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Summary. In this paper the classic theory of matrices of real elements

(see e.g. [12], [13]) is developed. We prove selected equations that have been

proved previously for matrices of field elements. Similarly, we introduce in this

special context the determinant of a matrix, the identity and zero matrices, and

the inverse matrix. The new concept discussed in the case of matrices of real

numbers is the property of matrices as operators acting on finite sequences of

real numbers from both sides. The relations of invertibility of matrices and the

“onto” property of matrices as operators are discussed.
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The articles [24], [30], [9], [2], [22], [31], [7], [4], [5], [8], [3], [6], [28], [26], [21],

[14], [29], [32], [23], [25], [27], [15], [34], [33], [19], [16], [11], [18], [20], [10], [17],

[1], and [35] provide the terminology and notation for this paper.

1. Preliminaries

We use the following convention: D denotes a non empty set, k, n, m, i, j,

l denote elements of N, and K denotes a field.

We now state several propositions:

(1) For all finite sequences x, y of elements of R such that lenx = len y and

x+ y = 〈0, . . . , 0︸ ︷︷ ︸
len x

〉 holds x = −y and y = −x.

(2) Let A be a matrix over D and p be a finite sequence of elements of D.

If p = A(i) and 1 ≤ i and i ≤ lenA and 1 ≤ j and j ≤ widthA and

len p = widthA, then Ai,j = p(j).
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(3) Let a be a real number and A be a matrix over R. Suppose len(a ·A) =

lenA and width(a · A) = widthA and 〈〈i, j〉〉 ∈ the indices of A. Then

(a ·A)i,j = a · Ai,j.
(4) For all matrices A, B over R of dimension n holds len(A · B) = lenA

and width(A ·B) = widthB and len(A · B) = n and width(A ·B) = n.

(5) For every real number a and for every matrix A over R holds len(a ·A) =

lenA and width(a ·A) = widthA.

2. Calculation of Matrices

We now state the proposition

(6) Let A, B be matrices over R. Suppose lenA = lenB and widthA =

widthB. Then len(A − B) = lenA and width(A − B) = widthA and for

all i, j such that 〈〈i, j〉〉 ∈ the indices of A holds (A−B)i,j = Ai,j −Bi,j.
Let us consider n and let A, B be matrices over R of dimension n. Then

A · B is a matrix over R of dimension n.

The following propositions are true:

(7) For all matrices A, B over R such that lenA = lenB and widthA =

widthB and lenA > 0 holds A+ (B −B) = A.

(8) For all matrices A, B over R such that lenA = lenB and widthA =

widthB and lenA > 0 holds (A+B)−B = A.

(9) For every matrix A over R holds (−1) · A = −A.
(10) For every matrix A over R and for all elements i, j of N such that 〈〈i,

j〉〉 ∈ the indices of A holds (−A)i,j = −Ai,j.
(11) For all real numbers a, b and for every matrix A over R holds (a · b) ·A =

a · (b · A).

(12) For all real numbers a, b and for every matrix A over R holds (a+b)·A =

a · A+ b · A.
(13) For all real numbers a, b and for every matrix A over R holds (a−b)·A =

a · A− b · A.
(14) For every matrix A over K such that n > 0 and lenA > 0 holds


0 . . . 0
...

. . .
...

0 . . . 0




n×(lenA)

K

·A =




0 . . . 0
...

. . .
...

0 . . . 0




n×(widthA)

K

.

(15) For all matrices A, C over K such that lenA = widthC and lenC > 0

and lenA > 0 holds (−C) · A = −C ·A.
(16) For all matrices A, B, C over K such that lenB = lenC and widthB =

widthC and lenA = widthB and lenB > 0 and lenA > 0 holds (B−C) ·
A = B · A− C ·A.
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(17) For all matrices A, B, C over R such that lenA = lenB and widthA =

widthB and lenC = widthA and lenA > 0 and lenC > 0 holds (A−B) ·
C = A · C −B · C.

(18) For every element m of N and for all matrices A, C over K such

that widthA > 0 and lenA > 0 holds A ·




0 . . . 0
...

. . .
...

0 . . . 0




(widthA)×m

K

=




0 . . . 0
...

. . .
...

0 . . . 0




(lenA)×m

K

.

(19) For all matrices A, C over K such that widthA = lenC and lenA > 0

and lenC > 0 holds A · −C = −A · C.
(20) For all matrices A, B, C over K such that lenB = lenC and widthB =

widthC and lenB = widthA and lenB > 0 and lenA > 0 holds A · (B −
C) = A · B −A · C.

(21) For all matrices A, B, C over R such that lenA = lenB and widthA =

widthB and widthC = lenA and lenC > 0 and lenA > 0 holds C · (A−
B) = C ·A−C · B.

