Combinatorial Grassmannians

Andrzej Owsiejczuk
Białystok, Poland

Abstract

Summary. In the paper I construct the configuration G which is a partial linear space. It consists of k-element subsets of some base set as points and $(k+1)$-element subsets as lines. The incidence is given by inclusion. I also introduce automorphisms of partial linear spaces and show that automorphisms of G are generated by permutations of the base set.

MML identifier: COMBGRAS, version: 7.8.05 4.84.971

The articles [15], [17], [3], [14], [7], [11], [13], [8], [18], [19], [4], [12], [16], [9], [5], [6], [10], [2], and [1] provide the notation and terminology for this paper.

1. Preliminaries

We follow the rules: k, n denote elements of \mathbb{N} and X, Y, Z denote sets. One can prove the following propositions:
(1) For all sets a, b such that $a \neq b$ and $\overline{\bar{a}}=n$ and $\overline{\bar{b}}=n$ holds $\overline{\overline{a \cap b}}<n$ and $n+1 \leq \overline{\overline{a \cup b}}$.
(2) For all sets a, b such that $\overline{\bar{a}}=n+k$ and $\overline{\bar{b}}=n+k$ holds $\overline{\overline{a \cap b}}=n$ iff $\overline{\overline{a \cup b}}=n+2 \cdot k$.
(3) $\overline{\bar{X}} \leq \overline{\bar{Y}}$ iff there exists a function f such that f is one-to-one and $X \subseteq \operatorname{dom} f$ and $f^{\circ} X \subseteq Y$.
(4) For every function f such that f is one-to-one and $X \subseteq \operatorname{dom} f$ holds $\overline{\overline{f^{\circ} X}}=\overline{\bar{X}}$.
(5) If $X \backslash Y=X \backslash Z$ and $Y \subseteq X$ and $Z \subseteq X$, then $Y=Z$.
(6) Let Y be a non empty set and p be a function from X into Y. Suppose p is one-to-one. Let x_{1}, x_{2} be subsets of X. If $x_{1} \neq x_{2}$, then $p^{\circ} x_{1} \neq p^{\circ} x_{2}$.
(7) Let a, b, c be sets such that $\overline{\bar{a}}=n-1$ and $\overline{\bar{b}}=n-1$ and $\overline{\bar{c}}=n-1$ and $\overline{\overline{a \cap b}}=n-2$ and $\overline{\overline{a \cap c}}=n-2$ and $\overline{\overline{b \cap c}}=n-2$ and $2 \leq n$. Then
(i) if $3 \leq n$, then $\overline{\overline{a \cap b \cap c}}=n-2$ and $\overline{\overline{a \cup b \cup c}}=n+1$ or $\overline{\overline{a \cap b \cap c}}=n-3$ and $\overline{\overline{a \cup b \cup c}}=n$, and
(ii) if $n=2$, then $\overline{\overline{a \cap b \cap c}}=n-2$ and $\overline{\overline{a \cup b \cup c}}=n+1$.
(8) Let P_{1}, P_{2} be projective incidence structures. Suppose the projective incidence structure of $P_{1}=$ the projective incidence structure of P_{2}. Let A_{1} be a point of P_{1} and A_{2} be a point of P_{2}. Suppose $A_{1}=A_{2}$. Let L_{1} be a line of P_{1} and L_{2} be a line of P_{2}. If $L_{1}=L_{2}$, then if A_{1} lies on L_{1}, then A_{2} lies on L_{2}.
(9) Let P_{1}, P_{2} be projective incidence structures. Suppose the projective incidence structure of $P_{1}=$ the projective incidence structure of P_{2}. Let A_{1} be a subset of the points of P_{1} and A_{2} be a subset of the points of P_{2}. Suppose $A_{1}=A_{2}$. Let L_{1} be a line of P_{1} and L_{2} be a line of P_{2}. If $L_{1}=L_{2}$, then if A_{1} lies on L_{1}, then A_{2} lies on L_{2}.
Let us note that there exists a projective incidence structure which is linear, up-2-rank, and strict and has non-trivial-lines.

2. Configuration G

A partial linear space is an up-2-rank projective incidence structure with non-trivial-lines.

