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Summary. In this paper, we define sequence dominated by 0, in which

every initial fragment contains more zeroes than ones. If n ≥ 2 ·m and n > 0,

then the number of sequences dominated by 0 the length n including m of ones,

is given by the formula

D(n,m) =
n + 1 − 2 ·m
n + 1 −m ·

 
n

m

!

and satisfies the recurrence relation

D(n,m) = D(n − 1,m) +

m−1X

i=0

D(2 · i, i) ·D(n − 2 · (i+ 1),m− (i+ 1)).

Obviously, if n = 2 ·m, then we obtain the recurrence relation for the Catalan

numbers (starting from 0)

Cm+1 =

m−1X

i=0

Ci+1 · Cm−i.

Using the above recurrence relation we can see that

∞X

i=0

Ci+1 · xi = 1 +

 ∞X

i=0

Ci+1 · xi
!2

where (|x| < 1
4
) and hence

∞X

i=0

Ci+1 · xi =
1−√1− 4 · x

2 · x .
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The notation and terminology used here are introduced in the following papers:

[2], [23], [7], [25], [19], [27], [5], [28], [9], [1], [26], [21], [6], [3], [14], [12], [16], [13],

[20], [15], [8], [22], [11], [10], [18], [24], [17], and [4].

1. Preliminaries

For simplicity, we adopt the following convention: x, D denote sets, i, j, k,

l, m, n denote elements of N, p, q denote finite 0-sequences of N, p′, q′ denote

finite 0-sequences, and p1, q1 denote finite 0-sequences of D.

Next we state several propositions:

(1) (p′ a q′)� dom p′ = p′.

(2) If n ≤ dom p′, then (p′ a q′)�n = p′�n.
(3) If n = dom p′ + k, then (p′ a q′)�n = p′ a (q′�k).

(4) There exists q′ such that p′ = (p′�n) a q′.
(5) There exists q1 such that p1 = (p1�n) a q1.

Let us consider p. We say that p is dominated by 0 if and only if:

(Def. 1) rng p ⊆ {0, 1} and for every k such that k ≤ dom p holds 2 ·∑(p�k) ≤ k.
The following propositions are true:

(6) If p is dominated by 0, then 2 ·∑(p�k) ≤ k.
(7) If p is dominated by 0, then p(0) = 0.

Let us consider k, m. Then k 7−→ m is a finite 0-sequence of N.

One can check that there exists a finite 0-sequence of N which is empty and

dominated by 0 and there exists a finite 0-sequence of N which is non empty

and dominated by 0.

The following propositions are true:

(8) n 7−→ 0 is dominated by 0.

(9) If n ≥ m, then (n 7−→ 0) a (m 7−→ 1) is dominated by 0.

(10) If p is dominated by 0, then p�n is dominated by 0.

(11) If p is dominated by 0 and q is dominated by 0, then p a q is dominated

by 0.

(12) If p is dominated by 0, then 2 ·∑(p�(2 · n+ 1)) < 2 · n+ 1.

(13) If p is dominated by 0 and n ≤ len p − 2 · ∑ p, then p a (n 7−→ 1) is

dominated by 0.

(14) If p is dominated by 0 and n ≤ (k + len p) − 2 · ∑ p, then (k 7−→
0) a p a (n 7−→ 1) is dominated by 0.

(15) If p is dominated by 0 and 2 ·∑(p�k) = k, then k ≤ len p and len(p�k) =

k.

(16) If p is dominated by 0 and 2 ·∑(p�k) = k and p = (p�k) a q, then q is

dominated by 0.
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(17) If p is dominated by 0 and 2 ·∑(p�k) = k and k = n + 1, then p�k =

(p�n) a (1 7−→ 1).

(18) Let given m, p. Suppose m = min∗{n : 2 ·∑(p�n) = n ∧ n > 0}
and m > 0 and p is dominated by 0. Then there exists q such that

p�m = (1 7−→ 0) a q a (1 7−→ 1) and q is dominated by 0.

(19) Let given p. Suppose rng p ⊆ {0, 1} and p is not dominated by 0. Then

there exists k such that 2 ·k+1 = min∗{n : 2 ·∑(p�n) > n} and 2 ·k+1 ≤
dom p and k =

∑
(p�(2 · k)) and p(2 · k) = 1.

(20) Let given p, q, k. Suppose p�(2 · k + len q) = (k 7−→ 0) a q a (k 7−→ 1)

and q is dominated by 0 and 2 ·∑ q = len q and k > 0. Then min∗{n :

2 ·∑(p�n) = n ∧ n > 0} = 2 · k + len q.

