j-column in $M)=n-{ }^{\prime} 1$.
Let G be a non empty groupoid, let B be a function from : the carrier of G, \mathbb{N} : into the carrier of G, let g be an element of G, and let i be a natural number. Then $B(g, i)$ is an element of G.

One can prove the following propositions:
(6) $\overline{\overline{\text { the permutations of } n \text {-element set }}}=n$!.
(7) For all i, j such that $i \in \operatorname{Seg}(n+1)$ and $j \in \operatorname{Seg}(n+1)$ holds $\overline{\overline{\left\{p_{1}: p_{1}(i)=j\right\}}}=n$!.
(8) Let K be a Fanoian field, given p_{2}, and X, Y be elements of $\operatorname{Fin} 2 \operatorname{Set} \operatorname{Seg}(n+2)$. Suppose $Y=\{s: s \in$ $\left.X \wedge\left(\operatorname{Part-sgn}\left(p_{2}, K\right)\right)(s)=-\mathbf{1}_{K}\right\}$. Then (the multiplication of $K)-\sum_{X} \operatorname{Part-sgn}\left(p_{2}, K\right)=\operatorname{power}_{K}\left(-\mathbf{1}_{K}, \operatorname{card} Y\right)$.
(9) Let K be a Fanoian field and given p_{2}, i, j. Suppose $i \in \operatorname{Seg}(n+2)$ and $p_{2}(i)=j$. Then there exists an element X of Fin $2 \operatorname{Set} \operatorname{Seg}(n+2)$ such that $X=\{\{N, i\}:\{N, i\} \in 2 \operatorname{Set} \operatorname{Seg}(n+2)\}$ and (the multiplication of $K)-\sum_{X} \operatorname{Part}-\operatorname{sgn}\left(p_{2}, K\right)=\operatorname{power}_{K}\left(-\mathbf{1}_{K}, i+j\right)$.
(10) Let given i, j. Suppose $i \in \operatorname{Seg}(n+1)$ and $j \in \operatorname{Seg}(n+1)$ and $n \geq 2$. Then there exists a function P_{1} from $2 \operatorname{Set} \operatorname{Seg} n \operatorname{into} 2 \operatorname{Set} \operatorname{Seg}(n+1)$ such that
(i) $\quad \operatorname{rng} P_{1}=2 \operatorname{Set} \operatorname{Seg}(n+1) \backslash\{\{N, i\}:\{N, i\} \in 2 \operatorname{Set} \operatorname{Seg}(n+1)\}$,
(ii) $\quad P_{1}$ is one-to-one, and
(iii) for all k, m such that $k<m$ and $\{k, m\} \in 2 \operatorname{Set} \operatorname{Seg} n$ holds if $m<i$ and $k<i$, then $P_{1}(\{k, m\})=\{k, m\}$ and if $m \geq i$ and $k<i$, then $P_{1}(\{k, m\})=\{k, m+1\}$ and if $m \geq i$ and $k \geq i$, then $P_{1}(\{k, m\})=$ $\{k+1, m+1\}$.
(11) If $n<2$, then for every element p of the permutations of n-element set holds p is even and $p=\operatorname{idseq}(n)$.
(12) Let X, Y, D be non empty sets, f be a function from X into Fin Y, g be a function from Fin Y into D, and F be a binary operation on D. Suppose that
(i) for all elements A, B of $\operatorname{Fin} Y$ such that A misses B holds $F(g(A)$, $g(B))=g(A \cup B)$,
(ii) F is commutative and associative and has a unity, and
(iii) $g(\emptyset)=\mathbf{1}_{F}$.

Let I be an element of $\operatorname{Fin} X$. Suppose that for all x, y such that $x \in I$ and $y \in I$ and $f(x)$ meets $f(y)$ holds $x=y$. Then $F-\sum_{I} g \cdot f=F-\sum_{f \circ} g$ and $F-\sum_{f^{\circ} I} g=g\left(\bigcup\left(f^{\circ} I\right)\right)$ and $\bigcup\left(f^{\circ} I\right)$ is an element of Fin Y.

