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Summary. Basing on the definitions from [15], semi-Thue systems, Thue

systems, and direct derivations are introduced. Next, the standard reduction

relation is defined that, in turn, is used to introduce derivations using the theory

from [1]. Finally, languages generated by rewriting systems are defined as all

strings reachable from an initial word. This is followed by the introduction of

the equivalence of semi-Thue systems with respect to the initial word.
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The notation and terminology used here are introduced in the following papers:

[11], [13], [8], [16], [10], [4], [17], [14], [7], [18], [2], [1], [3], [12], [5], [6], and [9].

1. Preliminaries

We adopt the following convention: x denotes a set, k, l denote natural

numbers, and p, q denote finite sequences.

Next we state two propositions:

(1) If k /∈ dom p and k + 1 ∈ dom p, then k = 0.

(2) If k > len p and k ≤ len(p a q), then there exists l such that k = len p+ l

and l ≥ 1 and l ≤ len q.

In the sequel R denotes a binary relation and p, q denote reduction sequences

w.r.t. R.

Next we state two propositions:

(3) If k ≥ 1, then p�k is a reduction sequence w.r.t. R.

(4) If k ∈ dom p, then there exists q such that len q = k and q(1) = p(1) and

q(len q) = p(k).
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2. Finite 0-sequence Yielding Functions and Finite Sequences

Let f be a function. We say that f is finite-0-sequence-yielding if and only

if:

(Def. 1) If x ∈ dom f, then f(x) is a finite 0-sequence.

Let us mention that ∅ is finite-0-sequence-yielding.

Let f be a finite 0-sequence. Observe that 〈f〉 is finite-0-sequence-yielding.

Let us observe that there exists a function which is finite-0-sequence-yielding.

Let p be a finite-0-sequence-yielding function and let us consider x. Then

p(x) is a finite 0-sequence.

One can verify that there exists a finite sequence which is finite-0-sequence-

yielding.

Let E be a set. Note that every finite sequence of elements of Eω is finite-

0-sequence-yielding.

Let p, q be finite-0-sequence-yielding finite sequences. Observe that p a q is

finite-0-sequence-yielding.

3. Concatenation of a Finite 0-sequence with All Elements of a

Finite 0-sequence Yielding Function

Let s be a finite 0-sequence and let p be a finite-0-sequence-yielding function.

The functor s+ p yields a finite-0-sequence-yielding function and is defined by:

(Def. 2) dom(s + p) = dom p and for every x such that x ∈ dom p holds (s +

p)(x) = s a p(x).

The functor p+ s yielding a finite-0-sequence-yielding function is defined by:

(Def. 3) dom(p + s) = dom p and for every x such that x ∈ dom p holds (p +

s)(x) = p(x) a s.

Let s be a finite 0-sequence and let p be a finite-0-sequence-yielding finite

sequence. Note that s+ p is finite sequence-like and p+ s is finite sequence-like.

We adopt the following convention: E denotes a set, s, t denote finite 0-

sequences, and p, q denote finite-0-sequence-yielding finite sequences.

The following propositions are true:

(5) len(s+ p) = len p and len(p+ s) = len p.

(6) 〈〉E + p = p and p+ 〈〉E = p.

(7) s+ (t+ p) = s a t+ p and p+ t+ s = p+ t a s.

(8) s+ (p+ t) = (s+ p) + t.

(9) s+ p a q = (s+ p) a (s+ q) and p a q + s = (p+ s) a (q + s).
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4. Semi-Thue Systems and Thue Systems

Let E be a set, let p be a finite sequence of elements of Eω, and let k be a

natural number. Then p(k) is an element of Eω.

Let E be a set, let k be a natural number, and let s be an element of Eω.

Then k 7→ s is a finite sequence of elements of Eω.

Let E be a set, let s be an element of Eω, and let p be a finite sequence of

elements of Eω. Then s+ p is a finite sequence of elements of Eω. Then p+ s

is a finite sequence of elements of Eω.

Let E be a set. A semi-Thue-system of E is a binary relation on Eω.

In the sequel E is a set and S, T , U are semi-Thue-systems of E.

Let S be a binary relation. Observe that S ∪ S` is symmetric.

Let us consider E. One can check that there exists a semi-Thue-system of

E which is symmetric.

Let E be a set. A Thue-system of E is a symmetric semi-Thue-system of E.

5. Direct Derivations

We follow the rules: s, t, s1, t1, u, v, w are elements of Eω and p is a finite

sequence of elements of Eω.

Let us consider E, S, s, t. The predicate s→S t is defined by:

(Def. 4) 〈〈s, t〉〉 ∈ S.
Let us consider E, S, s, t. The predicate s⇒S t is defined as follows:

(Def. 5) There exist v, w, s1, t1 such that s = v a s1
a w and t = v a t1 a w and

s1 →S t1.

The following propositions are true:

(10) If s→S t, then s⇒S t.

(11) If s⇒S s, then there exist v, w, s1 such that s = vas1
aw and s1 →S s1.

(12) If s⇒S t, then u a s⇒S u
a t and s a u⇒S t

a u.
(13) If s⇒S t, then u a s a v ⇒S u

a t a v.
(14) If s→S t, then u a s⇒S u

a t and s a u⇒S t
a u.

