On the Representation of Natural Numbers in Positional Numeral Systems ${ }^{1}$

Adam Naumowicz
Institute of Computer Science
University of Białystok
Akademicka 2, 15-267 Białystok, Poland

Abstract

Summary. In this paper we show that every natural number can be uniquely represented as a base- b numeral. The formalization is based on the proof presented in [11]. We also prove selected divisibility criteria in the base-10 numeral system.

MML identifier: NUMERAL1, version: 7.8.03 4.76.959

The notation and terminology used in this paper have been introduced in the following articles: [13], [15], [2], [1], [17], [12], [14], [6], [4], [5], [8], [9], [10], [16], [7], and [3].

1. Preliminaries

One can prove the following propositions:
(1) For all finite 0 -sequences d, e of \mathbb{N} holds $\sum\left(d^{\wedge} e\right)=\sum d+\sum e$.
(2) Let S be a sequence of real numbers, d be a finite 0 -sequence of \mathbb{N}, and n be a natural number. If $d=S \upharpoonright(n+1)$, then $\sum d=\left(\sum_{\alpha=0}^{\kappa} S(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(3) For all natural numbers k, l, m holds $\left(k\left(l^{\kappa}\right)_{\kappa \in \mathbb{N}}\right)\lceil m$ is a finite 0 -sequence of \mathbb{N}.
(4) Let d, e be finite 0 -sequences of \mathbb{N}. Suppose len $d \geq 1$ and len $d=\operatorname{len} e$ and for every natural number i such that $i \in$ dom d holds $d(i) \leq e(i)$. Then $\sum d \leq \sum e$.

[^0](5) Let d be a finite 0 -sequence of \mathbb{N} and n be a natural number. If for every natural number i such that $i \in \operatorname{dom} d$ holds $n \mid d(i)$, then $n \mid \sum d$.
(6) Let d, e be finite 0 -sequences of \mathbb{N} and n be a natural number. Suppose $\operatorname{dom} d=\operatorname{dom} e$ and for every natural number i such that $i \in \operatorname{dom} d$ holds $e(i)=d(i) \bmod n$. Then $\sum d \bmod n=\sum e \bmod n$.

2. Representation of Numbers in the Base-b Numeral System

Let d be a finite 0 -sequence of \mathbb{N} and let b be a natural number. The functor value (d, b) yields a natural number and is defined by the condition (Def. 1).
(Def. 1) There exists a finite 0 -sequence d^{\prime} of \mathbb{N} such that $\operatorname{dom} d^{\prime}=\operatorname{dom} d$ and for every natural number i such that $i \in \operatorname{dom} d^{\prime}$ holds $d^{\prime}(i)=d(i) \cdot b^{i}$ and value $(d, b)=\sum d^{\prime}$.
Let n, b be natural numbers. Let us assume that $b>1$. The functor $\operatorname{digits}(n, b)$ yields a finite 0 -sequence of \mathbb{N} and is defined as follows:
(Def. 2)(i) \quad value $(\operatorname{digits}(n, b), b)=n$ and $(\operatorname{digits}(n, b))(\operatorname{len} \operatorname{digits}(n, b)-1) \neq 0$ and for every natural number i such that $i \in \operatorname{dom} \operatorname{digits}(n, b)$ holds $0 \leq$ $(\operatorname{digits}(n, b))(i)$ and $(\operatorname{digits}(n, b))(i)<b$ if $n \neq 0$,
(ii) $\operatorname{digits}(n, b)=\langle 0\rangle$, otherwise.

One can prove the following two propositions:
(7) For all natural numbers n, b such that $b>1$ holds len $\operatorname{digits}(n, b) \geq 1$.
(8) For all natural numbers n, b such that $b>1$ holds value($(\operatorname{digits}(n, b), b)=$ n.

3. Selected Divisibility Criteria

One can prove the following propositions:
(9) For all natural numbers n, k such that $k=10^{n}-1$ holds $9 \mid k$.
(10) For all natural numbers n, b such that $b>1$ holds $b \mid n$ iff $(\operatorname{digits}(n, b))(0)=0$.
(11) For every natural number n holds $2 \mid n$ iff $2 \mid(\operatorname{digits}(n, 10))(0)$.
(12) For every natural number n holds $3 \mid n$ iff $3 \mid \sum \operatorname{digits}(n, 10)$.
(13) For every natural number n holds $5 \mid n$ iff $5 \mid(\operatorname{digits}(n, 10))(0)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[5] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[6] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[7] Karol Pa̧k. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
[8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[9] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[10] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[11] Wacław Sierpiński. Elementary Theory of Numbers. PWN, Warsaw, 1964.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received December 31, 2006

[^0]: ${ }^{1}$ This work has been partially supported by the FP6 IST grant TYPES No. 510996.