(22) Let A, B, C be matrices over R. Suppose that

(i) lenA = lenB,

(ii) widthA = widthB,

(iii) lenC = lenA,

(iv) widthC = widthA, and

(v) for all elements i, j of N such that 〈〈i, j〉〉 ∈ the indices of A holds

Ci,j = Ai,j −Bi,j.
Then C = A−B.

(23) For all finite sequences x1, x2 of elements of R such that lenx1 =

lenx2 and lenx1 > 0 holds LineVec2Mx(x1 − x2) = LineVec2Mx x1 −
LineVec2Mx x2.

(24) For all finite sequences x1, x2 of elements of R such that lenx1 =

lenx2 and len x1 > 0 holds ColVec2Mx(x1 − x2) = ColVec2Mx x1 −
ColVec2Mx x2.

(25) Let A, B be matrices over R. Suppose lenA = lenB and widthA =

widthB. Let i be a natural number. If 1 ≤ i and i ≤ lenA, then Line(A−
B, i) = Line(A, i) − Line(B, i).

(26) Let A, B be matrices over R. Suppose lenA = lenB and widthA =

widthB. Let i be a natural number. If 1 ≤ i and i ≤ widthA, then

(A−B)�,i = A�,i −B�,i.
(27) Let A be a matrix over R of dimension n × k, B be a matrix over R of
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dimension k × m, and C be a matrix over R of dimension m × l. If n > 0

and k > 0 and m > 0, then (A ·B) · C = A · (B · C).

(28) For all matrices A, B, C over R of dimension n holds (A · B) · C =

A · (B · C).

(29) For every matrix A over D of dimension n holds (AT)T = A.

(30) For all matrices A, B over R of dimension n holds (A · B)T = BT ·AT.

(31) For every matrix A over R such that n > 0 and lenA = n and widthA =

m holds −A+A =




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

.

3. Determinants

Let us consider n and let A be a matrix over R of dimension n. Then

(R→ RF)A is a matrix over RF of dimension n.

Let us consider n and let A be a matrix over R of dimension n. The functor

DetA yielding a real number is defined as follows:

(Def. 1) DetA = Det(R→ RF)A.

We now state a number of propositions:

(32) For every matrix A over R of dimension 2 holds DetA = A1,1 · A2,2 −
A1,2 ·A2,1.

(33) For all finite sequences s1, s2, s3 such that len s1 = n and len s2 = n and

len s3 = n holds 〈s1, s2, s3〉 is tabular.

(34) Let p1, p2, p3 be finite sequences of elements of D. Suppose len p1 = n

and len p2 = n and len p3 = n. Then 〈p1, p2, p3〉 is a matrix over D of

dimension 3 × n.

(35) For all elements a1, a2, a3, b1, b2, b3, c1, c2, c3 of D holds 〈〈a1, a2, a3〉,
〈b1, b2, b3〉, 〈c1, c2, c3〉〉 is a matrix over D of dimension 3.

(36) Let A be a matrix over D of dimension n, p be a finite sequence of

elements of D, and i be a natural number. If p = A(i) and i ∈ Segn, then

len p = n.

(37) For every matrix A over D of dimension 3 holds A = 〈〈A1,1, A1,2, A1,3〉,
〈A2,1, A2,2, A2,3〉, 〈A3,1, A3,2, A3,3〉〉.

(38) Let A be a matrix over R of dimension 3. Then DetA = (((A1,1 · A2,2 ·
A3,3 −A1,3 ·A2,2 ·A3,1 −A1,1 ·A2,3 ·A3,2) +A1,2 ·A2,3 ·A3,1)−A1,2 ·A2,1 ·
A3,3) +A1,3 ·A2,1 ·A3,2.

(39) For every permutation f of Seg 0 holds f = εN.

(40) The permutations of 0-element set = {εN}.
(41) For every matrix A over K of dimension 0 holds DetA = 1K .
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(42) For every matrix A over R of dimension 0 holds DetA = 1.

(43) For every natural number n and for every matrix A over K of dimension

n holds DetA = Det(AT).

(44) For every matrix A over R of dimension n holds DetA = Det(AT).

(45) For all matrices A, B over K of dimension n holds Det(A ·B) = DetA ·
DetB.

(46) For all matrices A, B over R of dimension n holds Det(A ·B) = DetA ·
DetB.

4. Matrix as Operator

We now state a number of propositions:

(47) Let x, y be finite sequences of elements of R and A be a matrix over

R. If lenx = lenA and len y = lenx and lenx > 0 and lenA > 0, then

(x− y) ·A = x ·A− y ·A.
(48) Let x, y be finite sequences of elements of R and A be a matrix over R.