(21) Let given p. Suppose p is dominated by 0 and {i : 2 ·∑(p�i) = i ∧ i >

0} = ∅ and len p > 0. Then there exists q such that p = 〈0〉 a q and q is

dominated by 0.

(22) If p is dominated by 0, then 〈0〉a p is dominated by 0 and {i : 2 ·∑((〈0〉a
p)�i) = i ∧ i > 0} = ∅.

(23) If rng p ⊆ {0, 1} and p is not dominated by 0 and 2 · k + 1 = min∗{n :

2 ·∑(p�n) > n}, then p�(2 · k) is dominated by 0.

2. The Recurrence Relation for the Catalan Numbers

Let n, m be natural numbers. The functor Domin0(n,m) yields a subset of

{0, 1}ω and is defined as follows:

(Def. 2) x ∈ Domin0(n,m) iff there exists a finite 0-sequence p of N such that

p = x and p is dominated by 0 and dom p = n and
∑
p = m.

Next we state two propositions:

(24) p ∈ Domin0(n,m) iff p is dominated by 0 and dom p = n and
∑
p = m.

(25) Domin0(n,m) ⊆ Choose(n,m, 1, 0).

Let us consider n, m. One can check that Domin0(n,m) is finite.

One can prove the following propositions:

(26) Domin0(n,m) is empty iff 2 ·m > n.

(27) Domin0(n, 0) = {n 7−→ 0}.
(28) card Domin0(n, 0) = 1.

(29) Let given p, n. Suppose rng p ⊆ {0, n}. Then there exists q such that

len p = len q and rng q ⊆ {0, n} and for every k such that k ≤ len p

holds
∑

(p�k) +
∑

(q�k) = n · k and for every k such that k ∈ len p holds

q(k) = n− p(k).

(30) If m ≤ n, then
(n
m

)
> 0.
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(31) If 2 · (m+1) ≤ n, then card(Choose(n,m+1, 1, 0)\Domin0(n,m+1)) =

card Choose(n,m, 1, 0).

(32) If 2 · (m+ 1) ≤ n, then card Domin0(n,m+ 1) =
( n
m+1

)
−
(n
m

)
.

(33) If 2 ·m ≤ n, then card Domin0(n,m) = (n+1)−2·m
(n+1)−m ·

(n
m

)
.

(34) card Domin0(2 + k, 1) = k + 1.

(35) card Domin0(4 + k, 2) = (k+1)·(k+4)
2 .

(36) card Domin0(6 + k, 3) = (k+1)·(k+5)·(k+6)
6 .

(37) card Domin0(2 · n, n) =
(2·n
n )

n+1 .

(38) card Domin0(2 · n, n) = Catalan(n+ 1).

Let us consider D. A functional non empty set is said to be a set of ω-

sequences of D if:

(Def. 3) For every x such that x ∈ it holds x is a finite 0-sequence of D.

Let us consider D. Then Dω is a set of ω-sequences of D. Let F be a set of

ω-sequences of D. We see that the element of F is a finite 0-sequence of D.

In the sequel p2 denotes an element of Nω.

We now state several propositions:

(39) {p2 : dom p2 = 2 · n ∧ p2 is dominated by 0} =
(

2·n
n

)
.

(40) Let given n, m, k, j, l. Suppose j = n− 2 · (k+ 1) and l = m− (k + 1).

Then {p2 : p2 ∈ Domin0(n,m) ∧ 2 · (k + 1) = min∗{i : 2 ·∑(p2�i) =

i ∧ i > 0}} = card Domin0(2 · k, k) · card Domin0(j, l).

(41) Let given n, m. Suppose 2 ·m ≤ n. Then there exists a finite 0-sequence

C1 of N such that

{p2 : p2 ∈ Domin0(n,m) ∧ {i : 2 ·∑(p2�i) = i ∧ i > 0} 6= ∅} =
∑
C1

and domC1 = m and for every j such that j < m holds C1(j) =

card Domin0(2 · j, j) · card Domin0(n−′ 2 · (j + 1),m−′ (j + 1)).

(42) For every n such that n > 0 holds Domin0(2·n, n) = {p2 : p2 ∈ Domin0(2·
n, n) ∧ {i : 2 ·∑(p2�i) = i ∧ i > 0} 6= ∅}.

(43) Let given n. Suppose n > 0. Then there exists a finite 0-sequence C2 of

N such that
∑
C2 = Catalan(n+ 1) and domC2 = n and for every j such

that j < n holds C2(j) = Catalan(j + 1) · Catalan(n−′ j).
(44) {p2 : p2 ∈ Domin0(n+ 1,m) ∧ {i : 2 ·∑(p2�i) = i ∧ i > 0} = ∅} =

card Domin0(n,m).