Let k be an element of \mathbb{N} and let X be a non empty set. Let us assume that $0<k$ and $k+1 \leq \overline{\bar{X}}$. The functor $\mathrm{G}_{k}(X)$ yields a strict partial linear space and is defined by the conditions (Def. 1).
(Def. 1)(i) The points of $\mathrm{G}_{k}(X)=\{A ; A$ ranges over subsets of $X: \overline{\bar{A}}=k\}$,
(ii) the lines of $\mathrm{G}_{k}(X)=\{L ; L$ ranges over subsets of $X: \overline{\bar{L}}=k+1\}$, and
(iii) the incidence of $\mathrm{G}_{k}(X)=\subseteq_{2^{X}} \cap$: the points of $\mathrm{G}_{k}(X)$, the lines of $\left.\mathrm{G}_{k}(X):\right]$.
One can prove the following four propositions:
(10) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let A be a point of $\mathrm{G}_{k}(X)$ and L be a line of $\mathrm{G}_{k}(X)$. Then A lies on L if and only if $A \subseteq L$.
(11) For every element k of \mathbb{N} and for every non empty set X such that $0<k$ and $k+1 \leq \overline{\bar{X}}$ holds $\mathrm{G}_{k}(X)$ is Vebleian.
(12) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ be points of $\mathrm{G}_{k}(X)$ and L_{1}, L_{2}, L_{3}, L_{4} be lines of $\mathrm{G}_{k}(X)$. Suppose that A_{1} lies on L_{1} and A_{2} lies on L_{1} and A_{3} lies on L_{2} and A_{4} lies on L_{2} and A_{5} lies on L_{1} and A_{5} lies on
L_{2} and A_{1} lies on L_{3} and A_{3} lies on L_{3} and A_{2} lies on L_{4} and A_{4} lies on L_{4} and A_{5} does not lie on L_{3} and A_{5} does not lie on L_{4} and $L_{1} \neq L_{2}$ and $L_{3} \neq L_{4}$. Then there exists a point A_{6} of $\mathrm{G}_{k}(X)$ such that A_{6} lies on L_{3} and A_{6} lies on L_{4} and $A_{6}=A_{1} \cap A_{2} \cup A_{3} \cap A_{4}$.
(13) For every element k of \mathbb{N} and for every non empty set X such that $0<k$ and $k+1 \leq \overline{\bar{X}}$ holds $\mathrm{G}_{k}(X)$ is Desarguesian.
Let S be a projective incidence structure and let K be a subset of the points of S. We say that K is a clique if and only if:
(Def. 2) For all points A, B of S such that $A \in K$ and $B \in K$ there exists a line L of S such that $\{A, B\}$ lies on L.
Let S be a projective incidence structure and let K be a subset of the points of S. We say that K is a maximal-clique if and only if:
(Def. 3) K is a clique and for every subset U of the points of S such that U is a clique and $K \subseteq U$ holds $U=K$.
Let k be an element of \mathbb{N}, let X be a non empty set, and let T be a subset of the points of $\mathrm{G}_{k}(X)$. We say that T is a star if and only if:
(Def. 4) There exists a subset S of X such that $\overline{\bar{S}}=k-1$ and $T=\{A ; A$ ranges over subsets of $X: \overline{\bar{A}}=k \wedge S \subseteq A\}$.
We say that T is a top if and only if:
(Def. 5) There exists a subset S of X such that $\overline{\bar{S}}=k+1$ and $T=\{A ; A$ ranges over subsets of $X: \overline{\bar{A}}=k \wedge A \subseteq S\}$.
Next we state two propositions:
(14) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $2 \leq k$ and $k+2 \leq \overline{\bar{X}}$. Let K be a subset of the points of $\mathrm{G}_{k}(X)$. If K is a star or a top, then K is a maximal-clique.
(15) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $2 \leq k$ and $k+2 \leq \overline{\bar{X}}$. Let K be a subset of the points of $\mathrm{G}_{k}(X)$. If K is a maximal-clique, then K is a star or a top.

3. Automorphisms

Let S_{1}, S_{2} be projective incidence structures. We consider maps between projective spaces S_{1} and S_{2} as systems
\langle a point-map, a line-map \rangle,
where the point-map is a function from the points of S_{1} into the points of S_{2} and the line-map is a function from the lines of S_{1} into the lines of S_{2}.

