The Relevance of Measure and Probability, and Definition of Completeness of Probability

Bo Zhang
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we first discuss the relation between measure defined using extended real numbers and probability defined using real numbers. Further, we define completeness of probability, and its completion method, and also show that they coincide with those of measure.

MML identifier: PROB_4, version: 7.6.01 4.53.937

The articles [18], [20], [2], [3], [5], [1], [12], [15], [21], [8], [19], [17], [4], [9], [14], [23], [6], [11], [16], [22], [10], [7], and [13] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: n denotes a natural number, X denotes a set, A_{1} denotes a sequence of subsets of X, S_{1} denotes a σ-field of subsets of X, X_{1} denotes a sequence of subsets of S_{1}, O_{1} denotes a non empty set, S_{2} denotes a σ-field of subsets of O_{1}, A_{2} denotes a sequence of subsets of S_{2}, and P denotes a probability on S_{2}.

Let us consider X, S_{1}, X_{1}, n. Then $X_{1}(n)$ is an element of S_{1}.
Next we state two propositions:
(1) $\quad \operatorname{rng} X_{1} \subseteq S_{1}$.
(2) For every function f holds f is a sequence of subsets of S_{1} iff f is a function from \mathbb{N} into S_{1}.
The scheme LambdaSigmaSSeq deals with a set \mathcal{A}, a σ-field \mathcal{B} of subsets of \mathcal{A}, and a unary functor \mathcal{F} yielding an element of \mathcal{B}, and states that:

There exists a sequence f of subsets of \mathcal{B} such that for every n holds $f(n)=\mathcal{F}(n)$
for all values of the parameters.
Let us consider X. Note that there exists a sequence of subsets of X which is disjoint valued.

Let us consider X, S_{1}. Note that there exists a sequence of subsets of S_{1} which is disjoint valued.

One can prove the following propositions:
(3) For all subsets A, B of X there exists A_{1} such that $A_{1}(0)=A$ and $A_{1}(1)=B$ and for every n such that $n>1$ holds $A_{1}(n)=\emptyset$.
(4) Let A, B be subsets of X. Suppose A misses B and $A_{1}(0)=A$ and $A_{1}(1)=B$ and for every n such that $n>1$ holds $A_{1}(n)=\emptyset$. Then A_{1} is disjoint valued and $\bigcup A_{1}=A \cup B$.
(5) Let S be a non empty set. Then S is a σ-field of subsets of X if and only if the following conditions are satisfied:
(i) $S \subseteq 2^{X}$,
(ii) for every sequence A_{1} of subsets of X such that for every n holds $A_{1}(n) \in S$ holds $\bigcup A_{1} \in S$, and
(iii) for every subset A of X such that $A \in S$ holds $A^{\mathrm{c}} \in S$.
(6) For all events A, B of S_{2} holds $P(A \backslash B)=P(A \cup B)-P(B)$.
(7) For all events A, B of S_{2} such that $A \subseteq B$ and $P(B)=0$ holds $P(A)=0$.
(8) For every n holds $P\left(A_{2}(n)\right)=0$ iff $P\left(\bigcup A_{2}\right)=0$.
(9) For every set A such that $A \in \operatorname{rng} A_{2}$ holds $P(A)=0$ iff $P\left(\bigcup \operatorname{rng} A_{2}\right)=0$.
(10) For every function s_{1} from \mathbb{N} into \mathbb{R} and for every function E_{1} from \mathbb{N} into $\overline{\mathbb{R}}$ such that $s_{1}=E_{1}$ holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}=\operatorname{Ser} E_{1}$.
(11) Let s_{1} be a function from \mathbb{N} into \mathbb{R} and E_{1} be a function from \mathbb{N} into $\overline{\mathbb{R}}$. If $s_{1}=E_{1}$ and s_{1} is upper bounded, then $\sup s_{1}=\sup \operatorname{rng} E_{1}$.
(12) Let s_{1} be a function from \mathbb{N} into \mathbb{R} and E_{1} be a function from \mathbb{N} into $\overline{\mathbb{R}}$. If $s_{1}=E_{1}$ and s_{1} is lower bounded, then $\inf s_{1}=\inf \operatorname{rng} E_{1}$.
(13) Let s_{1} be a function from \mathbb{N} into \mathbb{R} and E_{1} be a function from \mathbb{N} into $\overline{\mathbb{R}}$. If $s_{1}=E_{1}$ and s_{1} is non-negative and summable, then $\sum s_{1}=\sum E_{1}$.
(14) P is a σ-measure on S_{2}.

