Integrability and the Integral of Partial Functions from \mathbb{R} into \mathbb{R}^{1}

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Masahiko Yamazaki
Shinshu University
Nagano, Japan

Abstract

Summary. In this paper, we showed the linearity of the indefinite integral $\int_{a}^{b} f d x$, the form of which was introduced in [11]. In addition, we proved some theorems about the integral calculus on the subinterval of $[a, b]$. As a result, we described the fundamental theorem of calculus, that we developed in [11], by a more general expression.

MML identifier: INTEGRA6, version: 7.8.03 4.75.958

The articles $[23],[25],[26],[2],[22],[4],[14],[1],[24],[5],[27],[7],[6],[21]$, [9], [3], [17], [16], [15], [18], [20], [8], [10], [13], [19], [12], and [11] provide the notation and terminology for this paper.

1. Preliminaries

We use the following convention: a, b, c, d, e, x are real numbers, A is a closed-interval subset of \mathbb{R}, and f, g are partial functions from \mathbb{R} to \mathbb{R}.

We now state several propositions:
(1) If $a \leq b$ and $c \leq d$ and $a+c=b+d$, then $a=b$ and $c=d$.
(2) If $a \leq b$, then $] x-a, x+a[\subseteq] x-b, x+b[$.

[^0](3) For every binary relation R and for all sets A, B, C such that $A \subseteq B$ and $A \subseteq C$ holds $R \upharpoonright B \upharpoonright A=R \upharpoonright C \upharpoonright A$.
(4) For all sets A, B, C such that $A \subseteq B$ and $A \subseteq C$ holds $\chi_{B, B} \upharpoonright A=$ $\chi_{C, C} \upharpoonright A$.
(5) If $a \leq b$, then $\operatorname{vol}\left(\left[{ }^{\prime} a, b^{\prime}\right]\right)=b-a$.
(6) $\operatorname{vol}\left(\left[{ }^{\prime} \min (a, b), \max (a, b)^{\prime}\right]\right)=|b-a|$.

2. Integrability and the Integral of Partial Functions

The following propositions are true:
(7) If $A \subseteq \operatorname{dom} f$ and f is integrable on A and f is bounded on A, then $|f|$ is integrable on A and $\left|\int_{A} f(x) d x\right| \leq \int_{A}|f|(x) d x$.
(8) If $a \leq b$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and f is integrable on [' $\left.a, b^{\prime}\right]$ and f is bounded on [' a, b^{\prime}], then $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f|(x) d x$.
(9) Let r be a real number. Suppose $A \subseteq \operatorname{dom} f$ and f is integrable on A and f is bounded on A. Then $r f$ is integrable on A and $\int_{A}(r f)(x) d x=$ $r \cdot \int_{A} f(x) d x$.
(10) If $a \leq b$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and f is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and f is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$, then $\int_{a}^{b}(c f)(x) d x=c \cdot \int_{a}^{b} f(x) d x$.
(11) Suppose $A \subseteq \operatorname{dom} f$ and $A \subseteq \operatorname{dom} g$ and f is integrable on A and f is bounded on A and g is integrable on A and g is bounded on A. Then $f+g$ is integrable on A and $f-g$ is integrable on A and $\int_{A}(f+g)(x) d x=$ $\int_{A} f(x) d x+\int_{A} g(x) d x$ and $\int_{A}(f-g)(x) d x=\int_{A} f(x) d x-\int_{A} g(x) d x$.
(12) Suppose that $a \leq b$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} g$ and f is integrable on $\left[' a, b^{\prime}\right]$ and g is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and f is bounded on $\left[' a, b^{\prime}\right]$ and g is bounded on [' a, b^{\prime}]. Then $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
and $\int_{a}^{b}(f-g)(x) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$.
(13) If f is bounded on A and g is bounded on A, then $f g$ is bounded on A.
(14) Suppose $A \subseteq \operatorname{dom} f$ and $A \subseteq \operatorname{dom} g$ and f is integrable on A and f is bounded on A and g is integrable on A and g is bounded on A. Then $f g$ is integrable on A.
(15) Let n be an element of \mathbb{N}. Suppose $n>0$ and $\operatorname{vol}(A)>0$. Then there exists an element D of divs A such that len $D=n$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} D$ holds $D(i)=\inf A+\frac{\operatorname{vol}(A)}{n} \cdot i$.