If lenx = widthA and len y = lenx and lenx > 0 and lenA > 0, then

A · (x− y) = A · x−A · y.
(49) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenA = lenx and lenx > 0 and widthA > 0, then (−x) · A = −x · A.
(50) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenx = widthA and lenA > 0 and len x > 0, then A · −x = −A · x.
(51) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenx = lenA and lenx > 0 and widthA > 0, then x · −A = −x · A.
(52) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenx = widthA and lenA > 0 and len x > 0, then (−A) · x = −A · x.
(53) Let a be a real number, x be a finite sequence of elements of R, and A

be a matrix over R. If widthA = len x and len x > 0 and lenA > 0, then

A · (a · x) = a · (A · x).

(54) Let x be a finite sequence of elements of R and A, B be matrices over R.

If len x = lenA and lenA = lenB and widthA = widthB and lenA > 0,

then x · (A−B) = x · A− x · B.
(55) Let x be a finite sequence of elements of R and A, B be matrices over R.

If len x = widthA and lenA = lenB and widthA = widthB and lenx > 0

and lenA > 0, then (A−B) · x = A · x−B · x.
(56) For every finite sequence x of elements of R and for every matrix A over

R such that lenA = lenx holds LineVec2Mx x ·A = LineVec2Mx(x · A).

(57) Let x be a finite sequence of elements of R and A, B be matrices over

R. If lenx = lenA and widthA = lenB, then x · (A ·B) = (x ·A) · B.
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(58) Let x be a finite sequence of elements of R and A be a matrix over R.

If widthA = lenx and len x > 0 and lenA > 0, then A · ColVec2Mx x =

ColVec2Mx(A · x).

(59) Let x be a finite sequence of elements of R and A, B be matrices over

R. If len x = widthB and widthA = lenB and lenx > 0 and lenB > 0,

then (A ·B) · x = A · (B · x).

(60) Let B be a matrix over R of dimension n × m and A be a matrix over R
of dimension m × k. Suppose n > 0. Let given i, j. If 〈〈i, j〉〉 ∈ the indices

of B · A, then (B ·A)i,j = (Line(B, i) ·A)(j).

(61) Let A, B be matrices over R of dimension n and given i, j. If 〈〈i, j〉〉 ∈ the

indices of B ·A, then (B · A)i,j = (Line(B, i) ·A)(j).

(62) Let A, B be matrices over R of dimension n. Suppose n > 0. Let given

i, j. If 〈〈i, j〉〉 ∈ the indices of A ·B, then (A · B)i,j = (A ·B�,j)(i).

5. Identity and Zero of Matrix of R

Let n be an element of N. The functor 1Rmatrix(n) yields a matrix over R
of dimension n and is defined as follows:

(Def. 2) 1Rmatrix(n) = (RF → R)(




1 0
. . .

0 1




n×n

RF

).

One can prove the following propositions:

(63)(i) For every i such that 〈〈i, i〉〉 ∈ the indices of 1Rmatrix(n) holds

(1Rmatrix(n))i,i = 1, and

(ii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of 1Rmatrix(n) and i 6= j holds

(1Rmatrix(n))i,j = 0.

(64) (1Rmatrix(n))T = 1Rmatrix(n).

(65) For all elements n, m of N such that n > 0 holds




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

+




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

=




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

.

(66) For every real number a such that n > 0 holds a ·




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

=
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


0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

.

(67) For every field K and for every matrix A over K holds A ·


1 0
. . .

0 1




widthA×widthA

K

= A.

(68) For every matrix A over K holds




1 0
. . .

0 1




lenA×lenA

K

· A = A.

(69) For every matrix A over R holds if n = widthA, thenA·1Rmatrix(n) = A

and if m = lenA, then 1Rmatrix(m) ·A = A.

(70) For every matrix A over R of dimension n holds 1Rmatrix(n) ·A = A.

(71) For every matrix A over R of dimension n holds A · 1Rmatrix(n) = A.

(72) Det 1Rmatrix(n) = 1.

Let n be an element of N. The functor 0Rmatrix(n) yields a matrix over R
of dimension n and is defined by:

(Def. 3) 0Rmatrix(n) =




0 . . . 0
...

. . .
...

0 . . . 0




n×n

R

.

One can prove the following proposition

(73) If n > 0, then Det 0Rmatrix(n) = 0.

Let us consider n and let us consider i. The base fin seq( n, i ) yielding a

finite sequence of elements of R is defined by:

(Def. 4) The base fin seq( n, i) = Replace(n 7→ (0 qua element of R), i, 1).

We now state several propositions:

(74) len (the base fin seq( n, i)) = n.

(75) If 1 ≤ i and i ≤ n, then (the base fin seq( n, i))(i) = 1.