Let us consider O_{1}, S_{2}, P. The functor P2M P yields a σ-measure on S_{2} and is defined as follows:
(Def. 1) \quad P2M $P=P$.
One can prove the following proposition
(15) Let X be a non empty set, S be a σ-field of subsets of X, and M be a σ-measure on S. If $M(X)=\overline{\mathbb{R}}(1)$, then M is a probability on S.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a σ-measure on S. Let us assume that $M(X)=\overline{\mathbb{R}}(1)$. The functor M2P M yielding a probability on S is defined as follows:
(Def. 2) \quad M2P $M=M$.
One can prove the following propositions:
(16) If A_{1} is non-decreasing, then the partial unions of $A_{1}=A_{1}$.
(17) Suppose A_{1} is non-decreasing. Then (the partial diff-unions of $\left.A_{1}\right)(0)=$ $A_{1}(0)$ and for every n holds (the partial diff-unions of $\left.A_{1}\right)(n+1)=A_{1}(n+$ 1) $\backslash A_{1}(n)$.
(18) If A_{1} is non-decreasing, then for every n holds $A_{1}(n+1)=$ (the partial diff-unions of $\left.A_{1}\right)(n+1) \cup A_{1}(n)$.
(19) If A_{1} is non-decreasing, then for every n holds (the partial diff-unions of $\left.A_{1}\right)(n+1)$ misses $A_{1}(n)$.
(20) If X_{1} is non-decreasing, then the partial unions of $X_{1}=X_{1}$.
(21) Suppose X_{1} is non-decreasing. Then (the partial diff-unions of $\left.X_{1}\right)(0)=$ $X_{1}(0)$ and for every n holds (the partial diff-unions of $\left.X_{1}\right)(n+1)=X_{1}(n+$ 1) $\backslash X_{1}(n)$.
(22) If X_{1} is non-decreasing, then for every n holds (the partial diff-unions of $\left.X_{1}\right)(n+1)$ misses $X_{1}(n)$.
Let us consider O_{1}, S_{2}, P. We say that P is complete on S_{2} if and only if:
(Def. 3) For every subset A of O_{1} and for every set B such that $B \in S_{2}$ holds if $A \subseteq B$ and $P(B)=0$, then $A \in S_{2}$.
Next we state the proposition
(23) P is complete on S_{2} iff P2M P is complete on S_{2}.

Let us consider O_{1}, S_{2}, P. A subset of O_{1} is called a set with measure zero w.r.t. P if:
(Def. 4) There exists a set A such that $A \in S_{2}$ and it $\subseteq A$ and $P(A)=0$.
We now state three propositions:
(24) Let Y be a subset of O_{1}. Then Y is a set with measure zero w.r.t. P if and only if Y is a set with measure zero w.r.t. P2M P.
(25) \emptyset is a set with measure zero w.r.t. P.
(26) Let B_{1}, B_{2} be sets. Suppose $B_{1} \in S_{2}$ and $B_{2} \in S_{2}$. Let C_{1}, C_{2} be sets with measure zero w.r.t. P. If $B_{1} \cup C_{1}=B_{2} \cup C_{2}$, then $P\left(B_{1}\right)=P\left(B_{2}\right)$.
Let us consider O_{1}, S_{2}, P. The functor $\operatorname{COM}\left(S_{2}, P\right)$ yields a non empty family of subsets of O_{1} and is defined by the condition (Def. 5).
(Def. 5) Let A be a set. Then $A \in \operatorname{COM}\left(S_{2}, P\right)$ if and only if there exists a set B such that $B \in S_{2}$ and there exists a set C with measure zero w.r.t. P such that $A=B \cup C$.
Next we state two propositions:
(27) For every set C with measure zero w.r.t. P holds $C \in \operatorname{COM}\left(S_{2}, P\right)$.
(28) $\operatorname{COM}\left(S_{2}, P\right)=\operatorname{COM}\left(S_{2}, \mathrm{P} 2 \mathrm{M} P\right)$.

Let us consider O_{1}, S_{2}, P and let A be an element of $\operatorname{COM}\left(S_{2}, P\right)$. The functor $\mathrm{P}_{\mathrm{COM}} 2 \mathrm{M}_{\mathrm{COM}} A$ yields an element of $\operatorname{COM}\left(S_{2}, \mathrm{P} 2 \mathrm{M} P\right)$ and is defined by:
(Def. 6) $\quad \mathrm{P}_{\mathrm{COM}} 2 \mathrm{M}_{\mathrm{COM}} A=A$.
Next we state the proposition
(29) $\quad S_{2} \subseteq \operatorname{COM}\left(S_{2}, P\right)$.

