String Rewriting Systems

Michał Trybulec
Motorola Software Group
Cracow, Poland

Summary. Basing on the definitions from [15], semi-Thue systems, Thue systems, and direct derivations are introduced. Next, the standard reduction relation is defined that, in turn, is used to introduce derivations using the theory from [1]. Finally, languages generated by rewriting systems are defined as all strings reachable from an initial word. This is followed by the introduction of the equivalence of semi-Thue systems with respect to the initial word.

MML identifier: REWRITE2, version: 7.8.05 4.87.985

The notation and terminology used here are introduced in the following papers: [11], [13], [8], [16], [10], [4], [17], [14], [7], [18], [2], [1], [3], [12], [5], [6], and [9].

1. Preliminaries

We adopt the following convention: x denotes a set, k, l denote natural numbers, and p, q denote finite sequences.

Next we state two propositions:
(1) If $k \notin \operatorname{dom} p$ and $k+1 \in \operatorname{dom} p$, then $k=0$.
(2) If $k>\operatorname{len} p$ and $k \leq \operatorname{len}\left(p^{\wedge} q\right)$, then there exists l such that $k=\operatorname{len} p+l$ and $l \geq 1$ and $l \leq \operatorname{len} q$.
In the sequel R denotes a binary relation and p, q denote reduction sequences w.r.t. R.

Next we state two propositions:
(3) If $k \geq 1$, then $p \upharpoonright k$ is a reduction sequence w.r.t. R.
(4) If $k \in \operatorname{dom} p$, then there exists q such that len $q=k$ and $q(1)=p(1)$ and $q(\operatorname{len} q)=p(k)$.

2. Finite 0-sequence Yielding Functions and Finite Sequences

Let f be a function. We say that f is finite- 0 -sequence-yielding if and only if:
(Def. 1) If $x \in \operatorname{dom} f$, then $f(x)$ is a finite 0 -sequence.
Let us mention that \emptyset is finite-0-sequence-yielding.
Let f be a finite 0 -sequence. Observe that $\langle f\rangle$ is finite- 0 -sequence-yielding.
Let us observe that there exists a function which is finite- 0 -sequence-yielding.
Let p be a finite-0-sequence-yielding function and let us consider x. Then $p(x)$ is a finite 0 -sequence.

One can verify that there exists a finite sequence which is finite-0-sequenceyielding.

Let E be a set. Note that every finite sequence of elements of E^{ω} is finite0 -sequence-yielding.

Let p, q be finite- 0 -sequence-yielding finite sequences. Observe that $p^{\wedge} q$ is finite-0-sequence-yielding.

3. Concatenation of a Finite 0-sequence with All Elements of a Finite 0-sequence Yielding Function

Let s be a finite 0 -sequence and let p be a finite- 0 -sequence-yielding function. The functor $s+p$ yields a finite-0-sequence-yielding function and is defined by:
(Def. 2) $\operatorname{dom}(s+p)=\operatorname{dom} p$ and for every x such that $x \in \operatorname{dom} p$ holds $(s+$ $p)(x)=s^{\wedge} p(x)$.
The functor $p+s$ yielding a finite-0-sequence-yielding function is defined by:
(Def. 3) $\operatorname{dom}(p+s)=\operatorname{dom} p$ and for every x such that $x \in \operatorname{dom} p$ holds $(p+$ $s)(x)=p(x) \wedge s$.
Let s be a finite 0 -sequence and let p be a finite- 0 -sequence-yielding finite sequence. Note that $s+p$ is finite sequence-like and $p+s$ is finite sequence-like.

We adopt the following convention: E denotes a set, s, t denote finite 0 sequences, and p, q denote finite-0-sequence-yielding finite sequences.

The following propositions are true:
(5) $\operatorname{len}(s+p)=\operatorname{len} p$ and $\operatorname{len}(p+s)=\operatorname{len} p$.
(6) $\left\rangle_{E}+p=p\right.$ and $p+\langle \rangle_{E}=p$.
(7) $s+(t+p)=s^{\wedge} t+p$ and $p+t+s=p+t^{\wedge} s$.
(8) $s+(p+t)=(s+p)+t$.
(9) $s+p^{\wedge} q=(s+p)^{\wedge}(s+q)$ and $p^{\wedge} q+s=(p+s)^{\wedge}(q+s)$.

4. Semi-Thue Systems and Thue Systems

Let E be a set, let p be a finite sequence of elements of E^{ω}, and let k be a natural number. Then $p(k)$ is an element of E^{ω}.

Let E be a set, let k be a natural number, and let s be an element of E^{ω}. Then $k \mapsto s$ is a finite sequence of elements of E^{ω}.

Let E be a set, let s be an element of E^{ω}, and let p be a finite sequence of elements of E^{ω}. Then $s+p$ is a finite sequence of elements of E^{ω}. Then $p+s$ is a finite sequence of elements of E^{ω}.

Let E be a set. A semi-Thue-system of E is a binary relation on E^{ω}.
In the sequel E is a set and S, T, U are semi-Thue-systems of E.
Let S be a binary relation. Observe that $S \cup S^{\smile}$ is symmetric.
Let us consider E. One can check that there exists a semi-Thue-system of E which is symmetric.

