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Summary. In this article we mainly define the information entropy [3],

[11] and prove some its basic properties. First, we discuss some properties on

four kinds of transformation functions between vector and matrix. The trans-

formation functions are LineVec2Mx, ColVec2Mx, Vec2DiagMx and Mx2FinS.

Mx2FinS is a horizontal concatenation operator for a given matrix, treating rows

of the given matrix as finite sequences, yielding a new finite sequence by hori-

zontally joining each row of the given matrix in order to index. Then we define

each concept of information entropy for a probability sequence and two kinds

of probability matrices, joint and conditional, that are defined in article [25].

Further, we discuss some properties of information entropy including Shannon’s

lemma, maximum property, additivity and super-additivity properties.

MML identifier: ENTROPY1, version: 7.8.05 4.84.971

The papers [21], [23], [1], [20], [24], [6], [14], [8], [4], [22], [17], [7], [9], [2], [5], [15],

[16], [12], [10], [13], [18], [25], and [19] provide the terminology and notation for

this paper.

1. Preliminaries

For simplicity, we use the following convention: D denotes a non empty set,

i, j, k, l denote elements of N, n denotes a natural number, a, b, c, r, r1, r2

denote real numbers, p, q denote finite sequences of elements of R, and M1, M2

denote matrices over R.

Next we state several propositions:

(1) If k 6= 0 and i < l and l ≤ j and k | l, then i÷ k < j ÷ k.
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(2) If r > 0, then (log (e))(r) ≤ r − 1 and r = 1 iff (log (e))(r) = r − 1 and

r 6= 1 iff (log (e))(r) < r − 1.

(3) If r > 0, then loge r ≤ r − 1 and r = 1 iff loge r = r − 1 and r 6= 1 iff

loge r < r − 1.

(4) If a > 1 and b > 1, then loga b > 0.

(5) If a > 0 and a 6= 1 and b > 0, then −loga b = loga(
1
b ).

(6) If a > 0 and a 6= 1 and b ≥ 0 and c ≥ 0, then b · c · loga(b · c) =

b · c · loga b+ b · c · loga c.

(7) Let q, q1, q2 be finite sequences of elements of R. Suppose len q1 = len q

and len q1 = len q2 and for every k such that k ∈ dom q1 holds q(k) =

q1(k) + q2(k). Then
∑
q =

∑
q1 +

∑
q2.

(8) Let q, q1, q2 be finite sequences of elements of R. Suppose len q1 = len q

and len q1 = len q2 and for every k such that k ∈ dom q1 holds q(k) =

q1(k)− q2(k). Then
∑
q =

∑
q1 −

∑
q2.

(9) Suppose len p ≥ 1. Then there exists q such that len q = len p and q(1) =

p(1) and for every k such that 0 6= k and k < len p holds q(k + 1) =

q(k) + p(k + 1) and
∑
p = q(len p).

Let us consider p. Let us observe that p is non-negative if and only if:

(Def. 1) For every i such that i ∈ dom p holds p(i) ≥ 0.

Let us note that there exists a finite sequence of elements of R which is

non-negative.

The following proposition is true

(10) If p is non-negative and r ≥ 0, then r · p is non-negative.

Let us consider p, k. We say that p has only one value in k if and only if:

(Def. 2) k ∈ dom p and for every i such that i ∈ dom p and i 6= k holds p(i) = 0.

Next we state four propositions:

(11) If p has only one value in k and i 6= k, then p(i) = 0.

(12) If len p = len q and p has only one value in k, then p • q has only one

value in k and (p • q)(k) = p(k) · q(k).

(13) If p has only one value in k, then
∑
p = p(k).

(14) If p is non-negative, then for every k such that k ∈ dom p and p(k) =
∑
p

holds p has only one value in k.

Let us observe that every finite sequence of elements of R which is finite

probability distribution is also non empty and non-negative.

One can prove the following propositions:

(15) Let p be finite probability distribution finite sequence of elements of R
and given k such that k ∈ dom p and p(k) = 1. Then p has only one value

in k.
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(16) Let i be a non empty natural number. Then i 7→ 1
i is finite probability

distribution finite sequence of elements of R.

One can check that every matrix over R which is summable-to-1 is also non

empty yielding and every matrix over R which is joint probability is also non

empty yielding.

The following propositions are true:

(17) For every matrix M over R such that M = ∅ holds SumAllM = 0.

(18) For every matrix M over D and for every i such that i ∈ domM holds

domM(i) = Seg widthM.

(19) M1 is nonnegative iff for every i such that i ∈ domM1 holds Line(M1, i)

is non-negative.

