The Catalan Numbers. Part II 1

Karol Pạk
Institute of Mathematics
University of Białystok
Akademicka 2, 15-267 Białystok, Poland

Summary. In this paper, we define sequence dominated by 0 , in which every initial fragment contains more zeroes than ones. If $n \geq 2 \cdot m$ and $n>0$, then the number of sequences dominated by 0 the length n including m of ones, is given by the formula

$$
D(n, m)=\frac{n+1-2 \cdot m}{n+1-m} \cdot\binom{n}{m}
$$

and satisfies the recurrence relation

$$
D(n, m)=D(n-1, m)+\sum_{i=0}^{m-1} D(2 \cdot i, i) \cdot D(n-2 \cdot(i+1), m-(i+1))
$$

Obviously, if $n=2 \cdot m$, then we obtain the recurrence relation for the Catalan numbers (starting from 0)

$$
C_{m+1}=\sum_{i=0}^{m-1} C_{i+1} \cdot C_{m-i} .
$$

Using the above recurrence relation we can see that

$$
\sum_{i=0}^{\infty} C_{i+1} \cdot x^{i}=1+\left(\sum_{i=0}^{\infty} C_{i+1} \cdot x^{i}\right)^{2}
$$

where $\left(|x|<\frac{1}{4}\right)$ and hence

$$
\sum_{i=0}^{\infty} C_{i+1} \cdot x^{i}=\frac{1-\sqrt{1-4 \cdot x}}{2 \cdot x} .
$$

MML identifier: CATALAN2, version: 7.8.03 4.75.958

[^0]The notation and terminology used here are introduced in the following papers: [2], [23], [7], [25], [19], [27], [5], [28], [9], [1], [26], [21], [6], [3], [14], [12], [16], [13], [20], [15], [8], [22], [11], [10], [18], [24], [17], and [4].

1. Preliminaries

For simplicity, we adopt the following convention: x, D denote sets, i, j, k, l, m, n denote elements of \mathbb{N}, p, q denote finite 0 -sequences of $\mathbb{N}, p^{\prime}, q^{\prime}$ denote finite 0 -sequences, and p_{1}, q_{1} denote finite 0 -sequences of D.

Next we state several propositions:
(1) $\left(p^{\prime} \frown q^{\prime}\right) \upharpoonright \operatorname{dom} p^{\prime}=p^{\prime}$.
(2) If $n \leq \operatorname{dom} p^{\prime}$, then $\left(p^{\prime} \uparrow q^{\prime}\right) \upharpoonright n=p^{\prime}\lceil n$.
(3) If $n=\operatorname{dom} p^{\prime}+k$, then $\left(p^{\prime} \frown q^{\prime}\right) \upharpoonright n=p^{\prime} \frown\left(q^{\prime} \upharpoonright k\right)$.
(4) There exists q^{\prime} such that $p^{\prime}=\left(p^{\prime} \backslash n\right)^{\wedge} q^{\prime}$.
(5) There exists q_{1} such that $p_{1}=\left(p_{1} \upharpoonright n\right)^{\wedge} q_{1}$.

Let us consider p. We say that p is dominated by 0 if and only if:
(Def. 1) $\operatorname{rng} p \subseteq\{0,1\}$ and for every k such that $k \leq \operatorname{dom} p$ holds $2 \cdot \sum(p \upharpoonright k) \leq k$.
The following propositions are true:
(6) If p is dominated by 0 , then $2 \cdot \sum(p \upharpoonright k) \leq k$.
(7) If p is dominated by 0 , then $p(0)=0$.

Let us consider k, m. Then $k \longmapsto m$ is a finite 0 -sequence of \mathbb{N}.
One can check that there exists a finite 0 -sequence of \mathbb{N} which is empty and dominated by 0 and there exists a finite 0 -sequence of \mathbb{N} which is non empty and dominated by 0 .