2. Auxiliary Notions

Let i, j, n be natural numbers, let us consider K, and let M be a matrix over K of dimension n. Let us assume that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$. The functor Delete (M, i, j) yielding a matrix over K of dimension $n-^{\prime} 1$ is defined as follows:
(Def. 1) $\operatorname{Delete}(M, i, j)=$ the deleting of i-row and j-column in M.
The following propositions are true:
(13) Let given i, j. Suppose $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$. Let given k, m such that $k \in \operatorname{Seg}\left(n-{ }^{\prime} 1\right)$ and $m \in \operatorname{Seg}\left(n-{ }^{\prime} 1\right)$. Then
(i) if $k<i$ and $m<j$, then $(\operatorname{Delete}(M, i, j))_{k, m}=M_{k, m}$,
(ii) if $k<i$ and $m \geq j$, then $(\operatorname{Delete}(M, i, j))_{k, m}=M_{k, m+1}$,
(iii) if $k \geq i$ and $m<j$, then $(\operatorname{Delete}(M, i, j))_{k, m}=M_{k+1, m}$, and
(iv) if $k \geq i$ and $m \geq j$, then $(\operatorname{Delete}(M, i, j))_{k, m}=M_{k+1, m+1}$.
(14) For all i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ holds $(\operatorname{Delete}(M, i, j))^{\mathrm{T}}=$ Delete $\left(M^{\mathrm{T}}, j, i\right)$.
(15) For every finite sequence f of elements of K and for all i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ holds $\operatorname{Delete}(M, i, j)=\operatorname{Delete}(\operatorname{RLine}(M, i, f), i, j)$.
Let us consider c, n, m, D, let M be a matrix over D of dimension $n \times m$, and let p_{3} be a finite sequence of elements of D. The functor $\operatorname{ReplaceCol}\left(M, c, p_{3}\right)$ yielding a matrix over D of dimension $n \times m$ is defined by:
(Def. 2)(i) len $\operatorname{ReplaceCol}\left(M, c, p_{3}\right)=\operatorname{len} M$ and width $\operatorname{ReplaceCol}\left(M, c, p_{3}\right)=$ width M and for all i, j such that $\langle i, j\rangle \in$ the indices of M holds if $j \neq c$, then $\left(\operatorname{Replace} \operatorname{Col}\left(M, c, p_{3}\right)\right)_{i, j}=M_{i, j}$ and if $j=c$, then (ReplaceCol $\left.\left(M, c, p_{3}\right)\right)_{i, c}=p_{3}(i)$ if len $p_{3}=\operatorname{len} M$,
(ii) $\operatorname{ReplaceCol}\left(M, c, p_{3}\right)=M$, otherwise.

Let us consider c, n, m, D, let M be a matrix over D of dimension $n \times m$, and let p_{3} be a finite sequence of elements of D. We introduce $\operatorname{RCol}\left(M, c, p_{3}\right)$ as a synonym of $\operatorname{ReplaceCol}\left(M, c, p_{3}\right)$.

We now state four propositions:
(16) For every i such that $i \in \operatorname{Seg}$ width A_{1} holds if $i=c$ and $\operatorname{len} p_{3}=\operatorname{len} A_{1}$, then $\left(\operatorname{RCol}\left(A_{1}, c, p_{3}\right)\right)_{\square, i}=p_{3}$ and if $i \neq c$, then $\left(\operatorname{RCol}\left(A_{1}, c, p_{3}\right)\right)_{\square, i}=$ $\left(A_{1}\right)_{\square, i}$.
(17) If $c \notin \operatorname{Seg}$ width A_{1}, then $\operatorname{RCol}\left(A_{1}, c, p_{3}\right)=A_{1}$.
$\operatorname{RCol}\left(A_{1}, c,\left(A_{1}\right)_{\square, c}\right)=A_{1}$.
(19) Let A be a matrix over D of dimension $n \times m$ and A^{\prime} be a matrix over D of dimension $m \times n$. If $A^{\prime}=A^{\mathrm{T}}$ and if $m=0$, then $n=0$, then $\operatorname{Replace} \operatorname{Col}\left(A, c, p_{3}\right)=\left(\operatorname{ReplaceLine}\left(A^{\prime}, c, p_{3}\right)\right)^{\mathrm{T}}$.