2. Properties of Transformations between Vector and Matrix

Next we state four propositions:

(20) For every j such that j ∈ dom p holds (LineVec2Mx p)�,j = 〈p(j)〉.
(21) Let p be a non empty finite sequence of elements of R, q be a fi-

nite sequence of elements of R, and M be a matrix over R. Then

M = ColVec2Mx p · LineVec2Mx q if and only if the following conditions

are satisfied:

(i) lenM = len p,

(ii) widthM = len q, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j = p(i) · q(j).
(22) Let p be a non empty finite sequence of elements of R, q be a fi-

nite sequence of elements of R, and M be a matrix over R. Then

M = ColVec2Mx p · LineVec2Mx q if and only if the following conditions

are satisfied:

(i) lenM = len p,

(ii) widthM = len q, and

(iii) for every i such that i ∈ domM holds Line(M, i) = p(i) · q.
(23) Let p, q be finite probability distribution finite sequences of elements of

R. Then ColVec2Mx p · LineVec2Mx q is joint probability.

Let us consider n and let M1 be a matrix over R of dimension n. We say

that M1 is diagonal if and only if:

(Def. 3) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M1 and (M1)i,j 6= 0 holds

i = j.

Let us consider n. Observe that there exists a matrix over R of dimension

n which is diagonal.

The following proposition is true
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(24) Let M1 be a matrix over R of dimension n. Then M1 is diagonal if and

only if for every i such that i ∈ domM1 holds Line(M1, i) has only one

value in i.

Let us consider p. The functor Vec2DiagMx p yielding a diagonal matrix

over R of dimension len p is defined as follows:

(Def. 4) For every j such that j ∈ dom p holds (Vec2DiagMx p)j,j = p(j).

One can prove the following propositions:

(25) M1 = Vec2DiagMx p iff lenM1 = len p and widthM1 = len p and for

every i such that i ∈ domM1 holds Line(M1, i) has only one value in i

and Line(M1, i)(i) = p(i).

(26) Suppose len p = lenM1. Then M2 = Vec2DiagMx p ·M1 if and only if

the following conditions are satisfied:

(i) lenM2 = len p,

(ii) widthM2 = widthM1, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M2 holds (M2)i,j = p(i) ·
(M1)i,j .

(27) If len p = lenM1, then M2 = Vec2DiagMx p · M1 iff lenM2 = len p

and widthM2 = widthM1 and for every i such that i ∈ domM2 holds

Line(M2, i) = p(i) · Line(M1, i).

(28) Let p be finite probability distribution finite sequence of elements of R
and M be a non empty yielding conditional probability matrix over R. If

len p = lenM, then Vec2DiagMx p ·M is joint probability.

(29) Let M be a matrix over D and p be a finite sequence of elements of D∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k+1) = p(k)aM(k+1). Let given k. If k ∈ dom p,

then len p(k) = k · widthM.

(30) Let M be a matrix over D and p be a finite sequence of elements of

D∗. Suppose len p = lenM and p(1) = M(1) and for every k such that

k ≥ 1 and k < lenM holds p(k + 1) = p(k) aM(k + 1). Let given i, j. If

i ∈ dom p and j ∈ dom p and i ≤ j, then dom p(i) ⊆ dom p(j).

(31) Let M be a matrix over D and p be a finite sequence of elements of D∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k+1) = p(k)aM(k+1). Then len p(1) = widthM

and for every j such that 〈〈1, j〉〉 ∈ the indices of M holds j ∈ dom p(1)

and p(1)(j) = M1,j .

(32) Let M be a matrix over D and p be a finite sequence of elements of D∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k+ 1) = p(k)aM(k+ 1). Let given j. If j ≥ 1 and

j < len p, then for every l such that l ∈ dom p(j) holds p(j)(l) = p(j+1)(l).

(33) Let M be a matrix over D and p be a finite sequence of elements of D∗.
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Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k + 1) = p(k) aM(k + 1). Let given i, j. Suppose

i ∈ dom p and j ∈ dom p and i ≤ j. Let given l. If l ∈ dom p(i), then

p(i)(l) = p(j)(l).

(34) Let M be a matrix over D and p be a finite sequence of elements of

D∗. Suppose len p = lenM and p(1) = M(1) and for every k such that

k ≥ 1 and k < lenM holds p(k + 1) = p(k) a M(k + 1). Let given j.

Suppose j ≥ 1 and j < len p. Let given l. If l ∈ Seg widthM, then

j ·widthM + l ∈ dom p(j+ 1) and p(j+ 1)(j ·widthM + l) = M(j+ 1)(l).

(35) Let M be a matrix over D and p be a finite sequence of elements of

D∗. Suppose len p = lenM and p(1) = M(1) and for every k such that

k ≥ 1 and k < lenM holds p(k + 1) = p(k) a M(k + 1). Let given i, j.

Suppose 〈〈i, j〉〉 ∈ the indices of M . Then (i − 1) · widthM + j ∈ dom p(i)

and Mi,j = p(i)((i − 1) · widthM + j).