The following propositions are true:
(8) $n \longmapsto 0$ is dominated by 0 .
(9) If $n \geq m$, then $(n \longmapsto 0)^{\wedge}(m \longmapsto 1)$ is dominated by 0 .
(10) If p is dominated by 0 , then $p \upharpoonright n$ is dominated by 0 .
(11) If p is dominated by 0 and q is dominated by 0 , then $p^{\wedge} q$ is dominated by 0 .
(12) If p is dominated by 0 , then $2 \cdot \sum(p \upharpoonright(2 \cdot n+1))<2 \cdot n+1$.
(13) If p is dominated by 0 and $n \leq \operatorname{len} p-2 \cdot \sum p$, then $p^{\wedge}(n \longmapsto 1)$ is dominated by 0 .
(14) If p is dominated by 0 and $n \leq(k+\operatorname{len} p)-2 \cdot \sum p$, then $(k \longmapsto$ $0)^{\wedge} p^{\wedge}(n \longmapsto 1)$ is dominated by 0 .
(15) If p is dominated by 0 and $2 \cdot \sum(p \upharpoonright k)=k$, then $k \leq \operatorname{len} p$ and $\operatorname{len}(p \upharpoonright k)=$ k.
 dominated by 0 .
(17) If p is dominated by 0 and $2 \cdot \sum(p \upharpoonright k)=k$ and $k=n+1$, then $p \upharpoonright k=$ $(p \upharpoonright n)^{\wedge}(1 \longmapsto 1)$.
(18) Let given m, p. Suppose $m=\min ^{*}\left\{n: 2 \cdot \sum(p \upharpoonright n)=n \wedge n>0\right\}$ and $m>0$ and p is dominated by 0 . Then there exists q such that $p \upharpoonright m=(1 \longmapsto 0)^{\wedge} q^{\wedge}(1 \longmapsto 1)$ and q is dominated by 0 .
(19) Let given p. Suppose $\operatorname{rng} p \subseteq\{0,1\}$ and p is not dominated by 0 . Then there exists k such that $2 \cdot k+1=\min ^{*}\left\{n: 2 \cdot \sum(p \upharpoonright n)>n\right\}$ and $2 \cdot k+1 \leq$ $\operatorname{dom} p$ and $k=\sum(p \upharpoonright(2 \cdot k))$ and $p(2 \cdot k)=1$.
(20) Let given p, q, k. Suppose $p \upharpoonright(2 \cdot k+\operatorname{len} q)=(k \longmapsto 0) \wedge q^{\wedge}(k \longmapsto 1)$ and q is dominated by 0 and $2 \cdot \sum q=\operatorname{len} q$ and $k>0$. Then $\min ^{*}\{n$: $\left.2 \cdot \sum(p \upharpoonright n)=n \wedge n>0\right\}=2 \cdot k+\operatorname{len} q$.
(21) Let given p. Suppose p is dominated by 0 and $\left\{i: 2 \cdot \sum(p \upharpoonright i)=i \wedge i>\right.$ $0\}=\emptyset$ and len $p>0$. Then there exists q such that $p=\langle 0\rangle{ }^{\wedge} q$ and q is dominated by 0 .
(22) If p is dominated by 0 , then $\langle 0\rangle \wedge p$ is dominated by 0 and $\left\{i: 2 \cdot \sum((\langle 0\rangle \sim\right.$ $p) \upharpoonright i)=i \wedge i>0\}=\emptyset$.
(23) If $\operatorname{rng} p \subseteq\{0,1\}$ and p is not dominated by 0 and $2 \cdot k+1=\min ^{*}\{n$: $\left.2 \cdot \sum(p \upharpoonright n)>n\right\}$, then $p \upharpoonright(2 \cdot k)$ is dominated by 0 .

2. The Recurrence Relation for the Catalan Numbers

Let n, m be natural numbers. The functor $\operatorname{Domin}_{0}(n, m)$ yields a subset of $\{0,1\}^{\omega}$ and is defined as follows:
(Def. 2) $\quad x \in \operatorname{Domin}_{0}(n, m)$ iff there exists a finite 0 -sequence p of \mathbb{N} such that $p=x$ and p is dominated by 0 and $\operatorname{dom} p=n$ and $\sum p=m$.
Next we state two propositions:
(24) $p \in \operatorname{Domin}_{0}(n, m)$ iff p is dominated by 0 and $\operatorname{dom} p=n$ and $\sum p=m$.
(25) $\operatorname{Domin}_{0}(n, m) \subseteq \operatorname{Choose}(n, m, 1,0)$.