3. Integrability on a Subinterval

The following propositions are true:
(16) Suppose $\operatorname{vol}(A)>0$. Then there exists a DivSequence T of A such that
(i) δ_{T} is convergent,
(ii) $\lim \left(\delta_{T}\right)=0$, and
(iii) for every element n of \mathbb{N} there exists an element T_{1} of divs A such that T_{1} divides into equal $n+1$ and $T(n)=T_{1}$.
(17) Suppose $a \leq b$ and f is integrable on [' $\left.a, b^{\prime}\right]$ and f is bounded on [' $\left.a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $c \in\left[{ }^{\prime} a, b^{\prime}\right]$. Then f is integrable on [' $\left.a, c^{\prime}\right]$ and f is integrable on ['c, $\left.b^{\prime}\right]$ and $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$.
(18) Suppose $a \leq c$ and $c \leq d$ and $d \leq b$ and f is integrable on [' $\left.a, b^{\prime}\right]$ and f is bounded on $\left[^{\prime} a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$. Then f is integrable on $\left[^{\prime} c, d^{\prime}\right]$ and f is bounded on $\left[{ }^{\prime} c, d^{\prime}\right]$ and $\left[{ }^{\prime} c, d^{\prime}\right] \subseteq \operatorname{dom} f$.
(19) Suppose that $a \leq c$ and $c \leq d$ and $d \leq b$ and f is integrable on [' $\left.a, b^{\prime}\right]$ and g is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and f is bounded on $\left[^{\prime} a, b^{\prime}\right]$ and g is bounded on $\left['^{\prime} a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $\left['^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} g$. Then $f+g$ is integrable on $\left[^{\prime} c, d^{\prime}\right]$ and $f+g$ is bounded on [' $\left.c, d^{\prime}\right]$.
(20) Suppose $a \leq b$ and f is integrable on [' $\left.a, b^{\prime}\right]$ and f is bounded on [' $\left.a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $c \in\left[{ }^{\prime} a, b^{\prime}\right]$ and $d \in\left[{ }^{\prime} a, b^{\prime}\right]$. Then $\int_{a}^{d} f(x) d x=$ $\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x$.
(21) Suppose $a \leq b$ and f is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and f is bounded on $\left[^{\prime} a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $c \in\left[^{\prime} a, b^{\prime}\right]$ and $d \in\left[^{\prime} a, b^{\prime}\right]$. Then $\left[{ }^{\prime} \min (c, d), \max (c, d)^{\prime}\right] \subseteq \operatorname{dom}|f|$ and $|f|$ is integrable on
$\left[{ }^{\prime} \min (c, d), \max (c, d)^{\prime}\right]$ and $|f|$ is bounded on $\left[{ }^{\prime} \min (c, d), \max (c, d)^{\prime}\right]$ and $\left|\int_{c}^{d} f(x) d x\right| \leq \int_{\min (c, d)}^{\max (c, d)}|f|(x) d x$.
(22) Suppose $a \leq b$ and $c \leq d$ and f is integrable on [' a, b^{\prime}] and f is bounded on $\left[^{\prime} a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $c \in\left[{ }^{\prime} a, b^{\prime}\right]$ and $d \in\left[{ }^{\prime} a, b^{\prime}\right]$. Then $\left[{ }^{\prime} c, d^{\prime}\right] \subseteq$ $\operatorname{dom}|f|$ and $|f|$ is integrable on $\left[{ }^{\prime} c, d^{\prime}\right]$ and $|f|$ is bounded on $\left[{ }^{\prime} c, d^{\prime}\right]$ and $\left|\int_{c}^{d} f(x) d x\right| \leq \int_{c}^{d}|f|(x) d x$ and $\left|\int_{d}^{c} f(x) d x\right| \leq \int_{c}^{d}|f|(x) d x$.
(23) Suppose that $a \leq b$ and $c \leq d$ and f is integrable on ['a, $\left.b^{\prime}\right]$ and f is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $c \in\left[{ }^{\prime} a, b^{\prime}\right]$ and $d \in\left[^{\prime} a, b^{\prime}\right]$ and for every real number x such that $x \in\left[{ }^{\prime} c, d^{\prime}\right]$ holds $|f(x)| \leq e$. Then $\left|\int_{c}^{d} f(x) d x\right| \leq e \cdot(d-c)$ and $\left|\int_{d}^{c} f(x) d x\right| \leq e \cdot(d-c)$.
(24) Suppose that $a \leq b$ and f is integrable on [' a, b^{\prime}] and g is integrable on [$\left.{ }^{\prime} a, b^{\prime}\right]$ and f is bounded on [$\left.{ }^{\prime} a, b^{\prime}\right]$ and g is bounded on [$\left.{ }^{\prime} a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} g$ and $c \in\left[{ }^{\prime} a, b^{\prime}\right]$ and $d \in\left[{ }^{\prime} a, b^{\prime}\right]$. Then $\int_{c}^{d}(f+g)(x) d x=\int_{c}^{d} f(x) d x+\int_{c}^{d} g(x) d x$ and $\int_{c}^{d}(f-g)(x) d x=\int_{c}^{d} f(x) d x-$ $\int_{c}^{d} g(x) d x$.
(25) Suppose $a \leq b$ and f is integrable on ['a, $\left.b^{\prime}\right]$ and f is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $\left[^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $c \in\left[{ }^{\prime} a, b^{\prime}\right]$ and $d \in\left[^{\prime} a, b^{\prime}\right]$. Then $\int_{c}^{d}(e f)(x) d x=$ $e \cdot \int_{c}^{d} f(x) d x$.
(26) Suppose $a \leq b$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and for every real number x such that $x \in\left[{ }^{\prime} a, b^{\prime}\right]$ holds $f(x)=e$. Then f is integrable on $\left[^{\prime} a, b^{\prime}\right]$ and f is bounded on $\left.{ }^{\prime}{ }^{\prime} a, b^{\prime}\right]$ and $\int_{a}^{b} f(x) d x=e \cdot(b-a)$.
(27) Suppose $a \leq b$ and for every real number x such that $x \in\left[{ }^{\prime} a, b^{\prime}\right]$ holds $f(x)=e$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $c \in\left[{ }^{\prime} a, b^{\prime}\right]$ and $d \in\left[^{\prime} a, b^{\prime}\right]$. Then $\int_{c}^{d} f(x) d x=e \cdot(d-c)$.