(36) Let M be a matrix over D and p be a finite sequence of elements of D∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k + 1) = p(k) aM(k + 1). Let given i, j. Suppose

〈〈i, j〉〉 ∈ the indices of M . Then (i− 1) ·widthM + j ∈ dom p(lenM) and

Mi,j = p(lenM)((i − 1) · widthM + j).

(37) Let M be a matrix over R and p be a finite sequence of elements of R∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k + 1) = p(k) a M(k + 1). Let given k. If k ≥ 1

and k < lenM, then
∑
p(k + 1) =

∑
p(k) +

∑
M(k + 1).

(38) Let M be a matrix over R and p be a finite sequence of elements of R∗.
Suppose len p = lenM and p(1) = M(1) and for every k such that k ≥ 1

and k < lenM holds p(k + 1) = p(k) a M(k + 1). Then SumAllM =∑
p(lenM).

Let D be a non empty set and let M be a matrix over D. The functor

Mx2FinSM yields a finite sequence of elements of D and is defined by:

(Def. 5)(i) Mx2FinSM = ∅ if lenM = 0,

(ii) there exists a finite sequence p of elements of D∗ such that

Mx2FinSM = p(lenM) and len p = lenM and p(1) = M(1) and for

every k such that k ≥ 1 and k < lenM holds p(k + 1) = p(k) aM(k + 1),

otherwise.

We now state several propositions:

(39) For every matrix M over D holds len Mx2FinSM = lenM · widthM.

(40) Let M be a matrix over D and given i, j. If 〈〈i, j〉〉 ∈ the indices of M ,

then (i−1)·widthM+j ∈ dom Mx2FinSM and Mi,j = (Mx2FinSM)((i−
1) · widthM + j).

(41) Let M be a matrix over D and given k, l. Suppose k ∈ dom Mx2FinSM
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and l = k−1. Then 〈〈(l÷widthM)+1, (lmod widthM)+1〉〉 ∈ the indices

of M and (Mx2FinSM)(k) = M(l÷widthM)+1,(lmod widthM)+1.

(42) SumAllM1 =
∑

Mx2FinSM1.

(43) M1 is nonnegative iff Mx2FinSM1 is non-negative.

(44) M1 is joint probability iff Mx2FinSM1 is finite probability distribution.

(45) Let p, q be finite probability distribution finite sequences of elements

of R. Then Mx2FinS(ColVec2Mx p · LineVec2Mx q) is finite probability

distribution.

(46) Let p be finite probability distribution finite sequence of elements of R
and M be a non empty yielding conditional probability matrix over R.

If len p = lenM, then Mx2FinS(Vec2DiagMx p ·M) is finite probability

distribution.

3. Information Entropy

Let us consider a, p. Let us assume that a > 0 and a 6= 1 and p is non-

negative. The functor
−→
loga p yields a finite sequence of elements of R and is

defined by:

(Def. 6) len
−→
loga p = len p and for every k such that k ∈ dom

−→
loga p holds if

p(k) > 0, then (
−→
loga p)(k) = loga p(k) and if p(k) = 0, then (

−→
loga p)(k) = 0.

Let us consider p. The functor
−−−→
id log p yields a finite sequence of elements

of R and is defined by:

(Def. 7)
−−−→
id log p = p • −→log2 p.

The following propositions are true:

(47) Let p be a non-negative finite sequence of elements of R and given q.

Then q =
−−−→
id log p if and only if the following conditions are satisfied:

(i) len q = len p, and

(ii) for every k such that k ∈ dom q holds q(k) = p(k) · log2 p(k).

(48) Let p be a non-negative finite sequence of elements of R and given k such

that k ∈ dom p. Then

(i) if p(k) = 0, then (
−−−→
id log p)(k) = 0, and

(ii) if p(k) > 0, then (
−−−→
id log p)(k) = p(k) · log2 p(k).

(49) Let p be a non-negative finite sequence of elements of R and given q.

Then q = −−−−→id log p if and only if the following conditions are satisfied:

(i) len q = len p, and

(ii) for every k such that k ∈ dom q holds q(k) = p(k) · log2( 1
p(k) ).

(50) Let p be a non-negative finite sequence of elements of R. Suppose r1 ≥ 0

and r2 ≥ 0. Let given i. If i ∈ dom p and p(i) = r1 · r2, then (
−−−→
id log p)(i) =

r1 · r2 · log2 r1 + r1 · r2 · log2 r2.



definition and some properties of . . . 117

(51) For every non-negative finite sequence p of elements of R such that r ≥ 0

holds
−−−→
id log r · p = r · log2 r · p+ r · (p • −→log2 p).

(52) Let p be a non empty finite probability distribution finite sequence of

elements of R and given k. If k ∈ dom p, then (
−−−→
id log p)(k) ≤ 0.