3. Permutations

Let us consider i, n and let p_{4} be an element of the permutations of $(n+1)$ element set. Let us assume that $i \in \operatorname{Seg}(n+1)$. The functor $\operatorname{Rem}\left(p_{4}, i\right)$ yielding an element of the permutations of n-element set is defined by the condition (Def. 3).
(Def. 3) Let given k such that $k \in \operatorname{Seg} n$. Then
(i) if $k<i$, then if $p_{4}(k)<p_{4}(i)$, then $\left(\operatorname{Rem}\left(p_{4}, i\right)\right)(k)=p_{4}(k)$ and if $p_{4}(k) \geq p_{4}(i)$, then $\left(\operatorname{Rem}\left(p_{4}, i\right)\right)(k)=p_{4}(k)-1$, and
(ii) if $k \geq i$, then if $p_{4}(k+1)<p_{4}(i)$, then $\left(\operatorname{Rem}\left(p_{4}, i\right)\right)(k)=p_{4}(k+1)$ and if $p_{4}(k+1) \geq p_{4}(i)$, then $\left(\operatorname{Rem}\left(p_{4}, i\right)\right)(k)=p_{4}(k+1)-1$.
One can prove the following three propositions:
(20) Let given i, j. Suppose $i \in \operatorname{Seg}(n+1)$ and $j \in \operatorname{Seg}(n+1)$. Let P be a set. Suppose $P=\left\{p_{1}: p_{1}(i)=j\right\}$. Then there exists a function P_{1} from P into the permutations of n-element set such that P_{1} is bijective and for every q_{1} such that $q_{1}(i)=j$ holds $P_{1}\left(q_{1}\right)=\operatorname{Rem}\left(q_{1}, i\right)$.
(21) For all i, j such that $i \in \operatorname{Seg}(n+1)$ and $p_{1}(i)=j$ holds $(-1)^{\operatorname{sgn}\left(p_{1}\right)} a=$ power $_{K}\left(-\mathbf{1}_{K}, i+j\right) \cdot(-1)^{\operatorname{sgn}\left(\operatorname{Rem}\left(p_{1}, i\right)\right)} a$.
(22) Let given i, j. Suppose $i \in \operatorname{Seg}(n+1)$ and $p_{1}(i)=j$. Let M be a matrix over K of dimension $n+1$ and D_{1} be a matrix over K of dimension n. Suppose $D_{1}=\operatorname{Delete}(M, i, j)$. Then (the product on paths of $\left.M\right)\left(p_{1}\right)=$ power $_{K}\left(-\mathbf{1}_{K}, i+j\right) \cdot M_{i, j} \cdot\left(\right.$ the product on paths of $\left.D_{1}\right)\left(\operatorname{Rem}\left(p_{1}, i\right)\right)$.

4. Minors and Cofactors

Let i, j, n be natural numbers, let us consider K, and let M be a matrix over K of dimension n. The functor $\operatorname{Minor}(M, i, j)$ yielding an element of K is defined by:
(Def. 4) $\operatorname{Minor}(M, i, j)=\operatorname{Det} \operatorname{Delete}(M, i, j)$.
Let i, j, n be natural numbers, let us consider K, and let M be a matrix over K of dimension n. The functor $\operatorname{Cofactor}(M, i, j)$ yielding an element of K is defined as follows:
(Def. 5) Cofactor $(M, i, j)=\operatorname{power}_{K}\left(-\mathbf{1}_{K}, i+j\right) \cdot \operatorname{Minor}(M, i, j)$.
The following propositions are true:
(23) Let given i, j. Suppose $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$. Let P be an element of Fin (the permutations of n-element set). Suppose $P=\{p: p(i)=j\}$. Let M be a matrix over K of dimension n. Then (the addition of K)- \sum_{P} (the product on paths of $M)=M_{i, j} \cdot \operatorname{Cofactor}(M, i, j)$.
(24) For all i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ holds $\operatorname{Minor}(M, i, j)=$ $\operatorname{Minor}\left(M^{\mathrm{T}}, j, i\right)$.