(15) If s→S t, then u a s a v ⇒S u
a t a v.

(16) If S is a Thue-system of E and s→S t, then t→S s.

(17) If S is a Thue-system of E and s⇒S t, then t⇒S s.

(18) If S ⊆ T and s→S t, then s→T t.

(19) If S ⊆ T and s⇒S t, then s⇒T t.

(20) s 6⇒∅Eω,Eω t.
(21) If s⇒S∪T t, then s⇒S t or s⇒T t.
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6. Reduction Relation

Let us consider E. Then idE is a binary relation on E.

Let us consider E, S. The functor ⇒S yielding a binary relation on Eω is

defined as follows:

(Def. 6) 〈〈s, t〉〉 ∈ ⇒S iff s⇒S t.

The following propositions are true:

(22) S ⊆ ⇒S.

(23) Suppose p is a reduction sequence w.r.t. ⇒S. Then p+ u is a reduction

sequence w.r.t. ⇒S and u+ p is a reduction sequence w.r.t. ⇒S.

(24) If p is a reduction sequence w.r.t. ⇒S , then (t + p) + u is a reduction

sequence w.r.t. ⇒S.

(25) If S is a Thue-system of E, then ⇒S = (⇒S)`.
(26) If S ⊆ T, then ⇒S ⊆ ⇒T .

(27) ⇒idEω = idEω .

(28) ⇒S∪idEω =⇒S ∪ idEω .

(29) ⇒∅Eω,Eω = ∅Eω,Eω .
(30) If s⇒⇒S

t, then s⇒S t.

(31) ⇒⇒S
=⇒S.

7. Derivations

Let us consider E, S, s, t. The predicate s⇒∗S t is defined by:

(Def. 7) ⇒S reduces s to t.

One can prove the following propositions:

(32) s⇒∗S s.
(33) If s⇒S t, then s⇒∗S t.
(34) If s→S t, then s⇒∗S t.
(35) If s⇒∗S t and t⇒∗S u, then s⇒∗S u.
(36) If s⇒∗S t, then s a u⇒∗S t a u and u a s⇒∗S u a t.
(37) If s⇒∗S t, then u a s a v ⇒∗S u a t a v.
(38) If s⇒∗S t and u⇒∗S v, then s a u⇒∗S t a v and u a s⇒∗S v a t.
(39) If S is a Thue-system of E and s⇒∗S t, then t⇒∗S s.
(40) If S ⊆ T and s⇒∗S t, then s⇒∗T t.
(41) s⇒∗S t iff s⇒∗S∪idEω

t.

(42) If s⇒∗∅Eω,Eω t, then s = t.

(43) If s⇒∗⇒S
t, then s⇒∗S t.
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(44) If s⇒∗S t and u⇒{〈〈s, t〉〉} v, then u⇒∗S v.
(45) If s⇒∗S t and u⇒∗

S∪{〈〈s, t〉〉} v, then u⇒∗S v.

8. Languages Generated by Semi-Thue Systems

Let us consider E, S, w. The functor Lang(w,S) yields a subset of Eω and

is defined by:

(Def. 8) Lang(w,S) = {s : w ⇒∗S s}.
Next we state two propositions:

(46) s ∈ Lang(w,S) iff w ⇒∗S s.
(47) w ∈ Lang(w,S).

Let E be a non empty set, let S be a semi-Thue-system of E, and let w be

an element of Eω. Note that Lang(w,S) is non empty.

We now state four propositions:

(48) If S ⊆ T, then Lang(w,S) ⊆ Lang(w, T ).

(49) Lang(w,S) = Lang(w,S ∪ idEω).

(50) Lang(w, ∅Eω ,Eω) = {w}.
(51) Lang(w, idEω) = {w}.

9. Equivalence of Semi-Thue Systems

Let us consider E, S, T , w. We say that S and T are equivalent wrt w if

and only if:

(Def. 9) Lang(w,S) = Lang(w, T ).

The following propositions are true:

(52) S and S are equivalent wrt w.

(53) If S and T are equivalent wrt w, then T and S are equivalent wrt w.

(54) Suppose S and T are equivalent wrt w and T and U are equivalent wrt

w. Then S and U are equivalent wrt w.

(55) S and S ∪ idEω are equivalent wrt w.

(56) Suppose S and T are equivalent wrt w and S ⊆ U and U ⊆ T. Then S

and U are equivalent wrt w and U and T are equivalent wrt w.

(57) S and ⇒S are equivalent wrt w.

(58) If S and T are equivalent wrt w and ⇒S∪T reduces w to s, then ⇒S

reduces w to s.

(59) If S and T are equivalent wrt w and w ⇒∗S∪T s, then w ⇒∗S s.
(60) If S and T are equivalent wrt w, then S and S∪T are equivalent wrt w.
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(61) If s⇒S t, then S and S ∪ {〈〈s, t〉〉} are equivalent wrt w.

(62) If s⇒∗S t, then S and S ∪ {〈〈s, t〉〉} are equivalent wrt w.
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