Let us consider n, m. One can check that $\operatorname{Domin}_{0}(n, m)$ is finite.
One can prove the following propositions:
(26) $\operatorname{Domin}_{0}(n, m)$ is empty iff $2 \cdot m>n$.
(27) $\operatorname{Domin}_{0}(n, 0)=\{n \longmapsto 0\}$.
(28) $\operatorname{card} \operatorname{Domin}_{0}(n, 0)=1$.
(29) Let given p, n. Suppose $\operatorname{rng} p \subseteq\{0, n\}$. Then there exists q such that $\operatorname{len} p=\operatorname{len} q$ and $\operatorname{rng} q \subseteq\{0, n\}$ and for every k such that $k \leq \operatorname{len} p$ holds $\sum(p \upharpoonright k)+\sum(q \upharpoonright k)=n \cdot k$ and for every k such that $k \in \operatorname{len} p$ holds $q(k)=n-p(k)$.
(30) If $m \leq n$, then $\binom{n}{m}>0$.
(31) If $2 \cdot(m+1) \leq n$, then $\operatorname{card}\left(\operatorname{Choose}(n, m+1,1,0) \backslash \operatorname{Domin}_{0}(n, m+1)\right)=$ card Choose ($n, m, 1,0$).
(32) If $2 \cdot(m+1) \leq n$, then card $\operatorname{Domin}_{0}(n, m+1)=\binom{n}{m+1}-\binom{n}{m}$.
(33) If $2 \cdot m \leq n$, then card $\operatorname{Domin}_{0}(n, m)=\frac{(n+1)-2 \cdot m}{(n+1)-m} \cdot\binom{n}{m}$.
(34) $\operatorname{card} \operatorname{Domin}_{0}(2+k, 1)=k+1$.
(35) $\quad \operatorname{card} \operatorname{Domin}_{0}(4+k, 2)=\frac{(k+1) \cdot(k+4)}{2}$.
(36) $\operatorname{card} \operatorname{Domin}_{0}(6+k, 3)=\frac{(k+1) \cdot(k+5) \cdot(k+6)}{6}$.
(37) \quad card $\operatorname{Domin}_{0}(2 \cdot n, n)=\frac{\binom{2 \cdot n}{n}}{n+1}$.
(38) \quad card $\operatorname{Domin}_{0}(2 \cdot n, n)=\operatorname{Catalan}(n+1)$.

Let us consider D. A functional non empty set is said to be a set of ω sequences of D if:
(Def. 3) For every x such that $x \in$ it holds x is a finite 0 -sequence of D.
Let us consider D. Then D^{ω} is a set of ω-sequences of D. Let F be a set of ω-sequences of D. We see that the element of F is a finite 0 -sequence of D.