Let us consider n, K and let M be a matrix over K of dimension n. The matrix of cofactor M yielding a matrix over K of dimension n is defined by the condition (Def. 6).
(Def. 6) Let i, j be natural numbers. Suppose $\langle i, j\rangle \in$ the indices of the matrix of cofactor M. Then (the matrix of cofactor $M)_{i, j}=\operatorname{Cofactor}(M, i, j)$.

5. Laplace Expansion

Let us consider n, i, K and let M be a matrix over K of dimension n. The functor Laplace $\operatorname{ExpL}(M, i)$ yields a finite sequence of elements of K and is defined as follows:
(Def. 7) len LaplaceExpL $(M, i)=n$ and for every j such that $j \in$ dom LaplaceExpL (M, i) holds
(LaplaceExpL $(M, i))(j)=M_{i, j} \cdot \operatorname{Cofactor}(M, i, j)$.
Let us consider n, let j be a natural number, let us consider K, and let M
 finite sequence of elements of K and is defined by:
(Def. 8) len Laplace $\operatorname{ExpC}(M, j)=n$ and for every i such that $i \in$ dom LaplaceExpC (M, j) holds $\quad(\operatorname{LaplaceExpC}(M, j))(i)=M_{i, j}$. Cofactor (M, i, j).
One can prove the following propositions:
(25) For every natural number i and for every matrix M over K of dimension n such that $i \in \operatorname{Seg} n$ holds $\operatorname{Det} M=\sum$ Laplace $\operatorname{ExpL}(M, i)$.
(26) For every i such that $i \in \operatorname{Seg} n$ holds Laplace $\operatorname{ExpC}(M, i)=$ Laplace $\operatorname{ExpL}\left(M^{\mathrm{T}}, i\right)$.
(27) For every natural number j and for every matrix M over K of dimension n such that $j \in \operatorname{Seg} n$ holds $\operatorname{Det} M=\sum$ Laplace $\operatorname{ExpC}(M, j)$.
(28) For all p, i such that len $f=n$ and $i \in \operatorname{Seg} n$ holds Line(the matrix of cofactor $M, i) \bullet f=\operatorname{LaplaceExpL}(\operatorname{RLine}(M, i, f), i)$.
(29) If $i \in \operatorname{Seg} n$, then Line $(M, j) \cdot\left((\text { the matrix of cofactor } M)^{\mathrm{T}}\right)_{\square, i}=$ Det RLine $(M, i, \operatorname{Line}(M, j))$.
(30) If Det $M \neq 0_{K}$, then $M \cdot\left(\operatorname{Det} M^{-1} \cdot(\text { the matrix of cofactor } M)^{\mathrm{T}}\right)=$ $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(31) For all f, i such that $\operatorname{len} f=n$ and $i \in \operatorname{Seg} n$ holds (the matrix of cofactor $M)_{\square, i} \bullet f=\operatorname{LaplaceExpL}\left(\operatorname{RLine}\left(M^{\mathrm{T}}, i, f\right), i\right)$.
(32) If $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$, then Line((the matrix of cofactor $\left.M)^{\mathrm{T}}, i\right)$. $M_{\square, j}=\operatorname{Det} \operatorname{RLine}\left(M^{\mathrm{T}}, i, \operatorname{Line}\left(M^{\mathrm{T}}, j\right)\right)$.
(33) If Det $M \neq 0_{K}$, then $\operatorname{Det} M^{-1} \cdot(\text { the matrix of cofactor } M)^{\mathrm{T}} \cdot M=$ $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(34) M is invertible iff $\operatorname{Det} M \neq 0_{K}$.
(35) If Det $M \neq 0_{K}$, then $M^{\smile}=\operatorname{Det} M^{-1} \cdot(\text { the matrix of cofactor } M)^{\mathrm{T}}$.
(36) Let M be a matrix over K of dimension n. Suppose M is invertible. Let given i, j. If $\langle i, j\rangle \in$ the indices of M^{\smile}, then $M^{\smile}{ }_{i, j}=\operatorname{Det} M^{-1}$. $\operatorname{power}_{K}\left(-\mathbf{1}_{K}, i+j\right) \cdot \operatorname{Minor}(M, j, i)$.
(37) Let A be a matrix over K of dimension n. Suppose $\operatorname{Det} A \neq 0_{K}$. Let x, b be matrices over K. Suppose len $x=n$ and $A \cdot x=b$. Then $x=A^{\smile} \cdot b$ and for all i, j such that $\langle i, j\rangle \in$ the indices of x holds $x_{i, j}=\operatorname{Det} A^{-1}$. $\operatorname{Det} \operatorname{ReplaceCol}\left(A, i, b_{\square, j}\right)$.
(38) Let A be a matrix over K of dimension n. Suppose $\operatorname{Det} A \neq 0_{K}$. Let x, b be matrices over K. Suppose width $x=n$ and $x \cdot A=b$. Then $x=b \cdot A^{\smile}$ and for all i, j such that $\langle i, j\rangle \in$ the indices of x holds $x_{i, j}=\operatorname{Det} A^{-1} \cdot \operatorname{Det} \operatorname{ReplaceLine}(A, j, \operatorname{Line}(b, i))$.