Let E be a set. A Thue-system of E is a symmetric semi-Thue-system of E.

5. Direct Derivations

We follow the rules: $s, t, s_{1}, t_{1}, u, v, w$ are elements of E^{ω} and p is a finite sequence of elements of E^{ω}.

Let us consider E, S, s, t. The predicate $s \rightarrow_{S} t$ is defined by:
(Def. 4) $\langle s, t\rangle \in S$.
Let us consider E, S, s, t. The predicate $s \Rightarrow_{S} t$ is defined as follows:
(Def. 5) There exist v, w, s_{1}, t_{1} such that $s=v^{\frown} s_{1}{ }^{\circ} w$ and $t=v^{\frown} t_{1} \frown w$ and $s_{1} \rightarrow_{S} t_{1}$.
The following propositions are true:
(10) If $s \rightarrow_{S} t$, then $s \Rightarrow_{S} t$.
(11) If $s \Rightarrow_{S} s$, then there exist v, w, s_{1} such that $s=v^{\frown} s_{1}{ }^{\wedge} w$ and $s_{1} \rightarrow_{S} s_{1}$.
(12) If $s \Rightarrow_{S} t$, then $u{ }^{\wedge} s \Rightarrow_{S} u \frown t$ and $s \frown u \Rightarrow_{S} t^{\frown} u$.
(13) If $s \Rightarrow_{S} t$, then $u s^{\wedge} v \Rightarrow_{S} u \frown t \frown v$.
(14) If $s \rightarrow_{S} t$, then $u{ }^{\wedge} s \Rightarrow_{S} u \frown t$ and $s \frown u \Rightarrow_{S} t^{\frown} u$.
(15) If $s \rightarrow_{S} t$, then $u^{\wedge} s^{\wedge} v \Rightarrow_{S} u^{\wedge} t^{\frown} v$.
(16) If S is a Thue-system of E and $s \rightarrow_{S} t$, then $t \rightarrow_{S} s$.
(17) If S is a Thue-system of E and $s \Rightarrow_{S} t$, then $t \Rightarrow_{S} s$.
(18) If $S \subseteq T$ and $s \rightarrow_{S} t$, then $s \rightarrow_{T} t$.
(19) If $S \subseteq T$ and $s \Rightarrow_{S} t$, then $s \Rightarrow_{T} t$.
(20) $s \nRightarrow \emptyset_{E^{\omega}, E^{\omega}} t$.
(21) If $s \Rightarrow_{S \cup T} t$, then $s \Rightarrow_{S} t$ or $s \Rightarrow_{T} t$.

6. Reduction Relation

Let us consider E. Then id_{E} is a binary relation on E.
Let us consider E, S. The functor \Rightarrow_{S} yielding a binary relation on E^{ω} is defined as follows:
(Def. 6) $\langle s, t\rangle \in \Rightarrow_{S}$ iff $s \Rightarrow_{S} t$.
The following propositions are true:
(22) $S \subseteq \Rightarrow_{S}$.
(23) Suppose p is a reduction sequence w.r.t. \Rightarrow_{S}. Then $p+u$ is a reduction sequence w.r.t. \Rightarrow_{S} and $u+p$ is a reduction sequence w.r.t. \Rightarrow_{S}.
(24) If p is a reduction sequence w.r.t. \Rightarrow_{S}, then $(t+p)+u$ is a reduction sequence w.r.t. \Rightarrow_{S}.
(25) If S is a Thue-system of E, then $\Rightarrow_{S}=\left(\Rightarrow_{S}\right)^{\smile}$.
(26) If $S \subseteq T$, then $\Rightarrow_{S} \subseteq \Rightarrow_{T}$.
(27) $\Rightarrow \operatorname{id}_{E^{\omega}}=\operatorname{id}_{E^{\omega}}$.
(28) $\Rightarrow_{S \cup \operatorname{id}_{E^{\omega}}}=\Rightarrow_{S} \cup \operatorname{id}_{E^{\omega}}$.
(29) $\Rightarrow_{\emptyset_{E^{\omega}, E^{\omega}}}=\emptyset_{E^{\omega}, E^{\omega}}$.
(30) If $s \Rightarrow_{\Rightarrow_{S}} t$, then $s \Rightarrow_{S} t$.
(31) $\Rightarrow_{\Rightarrow_{S}}=\Rightarrow_{S}$.