(76) If 1 ≤ i and i ≤ n and 1 ≤ j and j ≤ n and i 6= j, then (the base fin seq(

n, i))(j) = 0.

(77)(i) The base fin seq( 1, 1) = 〈1〉,
(ii) the base fin seq( 2, 1) = 〈1, 0〉,

(iii) the base fin seq( 2, 2) = 〈0, 1〉,
(iv) the base fin seq( 3, 1) = 〈1, 0, 0〉,
(v) the base fin seq( 3, 2) = 〈0, 1, 0〉, and

(vi) the base fin seq( 3, 3) = 〈0, 0, 1〉.
(78) If 1 ≤ i and i ≤ n, then (1Rmatrix(n))(i) = the base fin seq( n, i).
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6. Inverse of Matrix

Let n be an element of N and let A be a matrix over R of dimension n. We

say that A is invertible if and only if:

(Def. 5) There exists a matrix B over R of dimension n such that B · A =

1Rmatrix(n) and A ·B = 1Rmatrix(n).

Let n be an element of N and let A be a matrix over R of dimension n. Let

us assume that A is invertible. The functor InvA yields a matrix over R of

dimension n and is defined as follows:

(Def. 6) InvA ·A = 1Rmatrix(n) and A · InvA = 1Rmatrix(n).

Let us consider n. Note that 1Rmatrix(n) is invertible.

We now state a number of propositions:

(79) Inv 1Rmatrix(n) = 1Rmatrix(n).

(80) For all matrices A, B1, B2 over R of dimension n such that B1 · A =

1Rmatrix(n) and A ·B2 = 1Rmatrix(n) holds B1 = B2 and A is invertible.

(81) For every matrix A over R of dimension n such that A is invertible holds

Det InvA = DetA−1.

(82) For every matrix A over R of dimension n such that A is invertible holds

DetA 6= 0.

(83) Let A, B be matrices over R of dimension n. Suppose A is invertible

and B is invertible. Then A ·B is invertible and InvA ·B = InvB · InvA.

(84) For every matrix A over R of dimension n such that A is invertible holds

Inv InvA = A.

(85) 1Rmatrix(0) = 0Rmatrix(0) and 1Rmatrix(0) = ∅.
(86) For every finite sequence x of elements of R such that lenx = n and

n > 0 holds 1Rmatrix(n) · x = x.

(87) Let n be an element of N, x, y be finite sequences of elements of R, and A

be a matrix over R of dimension n. Suppose A is invertible and lenx = n

and len y = n and n > 0. Then A · x = y if and only if x = InvA · y.
(88) For every finite sequence x of elements of R such that lenx = n holds

x · 1Rmatrix(n) = x.

(89) Let x, y be finite sequences of elements of R and A be a matrix over R of

dimension n. Suppose A is invertible and len x = n and len y = n. Then

x · A = y if and only if x = y · InvA.

(90) Let A be a matrix over R of dimension n. Suppose n > 0 and A is

invertible. Let y be a finite sequence of elements of R. Suppose len y = n.

Then there exists a finite sequence x of elements of R such that lenx = n

and A · x = y.
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(91) Let A be a matrix over R of dimension n. Suppose A is invertible. Let y

be a finite sequence of elements of R. Suppose len y = n. Then there exists

a finite sequence x of elements of R such that lenx = n and x · A = y.

(92) Let A be a matrix over R of dimension n and x, y be finite sequences of

elements of R. Suppose lenx = n and len y = n and x · A = y. Let j be

an element of N. If 1 ≤ j and j ≤ n, then y(j) = |(x,A�,j)|.
(93) Let A be a matrix over R of dimension n. Suppose that for every finite

sequence y of elements of R such that len y = n there exists a finite

sequence x of elements of R such that len x = n and x ·A = y. Then there

exists a matrix B over R of dimension n such that B ·A = 1Rmatrix(n).

(94) Let x be a finite sequence of elements of R and A be a matrix over R of

dimension n. If n > 0 and lenx = n, then AT · x = x · A.
(95) Let x be a finite sequence of elements of R and A be a matrix over R of

dimension n. If n > 0 and lenx = n, then x ·AT = A · x.
(96) Let A be a matrix over R of dimension n. Suppose that

(i) n > 0, and

(ii) for every finite sequence y of elements of R such that len y = n there

exists a finite sequence x of elements of R such that lenx = n and A·x = y.

Then there exists a matrix B over R of dimension n such that A · B =

1Rmatrix(n).

(97) Let A be a matrix over R of dimension n. Suppose that

(i) n > 0, and

(ii) for every finite sequence y of elements of R such that len y = n there

exist finite sequences x1, x2 of elements of R such that len x1 = n and

lenx2 = n and A · x1 = y and x2 · A = y.

Then A is invertible.
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