Let us consider O_{1}, S_{2}, P and let A be an element of $\operatorname{COM}\left(S_{2}, P\right)$. The functor ProbPart A yielding a non empty family of subsets of O_{1} is defined by:
(Def. 7) For every set B holds $B \in \operatorname{ProbPart} A$ iff $B \in S_{2}$ and $B \subseteq A$ and $A \backslash B$ is a set with measure zero w.r.t. P.
We now state several propositions:
(30) For every element A of $\operatorname{COM}\left(S_{2}, P\right)$ holds ProbPart $A=$ MeasPart $\mathrm{P}_{\mathrm{COM}} 2 \mathrm{M}_{\mathrm{COM}} A$.
(31) For every element A of $\operatorname{COM}\left(S_{2}, P\right)$ and for all sets A_{1}, A_{3} such that $A_{1} \in \operatorname{ProbPart} A$ and $A_{3} \in \operatorname{ProbPart} A$ holds $P\left(A_{1}\right)=P\left(A_{3}\right)$.
(32) For every function F from \mathbb{N} into $\operatorname{COM}\left(S_{2}, P\right)$ there exists a sequence B_{3} of subsets of S_{2} such that for every n holds $B_{3}(n) \in \operatorname{ProbPart} F(n)$.
(33) Let F be a function from \mathbb{N} into $\operatorname{COM}\left(S_{2}, P\right)$ and B_{3} be a sequence of subsets of S_{2}. Then there exists a sequence C_{3} of subsets of O_{1} such that for every n holds $C_{3}(n)=F(n) \backslash B_{3}(n)$.
(34) Let B_{3} be a sequence of subsets of O_{1}. Suppose that for every n holds $B_{3}(n)$ is a set with measure zero w.r.t. P. Then there exists a sequence C_{3} of subsets of S_{2} such that for every n holds $B_{3}(n) \subseteq C_{3}(n)$ and $P\left(C_{3}(n)\right)=0$.
(35) Let D be a non empty family of subsets of O_{1}. Suppose that for every set A holds $A \in D$ iff there exists a set B such that $B \in S_{2}$ and there exists a set C with measure zero w.r.t. P such that $A=B \cup C$. Then D is a σ-field of subsets of O_{1}.
Let us consider O_{1}, S_{2}, P. Then $\operatorname{COM}\left(S_{2}, P\right)$ is a σ-field of subsets of O_{1}.
Let us consider O_{1}, S_{2}, P. We see that the set with measure zero w.r.t. P is an event of $\operatorname{COM}\left(S_{2}, P\right)$.

Next we state two propositions:
(36) For every set A holds $A \in \operatorname{COM}\left(S_{2}, P\right)$ iff there exist sets A_{1}, A_{3} such that $A_{1} \in S_{2}$ and $A_{3} \in S_{2}$ and $A_{1} \subseteq A$ and $A \subseteq A_{3}$ and $P\left(A_{3} \backslash A_{1}\right)=0$.
(37) Let C be a non empty family of subsets of O_{1}. Suppose that for every set A holds $A \in C$ iff there exist sets A_{1}, A_{3} such that $A_{1} \in S_{2}$ and $A_{3} \in S_{2}$ and $A_{1} \subseteq A$ and $A \subseteq A_{3}$ and $P\left(A_{3} \backslash A_{1}\right)=0$. Then $C=\operatorname{COM}\left(S_{2}, P\right)$.
Let us consider O_{1}, S_{2}, P. The functor $\operatorname{COM}(P)$ yields a probability on $\operatorname{COM}\left(S_{2}, P\right)$ and is defined as follows:
(Def. 8) For every set B such that $B \in S_{2}$ and for every set C with measure zero w.r.t. P holds $(\operatorname{COM}(P))(B \cup C)=P(B)$.

One can prove the following propositions:
(38) $\operatorname{COM}(P)=\operatorname{COM}(\mathrm{P} 2 \mathrm{M} P)$.
(39) $\operatorname{COM}(P)$ is complete on $\operatorname{COM}\left(S_{2}, P\right)$.
(40) For every event A of S_{2} holds $P(A)=(\operatorname{COM}(P))(A)$.
(41) For every set C with measure zero w.r.t. P holds $(\operatorname{COM}(P))(C)=0$.
(42) For every element A of $\operatorname{COM}\left(S_{2}, P\right)$ and for every set B such that $B \in$ ProbPart A holds $P(B)=(\operatorname{COM}(P))(A)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Józef Białas. Completeness of the σ-additive measure. Measure theory. Formalized Mathematics, 2(5):689-693, 1991.
[4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[7] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czestaw Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[13] Andrzej Nȩdzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
[14] Andrzej Nȩdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[16] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375-381, 2005.
[23] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.