In the sequel p_{2} denotes an element of \mathbb{N}^{ω}.
We now state several propositions:
(39) $\overline{\overline{\left\{p_{2}: \operatorname{dom} p_{2}=2 \cdot n \wedge p_{2} \text { is dominated by } 0\right\}}}=\binom{2 \cdot n}{n}$.
(40) Let given n, m, k, j, l. Suppose $j=n-2 \cdot(k+1)$ and $l=m-(k+1)$. Then $\overline{\overline{\left\{p_{2}: p_{2}\right.}} \in \operatorname{Domin}_{0}(n, m) \wedge 2 \cdot(k+1)=\min ^{*}\left\{i: 2 \cdot \sum\left(p_{2} \upharpoonright i\right)=\right.$ $\overline{\overline{i \wedge i>0\}\}}}=\operatorname{card} \operatorname{Domin}_{0}(2 \cdot k, k) \cdot \operatorname{card} \operatorname{Domin}_{0}(j, l)$.
(41) Let given n, m. Suppose $2 \cdot m \leq n$. Then there exists a finite 0 -sequence C_{1} of \mathbb{N} such that
$\overline{\overline{\left\{p_{2}: p_{2} \in \operatorname{Domin}_{0}(n, m) \wedge\left\{i: 2 \cdot \sum\left(p_{2} \upharpoonright i\right)=i \wedge i>0\right\} \neq \emptyset\right\}}}=\sum C_{1}$ and $\operatorname{dom} C_{1}=m$ and for every j such that $j<m$ holds $C_{1}(j)=$ card $\operatorname{Domin}_{0}(2 \cdot j, j) \cdot \operatorname{card} \operatorname{Domin}_{0}\left(n-^{\prime} 2 \cdot(j+1), m-^{\prime}(j+1)\right)$.
(42) For every n such that $n>0$ holds $\operatorname{Domin}_{0}(2 \cdot n, n)=\left\{p_{2}: p_{2} \in \operatorname{Domin}_{0}(2\right.$. $\left.n, n) \wedge\left\{i: 2 \cdot \sum\left(p_{2} \upharpoonright i\right)=i \wedge i>0\right\} \neq \emptyset\right\}$.
(43) Let given n. Suppose $n>0$. Then there exists a finite 0 -sequence C_{2} of \mathbb{N} such that $\sum C_{2}=\operatorname{Catalan}(n+1)$ and $\operatorname{dom} C_{2}=n$ and for every j such that $j<n$ holds $C_{2}(j)=\operatorname{Catalan}(j+1) \cdot \operatorname{Catalan}\left(n-{ }^{\prime} j\right)$.
(44) $\overline{\left\{p_{2}: p_{2} \in \operatorname{Domin}_{0}(n+1, m) \wedge\left\{i: 2 \cdot \sum\left(p_{2} \upharpoonright i\right)=i \wedge i>0\right\}=\emptyset\right\}}=$ card $\operatorname{Domin}_{0}(n, m)$.
(45) Let given n, m. Suppose $2 \cdot m \leq n$. Then there exists a finite 0 -sequence C_{1} of \mathbb{N} such that card $\operatorname{Domin}_{0}(n, m)=\sum C_{1}+\operatorname{card} \operatorname{Domin}_{0}\left(n-{ }^{\prime} 1, m\right)$ and $\operatorname{dom} C_{1}=m$ and for every j such that $j<m$ holds $C_{1}(j)=$ card $\operatorname{Domin}_{0}(2 \cdot j, j) \cdot \operatorname{card} \operatorname{Domin}_{0}\left(n-{ }^{\prime} 2 \cdot(j+1), m-^{\prime}(j+1)\right)$.
(46) For all n, k there exists p such that $\sum p=\operatorname{card} \operatorname{Domin}_{0}(2 \cdot n+2+$ $k, n+1)$ and $\operatorname{dom} p=k+1$ and for every i such that $i \leq k$ holds $p(i)=$
$\operatorname{card} \operatorname{Domin}_{0}(2 \cdot n+1+i, n)$.

3. Cauchy Product

We use the following convention: s_{1}, s_{2}, s_{3} denote sequences of real numbers, r denotes a real number, and F_{1}, F_{2}, F_{3} denote finite 0 -sequences of \mathbb{R}.

Let us consider F_{1}. The functor $\sum F_{1}$ yields a real number and is defined as follows:
(Def. 4) $\sum F_{1}=+_{\mathbb{R}} \odot F_{1}$.
Let us consider F_{1}, x. Then $F_{1}(x)$ is a real number.
Let s_{1}, s_{2} be sequences of real numbers. The functor $s_{1}(\#) s_{2}$ yields a sequence of real numbers and is defined by the condition (Def. 5).
(Def. 5) Let k be a natural number. Then there exists a finite 0 -sequence F_{1} of \mathbb{R} such that $\operatorname{dom} F_{1}=k+1$ and for every n such that $n \in k+1$ holds $F_{1}(n)=s_{1}(n) \cdot s_{2}\left(k-^{\prime} n\right)$ and $\sum F_{1}=\left(s_{1}(\#) s_{2}\right)(k)$.
Let us notice that the functor $s_{1}(\#) s_{2}$ is commutative.
One can prove the following propositions:
(47) For all F_{1}, n such that $n \in \operatorname{dom} F_{1}$ holds $\sum\left(F_{1} \upharpoonright n\right)+F_{1}(n)=\sum\left(F_{1} \upharpoonright(n+\right.$ 1)).
(48) For all F_{2}, F_{3} such that $\operatorname{dom} F_{2}=\operatorname{dom} F_{3}$ and for every n such that $n \in \operatorname{len} F_{2}$ holds $F_{2}(n)=F_{3}\left(\operatorname{len} F_{2}-^{\prime}(1+n)\right)$ holds $\sum F_{2}=\sum F_{3}$.
(49) For all F_{2}, F_{3} such that $\operatorname{dom} F_{2}=\operatorname{dom} F_{3}$ and for every n such that $n \in \operatorname{len} F_{2}$ holds $F_{2}(n)=r \cdot F_{3}(n)$ holds $\sum F_{2}=r \cdot \sum F_{3}$.