Let S_{1}, S_{2} be projective incidence structures, let F be a map between projective spaces S_{1} and S_{2}, and let a be a point of S_{1}. The functor $F(a)$ yields a point of S_{2} and is defined as follows:
(Def. 6) $\quad F(a)=($ the point-map of $F)(a)$.
Let S_{1}, S_{2} be projective incidence structures, let F be a map between projective spaces S_{1} and S_{2}, and let L be a line of S_{1}. The functor $F(L)$ yields a line of S_{2} and is defined by:
$($ Def. 7) $\quad F(L)=($ the line-map of $F)(L)$.
Next we state the proposition
(16) Let S_{1}, S_{2} be projective incidence structures and F_{1}, F_{2} be maps between projective spaces S_{1} and S_{2}. Suppose for every point A of S_{1} holds $F_{1}(A)=$ $F_{2}(A)$ and for every line L of S_{1} holds $F_{1}(L)=F_{2}(L)$. Then the map of $F_{1}=$ the map of F_{2}.
Let S_{1}, S_{2} be projective incidence structures and let F be a map between projective spaces S_{1} and S_{2}. We say that F preserves incidence strongly if and only if:
(Def. 8) For every point A_{1} of S_{1} and for every line L_{1} of S_{1} holds A_{1} lies on L_{1} iff $F\left(A_{1}\right)$ lies on $F\left(L_{1}\right)$.
The following proposition is true
(17) Let S_{1}, S_{2} be projective incidence structures and F_{1}, F_{2} be maps between projective spaces S_{1} and S_{2}. Suppose the map of $F_{1}=$ the map of F_{2}. If F_{1} preserves incidence strongly, then F_{2} preserves incidence strongly.
Let S be a projective incidence structure and let F be a map between projective spaces S and S. We say that F is automorphism if and only if:
(Def. 9) The line-map of F is bijective and the point-map of F is bijective and F preserves incidence strongly.
Let S_{1}, S_{2} be projective incidence structures, let F be a map between projective spaces S_{1} and S_{2}, and let K be a subset of the points of S_{1}. The functor $F^{\circ} K$ yielding a subset of the points of S_{2} is defined by:
(Def. 10) $\quad F^{\circ} K=(\text { the point-map of } F)^{\circ} K$.
Let S_{1}, S_{2} be projective incidence structures, let F be a map between projective spaces S_{1} and S_{2}, and let K be a subset of the points of S_{2}. The functor $F^{-1}(K)$ yielding a subset of the points of S_{1} is defined as follows:
(Def. 11) $\quad F^{-1}(K)=(\text { the point-map of } F)^{-1}(K)$.
Let X be a set and let A be a finite set. The functor $\uparrow(A, X)$ yielding a subset of 2^{X} is defined as follows:
(Def. 12) $\uparrow(A, X)=\{B ; B$ ranges over subsets of $X: \overline{\bar{B}}=\operatorname{card} A+1 \wedge A \subseteq B\}$.
Let k be an element of \mathbb{N} and let X be a non empty set. Let us assume that $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let A be a finite set. Let us assume that $\overline{\bar{A}}=k-1$ and $A \subseteq X$. The functor $\uparrow(A, X, k)$ yields a subset of the points of $\mathrm{G}_{k}(X)$ and is defined as follows:
(Def. 13) $\uparrow(A, X, k)=\uparrow(A, X)$.