Let us consider M1. Let us assume that M1 is nonnegative. The functor−−−→
id logM1 yields a matrix over R and is defined as follows:

(Def. 8) len
−−−→
id logM1 = lenM1 and width

−−−→
id logM1 = widthM1 and for ev-

ery k such that k ∈ dom
−−−→
id logM1 holds (

−−−→
id logM1)(k) = Line(M1, k) •−→

log2 Line(M1, k).

The following two propositions are true:

(53) For every nonnegative matrix M over R and for every k such that k ∈
domM holds Line(

−−−→
id logM,k) =

−−−→
id log Line(M,k).

(54) Let M be a nonnegative matrix over R and M3 be a matrix over R.

Then M3 =
−−−→
id logM if and only if the following conditions are satisfied:

(i) lenM3 = lenM,

(ii) widthM3 = widthM, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M3 holds (M3)i,j = Mi,j ·
log2(Mi,j).

Let p be a finite sequence of elements of R. The functor Entropy p yields a

real number and is defined by:

(Def. 9) Entropy p = −∑−−−→id log p.

We now state several propositions:

(55) For every non empty finite probability distribution finite sequence p of

elements of R holds Entropy p ≥ 0.

(56) Let p be a non empty finite probability distribution finite sequence of

elements of R. If there exists k such that k ∈ dom p and p(k) = 1, then

Entropy p = 0.

(57) Let p, q be non empty finite probability distribution finite sequences of

elements of R and p1, q3 be finite sequences of elements of R. Suppose

that

(i) len p = len q,

(ii) len p1 = len p,

(iii) len q3 = len q, and

(iv) for every k such that k ∈ dom p holds p(k) > 0 and q(k) > 0 and

p1(k) = −p(k) · log2 p(k) and q3(k) = −p(k) · log2 q(k).

Then

(v)
∑
p1 ≤

∑
q3,

(vi) for every k such that k ∈ dom p holds p(k) = q(k) iff
∑
p1 =

∑
q3, and

(vii) there exists k such that k ∈ dom p and p(k) 6= q(k) iff
∑
p1 <

∑
q3.
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(58) Let p be a non empty finite probability distribution finite sequence of

elements of R. Suppose that for every k such that k ∈ dom p holds p(k) >

0. Then

(i) Entropy p ≤ log2 len p,

(ii) for every k such that k ∈ dom p holds p(k) = 1
len p iff Entropy p =

log2 len p, and

(iii) there exists k such that k ∈ dom p and p(k) 6= 1
len p iff Entropy p <

log2 len p.

(59) For every nonnegative matrix M over R holds Mx2FinS
−−−→
id logM =−−−→

id log Mx2FinSM.

(60) Let p, q be finite probability distribution finite sequences of elements of

R and M be a matrix over R. If M = ColVec2Mx p · LineVec2Mx q, then

SumAll
−−−→
id logM =

∑−−−→
id log p+

∑−−−→
id log q.

Let us consider M1. The entropy of joint probability of M1 yields a real

number and is defined as follows:

(Def. 10) The entropy of joint probability of M1 = Entropy Mx2FinSM1.

Next we state the proposition

(61) Let p, q be finite probability distribution finite sequences of elements of

R. Then the entropy of joint probability of ColVec2Mx p ·LineVec2Mx q =

Entropy p+ Entropy q.

Let us consider M1. The entropy of conditional probability of M1 yields a

finite sequence of elements of R and is defined by the conditions (Def. 11).

(Def. 11)(i) len (the entropy of conditional probability of M1) = lenM1, and

(ii) for every k such that k ∈ dom (the entropy of conditional probabil-

ity of M1) holds (the entropy of conditional probability of M1)(k) =

Entropy Line(M1, k).

One can prove the following propositions:

(62) Let M be a non empty yielding conditional probability matrix over R
and p be a finite sequence of elements of R. Then p = the entropy of

conditional probability of M if and only if len p = lenM and for every k

such that k ∈ dom p holds p(k) = −∑(
−−−→
id logM)(k).

(63) Let M be a non empty yielding conditional probability matrix over R.

Then the entropy of conditional probability of M = −LineSum
−−−→
id logM.

(64) Let p be finite probability distribution finite sequence of elements

of R and M be a non empty yielding conditional probability matrix

over R. Suppose len p = lenM. Let M3 be a matrix over R. If

M3 = Vec2DiagMx p · M, then SumAll
−−−→
id logM3 =

∑−−−→
id log p +

∑
(p •

LineSum
−−−→
id logM).

(65) Let p be finite probability distribution finite sequence of elements of

R and M be a non empty yielding conditional probability matrix over
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R. Suppose len p = lenM. Then the entropy of joint probability of

Vec2DiagMx p ·M = Entropy p+
∑

(p • the entropy of conditional proba-

bility of M).
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