7. Derivations

Let us consider E, S, s, t. The predicate $s \Rightarrow{ }_{S}^{*} t$ is defined by:
(Def. 7) \Rightarrow_{S} reduces s to t.
One can prove the following propositions:
(32) $s \Rightarrow{ }_{S}^{*} s$.
(33) If $s \Rightarrow_{S} t$, then $s \Rightarrow_{S}^{*} t$.
(34) If $s \rightarrow_{S} t$, then $s \Rightarrow_{S}^{*} t$.
(35) If $s \Rightarrow_{S}^{*} t$ and $t \Rightarrow{ }_{S}^{*} u$, then $s \Rightarrow_{S}^{*} u$.
(36) If $s \Rightarrow_{S}^{*} t$, then $s^{\wedge} u \Rightarrow_{S}^{*} t^{\frown} u$ and $u \frown s \Rightarrow_{S}^{*} u^{\frown} t$.
(37) If $s \Rightarrow_{S}^{*} t$, then $u^{\frown} s^{\frown} v \Rightarrow{ }_{S}^{*} u^{\frown} t^{\frown} v$.
(38) If $s \Rightarrow{ }_{S}^{*} t$ and $u \Rightarrow{ }_{S}^{*} v$, then $s^{\frown} u \Rightarrow{ }_{S}^{*} t^{\wedge} v$ and $u{ }^{\wedge} s \Rightarrow_{S}^{*} v \frown t$.
(39) If S is a Thue-system of E and $s \Rightarrow_{S}^{*} t$, then $t \Rightarrow_{S}^{*} s$.
(40) If $S \subseteq T$ and $s \Rightarrow{ }_{S}^{*} t$, then $s \Rightarrow{ }_{T}^{*} t$.
(41) $s \Rightarrow_{S}^{*} t$ iff $s \Rightarrow_{S \cup \operatorname{id}_{E^{\omega}}}^{*} t$.
(42) If $s \Rightarrow_{\emptyset_{E^{\omega}, E^{\omega}}}^{*} t$, then $s=t$.
(43) If $s \Rightarrow{\underset{\Rightarrow}{S}}_{*} t$, then $s \Rightarrow_{S}^{*} t$.
(44) If $s \Rightarrow_{S}^{*} t$ and $u \Rightarrow_{\{\langle s, t\rangle\}} v$, then $u \Rightarrow{ }_{S}^{*} v$.
(45) If $s \Rightarrow_{S}^{*} t$ and $u \nRightarrow_{S \cup\{\langle s, t\rangle\}}^{*} v$, then $u \nRightarrow_{S}^{*} v$.

8. Languages Generated by Semi-Thue Systems

Let us consider E, S, w. The functor $\operatorname{Lang}(w, S)$ yields a subset of E^{ω} and is defined by:
(Def. 8) $\operatorname{Lang}(w, S)=\left\{s: w \Rightarrow{ }_{S}^{*} s\right\}$.
Next we state two propositions:
(46) $s \in \operatorname{Lang}(w, S)$ iff $w \Rightarrow{ }_{S}^{*} s$.
(47) $w \in \operatorname{Lang}(w, S)$.

Let E be a non empty set, let S be a semi-Thue-system of E, and let w be an element of E^{ω}. Note that $\operatorname{Lang}(w, S)$ is non empty.

We now state four propositions:
(48) If $S \subseteq T$, then $\operatorname{Lang}(w, S) \subseteq \operatorname{Lang}(w, T)$.
(49) $\operatorname{Lang}(w, S)=\operatorname{Lang}\left(w, S \cup \operatorname{id}_{E^{\omega}}\right)$.
(50) $\operatorname{Lang}\left(w, \emptyset_{E^{\omega}, E^{\omega}}\right)=\{w\}$.
(51) $\operatorname{Lang}\left(w, \operatorname{id}_{E^{\omega}}\right)=\{w\}$.

9. Equivalence of Semi-Thue Systems

Let us consider E, S, T, w. We say that S and T are equivalent $w r t w$ if and only if:
(Def. 9) Lang $(w, S)=\operatorname{Lang}(w, T)$.
The following propositions are true:
(52) S and S are equivalent wrt w.
(53) If S and T are equivalent wrt w, then T and S are equivalent wrt w.
(54) Suppose S and T are equivalent wrt w and T and U are equivalent wrt w. Then S and U are equivalent wrt w.
(55) S and $S \cup \mathrm{id}_{E^{\omega}}$ are equivalent wrt w.
(56) Suppose S and T are equivalent wrt w and $S \subseteq U$ and $U \subseteq T$. Then S and U are equivalent wrt w and U and T are equivalent wrt w.
(57) S and \Rightarrow_{S} are equivalent wrt w.
(58) If S and T are equivalent wrt w and $\Rightarrow_{S \cup T}$ reduces w to s, then \Rightarrow_{S} reduces w to s.
(59) If S and T are equivalent wrt w and $w \Rightarrow{ }_{S \cup T}^{*} s$, then $w \Rightarrow{ }_{S}^{*} s$.
(60) If S and T are equivalent wrt w, then S and $S \cup T$ are equivalent wrt w.
(61) If $s \Rightarrow_{S} t$, then S and $S \cup\{\langle s, t\rangle\}$ are equivalent wrt w.
(62) If $s \Rightarrow_{S}^{*} t$, then S and $S \cup\{\langle s, t\rangle\}$ are equivalent wrt w.

References

[1] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[6] Markus Moschner. Basic notions and properties of orthoposets. Formalized Mathematics, 11(2):201-210, 2003.
[7] Karol Pạk. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153-159, 2006.
[8] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics, 15(1):11-15, 2007.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[15] William M. Waite and Gerhard Goos. Compiler Construction. Springer-Verlag New York Inc., 1984.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[18] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received July 17, 2007