4. Fundamental Theorem of Calculus

Next we state two propositions:
(28) Let x_{0} be a real number and F be a partial function from \mathbb{R} to \mathbb{R}. Suppose that $a \leq b$ and f is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and f is bounded on $\left[^{\prime} a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $] a, b[\subseteq \operatorname{dom} F$ and for every real number x such that $x \in] a, b\left[\right.$ holds $F(x)=\int_{a}^{x} f(x) d x$ and $\left.x_{0} \in\right] a, b[$ and f is continuous in x_{0}. Then F is differentiable in x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
(29) Let x_{0} be a real number. Suppose $a \leq b$ and f is integrable on [' a, b^{\prime}] and f is bounded on $\left[^{\prime} a, b^{\prime}\right]$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$ and $\left.x_{0} \in\right] a, b[$ and f is continuous in x_{0}. Then there exists a partial function F from \mathbb{R} to \mathbb{R} such that $] a, b[\subseteq \operatorname{dom} F$ and for every real number x such that $x \in] a, b[$ holds $F(x)=\int_{a}^{x} f(x) d x$ and F is differentiable in x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Acknowledgments

We would like to express our thanks to Prof. Yatsuka Nakamura.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czestaw Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[9] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[10] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[11] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Integrability of bounded total functions. Formalized Mathematics, 9(2):271-274, 2001.
[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[15] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[16] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[18] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[19] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[20] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[22] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B)16700156.