6. Product by a Vector

Let D be a non empty set and let f be a finite sequence of elements of D. Then $\langle f\rangle$ is a matrix over D of dimension $1 \times \operatorname{len} f$.

Let us consider K, let M be a matrix over K, and let f be a finite sequence of elements of K. The functor $M \cdot f$ yielding a matrix over K is defined by:
(Def. 9) $M \cdot f=M \cdot\langle f\rangle^{\mathrm{T}}$.
The functor $f \cdot M$ yields a matrix over K and is defined by:
(Def. 10) $\quad f \cdot M=\langle f\rangle \cdot M$.
Next we state two propositions:
(39) Let A be a matrix over K of dimension n. Suppose $\operatorname{Det} A \neq 0_{K}$. Let x, b be finite sequences of elements of K. Suppose len $x=n$ and $A \cdot x=\langle b\rangle^{\mathrm{T}}$. Then $\langle x\rangle^{\mathrm{T}}=A^{\smile} \cdot b$ and for every i such that $i \in \operatorname{Seg} n$ holds $x(i)=$ $\operatorname{Det} A^{-1} \cdot \operatorname{Det} \operatorname{ReplaceCol}(A, i, b)$.
(40) Let A be a matrix over K of dimension n. Suppose $\operatorname{Det} A \neq 0_{K}$. Let x, b be finite sequences of elements of K. Suppose len $x=n$ and $x \cdot A=\langle b\rangle$. Then $\langle x\rangle=b \cdot A^{\smile}$ and for every i such that $i \in \operatorname{Seg} n$ holds $x(i)=$ $\operatorname{Det} A^{-1}$. Det ReplaceLine (A, i, b).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[14] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[15] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[17] Yatsuka Nakamura. Determinant of some matrices of field elements. Formalized Mathematics, 14(1):1-5, 2006.
[18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[19] Karol Pa̧k. Basic properties of determinants of square matrices over a field. Formalized Mathematics, 15(1):17-25, 2007.
[20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, $1(2): 329-334,1990$.
[22] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, $1(2): 369-376,1990$.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Andrzej Trybulec and Agata Darmochwal. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[25] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[26] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[28] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[32] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.
[33] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[34] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received August 13, 2007