$$
\begin{align*}
& s_{1}(\#) r s_{2}=r\left(s_{1}(\#) s_{2}\right) \tag{50}\\
& s_{1}(\#)\left(s_{2}+s_{3}\right)=\left(s_{1}(\#) s_{2}\right)+\left(s_{1}(\#) s_{3}\right) \\
& \left(s_{1}(\#) s_{2}\right)(0)=s_{1}(0) \cdot s_{2}(0)
\end{align*}
$$

(53) For all s_{1}, s_{2}, n there exists F_{1} such that $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}(\#) s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=$ $\sum F_{1}$ and $\operatorname{dom} F_{1}=n+1$ and for every i such that $i \in n+1$ holds $F_{1}(i)=s_{1}(i) \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(n-{ }^{\prime} i\right)$.
(54) Let given s_{1}, s_{2}, n. Suppose s_{2} is summable. Then there exists F_{1} such that $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}(\#) s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=\sum s_{2} \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-\sum F_{1}$ and $\operatorname{dom} F_{1}=n+1$ and for every i such that $i \in n+1$ holds $F_{1}(i)=$ $s_{1}(i) \cdot \sum\left(s_{2} \uparrow\left(\left(n-^{\prime} i\right)+1\right)\right)$.
(55) For every F_{1} there exists a finite 0 -sequence a_{1} of \mathbb{R} such that dom $a_{1}=$ $\operatorname{dom} F_{1}$ and $\left|\sum F_{1}\right| \leq \sum a_{1}$ and for every i such that $i \in \operatorname{dom} a_{1}$ holds $a_{1}(i)=\left|F_{1}(i)\right|$.
(56) For every s_{1} such that s_{1} is summable there exists r such that $0<r$ and for every k holds $\left|\sum\left(s_{1} \uparrow k\right)\right|<r$.
(57) For all s_{1}, n, m such that $n \leq m$ and for every i holds $s_{1}(i) \geq 0$ holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(58) For all s_{1}, s_{2} such that s_{1} is absolutely summable and s_{2} is summable holds $s_{1}(\#) s_{2}$ is summable and $\sum\left(s_{1}(\#) s_{2}\right)=\sum s_{1} \cdot \sum s_{2}$.
(59) If $p=F_{1}$, then $\sum p=\sum F_{1}$.

4. The Generating Function for the Catalan Numbers

Next we state the proposition
(60) Let given r. Then there exists a sequence C_{2} of real numbers such that (i) for every n holds $C_{2}(n)=\operatorname{Catalan}(n+1) \cdot r^{n}$, and
(ii) if $|r|<\frac{1}{4}$, then C_{2} is absolutely summable and $\sum C_{2}=1+r \cdot\left(\sum C_{2}\right)^{2}$ and $\sum C_{2}=\frac{2}{1+\sqrt{1-4 \cdot r}}$ and if $r \neq 0$, then $\sum C_{2}=\frac{1-\sqrt{1-4 \cdot r}}{2 \cdot r}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Dorota Czȩstochowska and Adam Grabowski. Catalan numbers. Formalized Mathematics, 12(3):351-353, 2004.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[15] Karol Pa̧k. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
[16] Karol Pa̧k. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
[17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[18] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[22] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 31, 2006

[^0]: ${ }^{1}$ This work has been partially supported by the KBN grant 4 T11C 03924 and the FP6 IST grant TYPES No. 510996.