(45) Let given n, m. Suppose 2 ·m ≤ n. Then there exists a finite 0-sequence

C1 of N such that card Domin0(n,m) =
∑
C1 + card Domin0(n −′ 1,m)

and domC1 = m and for every j such that j < m holds C1(j) =

card Domin0(2 · j, j) · card Domin0(n−′ 2 · (j + 1),m−′ (j + 1)).

(46) For all n, k there exists p such that
∑
p = card Domin0(2 · n + 2 +

k, n + 1) and dom p = k + 1 and for every i such that i ≤ k holds p(i) =



the catalan numbers. part ii 157

card Domin0(2 · n+ 1 + i, n).

3. Cauchy Product

We use the following convention: s1, s2, s3 denote sequences of real numbers,

r denotes a real number, and F1, F2, F3 denote finite 0-sequences of R.

Let us consider F1. The functor
∑
F1 yields a real number and is defined as

follows:

(Def. 4)
∑
F1 = +R � F1.

Let us consider F1, x. Then F1(x) is a real number.

Let s1, s2 be sequences of real numbers. The functor s1 (#) s2 yields a

sequence of real numbers and is defined by the condition (Def. 5).

(Def. 5) Let k be a natural number. Then there exists a finite 0-sequence F1 of

R such that domF1 = k + 1 and for every n such that n ∈ k + 1 holds

F1(n) = s1(n) · s2(k −′ n) and
∑
F1 = (s1 (#) s2)(k).

Let us notice that the functor s1 (#) s2 is commutative.

One can prove the following propositions:

(47) For all F1, n such that n ∈ domF1 holds
∑

(F1�n)+F1(n) =
∑

(F1�(n+

1)).

(48) For all F2, F3 such that domF2 = domF3 and for every n such that

n ∈ lenF2 holds F2(n) = F3(lenF2 −′ (1 + n)) holds
∑
F2 =

∑
F3.

(49) For all F2, F3 such that domF2 = domF3 and for every n such that

n ∈ lenF2 holds F2(n) = r · F3(n) holds
∑
F2 = r ·∑F3.

(50) s1 (#) r s2 = r (s1 (#) s2).

(51) s1 (#)(s2 + s3) = (s1 (#) s2) + (s1 (#) s3).

(52) (s1 (#) s2)(0) = s1(0) · s2(0).

(53) For all s1, s2, n there exists F1 such that (
∑κ

α=0(s1 (#) s2)(α))κ∈N(n) =∑
F1 and domF1 = n + 1 and for every i such that i ∈ n + 1 holds

F1(i) = s1(i) · (∑κ
α=0(s2)(α))κ∈N(n−′ i).

(54) Let given s1, s2, n. Suppose s2 is summable. Then there exists F1 such

that (
∑κ

α=0(s1 (#) s2)(α))κ∈N(n) =
∑
s2 · (

∑κ
α=0(s1)(α))κ∈N(n) −∑F1

and domF1 = n + 1 and for every i such that i ∈ n + 1 holds F1(i) =

s1(i) ·∑(s2 ↑ ((n−′ i) + 1)).

(55) For every F1 there exists a finite 0-sequence a1 of R such that doma1 =

domF1 and |∑F1| ≤
∑
a1 and for every i such that i ∈ doma1 holds

a1(i) = |F1(i)|.
(56) For every s1 such that s1 is summable there exists r such that 0 < r and

for every k holds |∑(s1 ↑ k)| < r.
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(57) For all s1, n, m such that n ≤ m and for every i holds s1(i) ≥ 0 holds

(
∑κ

α=0(s1)(α))κ∈N(n) ≤ (
∑κ

α=0(s1)(α))κ∈N(m).

(58) For all s1, s2 such that s1 is absolutely summable and s2 is summable

holds s1 (#) s2 is summable and
∑

(s1 (#) s2) =
∑
s1 ·

∑
s2.

(59) If p = F1, then
∑
p =

∑
F1.

4. The Generating Function for the Catalan Numbers

Next we state the proposition

(60) Let given r. Then there exists a sequence C2 of real numbers such that

(i) for every n holds C2(n) = Catalan(n+ 1) · rn, and

(ii) if |r| < 1
4 , then C2 is absolutely summable and

∑
C2 = 1 + r · (∑C2)2

and
∑
C2 = 2

1+
√

1−4·r and if r 6= 0, then
∑
C2 = 1−√1−4·r

2·r .
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[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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