The following propositions are true:
(18) Let S_{1}, S_{2} be projective incidence structures, F be a map between projective spaces S_{1} and S_{2}, and K be a subset of the points of S_{1}. Then $F^{\circ} K=\left\{B ; B\right.$ ranges over points of $S_{2}: \bigvee_{A: \text { point of } S_{1}}(A \in K \wedge F(A)=$ B) $\}$.
(19) Let S_{1}, S_{2} be projective incidence structures, F be a map between projective spaces S_{1} and S_{2}, and K be a subset of the points of S_{2}. Then $F^{-1}(K)=\left\{A ; A\right.$ ranges over points of $S_{1}: \bigvee_{B \text { : point of } S_{2}}(B \in$ $K \wedge F(A)=B)\}$.
(20) Let S be a projective incidence structure, F be a map between projective spaces S and S, and K be a subset of the points of S. If F preserves incidence strongly and K is a clique, then $F^{\circ} K$ is a clique.
(21) Let S be a projective incidence structure, F be a map between projective spaces S and S, and K be a subset of the points of S. Suppose F preserves incidence strongly and the line-map of F is onto and K is a clique. Then $F^{-1}(K)$ is a clique.
(22) Let S be a projective incidence structure, F be a map between projective spaces S and S, and K be a subset of the points of S. Suppose F is automorphism and K is a maximal-clique. Then $F^{\circ} K$ is a maximal-clique and $F^{-1}(K)$ is a maximal-clique.
(23) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $2 \leq k$ and $k+2 \leq \overline{\bar{X}}$. Let F be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose F is automorphism. Let K be a subset of the points of $\mathrm{G}_{k}(X)$. If K is a star, then $F^{\circ} K$ is a star and $F^{-1}(K)$ is a star.
Let k be an element of \mathbb{N} and let X be a non empty set. Let us assume that $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let s be a permutation of X. The functor $\operatorname{incprojmap}(k, s)$ yielding a strict map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$ is defined as follows:
(Def. 14) For every point A of $\mathrm{G}_{k}(X)$ holds (incprojmap $\left.(k, s)\right)(A)=s^{\circ} A$ and for every line L of $\mathrm{G}_{k}(X)$ holds (incprojmap $\left.(k, s)\right)(L)=s^{\circ} L$.
One can prove the following propositions:
(24) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $k=1$ and $k+1 \leq \overline{\bar{X}}$. Let F be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose F is automorphism. Then there exists a permutation s of X such that the map of $F=\operatorname{incprojmap}(k, s)$.
(25) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $1<k$ and $\overline{\bar{X}}=k+1$. Let F be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose F is automorphism. Then there exists a permutation s of X such that the map of $F=\operatorname{incprojmap}(k, s)$.
(26) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$
and $k+1 \leq \overline{\bar{X}}$. Let T be a subset of the points of $\mathrm{G}_{k}(X)$ and S be a subset of X. If $\overline{\bar{S}}=k-1$ and $T=\{A ; A$ ranges over subsets of X : $\overline{\bar{A}}=k \wedge S \subseteq A\}$, then $S=\bigcap T$.
(27) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let T be a subset of the points of $\mathrm{G}_{k}(X)$. Suppose T is a star. Let S be a subset of X. If $S=\bigcap T$, then $\overline{\bar{S}}=k-1$ and $T=\{A ; A$ ranges over subsets of $X: \overline{\bar{A}}=k \wedge S \subseteq A\}$.
(28) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let T_{1}, T_{2} be subsets of the points of $\mathrm{G}_{k}(X)$. If T_{1} is a star and T_{2} is a star and $\bigcap T_{1}=\bigcap T_{2}$, then $T_{1}=T_{2}$.
(29) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let A be a finite subset of X. If $\overline{\bar{A}}=k-1$, then $\uparrow(A, X, k)$ is a star.
(30) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let A be a finite subset of X. If $\overline{\bar{A}}=k-1$, then $\bigcap \uparrow(A, X, k)=A$.
(31) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$ and $k+3 \leq \overline{\bar{X}}$. Let F be a map between projective spaces $\mathrm{G}_{(k+1)}(X)$ and $\mathrm{G}_{(k+1)}(X)$. Suppose F is automorphism. Then there exists a map H between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$ such that
(i) H is automorphism,
(ii) the line-map of $H=$ the point-map of F, and
(iii) for every point A of $\mathrm{G}_{k}(X)$ and for every finite set B such that $B=A$ holds $H(A)=\bigcap\left(F^{\circ} \uparrow(B, X, k+1)\right)$.
(32) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$ and $k+3 \leq \overline{\bar{X}}$. Let F be a map between projective spaces $\mathrm{G}_{(k+1)}(X)$ and $\mathrm{G}_{(k+1)}(X)$. Suppose F is automorphism. Let H be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose that
(i) H is automorphism,
(ii) the line-map of $H=$ the point-map of F, and
(iii) for every point A of $\mathrm{G}_{k}(X)$ and for every finite set B such that $B=A$ holds $H(A)=\bigcap\left(F^{\circ} \uparrow(B, X, k+1)\right)$.
Let f be a permutation of X. If the map of $H=\operatorname{incprojmap}(k, f)$, then the map of $F=\operatorname{incprojmap}(k+1, f)$.
(33) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $2 \leq k$ and $k+2 \leq \overline{\bar{X}}$. Let F be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Suppose F is automorphism. Then there exists a permutation s of X such that the map of $F=\operatorname{incprojmap}(k, s)$.
(34) Let k be an element of \mathbb{N} and X be a non empty set. Suppose $0<k$
and $k+1 \leq \overline{\bar{X}}$. Let s be a permutation of X. Then $\operatorname{incprojmap}(k, s)$ is automorphism.
(35) Let X be a non empty set. Suppose $0<k$ and $k+1 \leq \overline{\bar{X}}$. Let F be a map between projective spaces $\mathrm{G}_{k}(X)$ and $\mathrm{G}_{k}(X)$. Then F is automorphism if and only if there exists a permutation s of X such that the map of $F=\operatorname{incprojmap}(k, s)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Agata Darmochwat. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
[11] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Wojciech A. Trybulec. Axioms of incidency. Formalized Mathematics, 1(1):205-213, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

