Some Special Matrices of Real Elements and Their Properties

Xiquan Liang
Qingdao University of Science and Technology
China

Fuguo Ge
Qingdao University of Science
and Technology China

Xiaopeng Yue
Qingdao University of Science
and Technology
China

Abstract

Summary. This article describes definitions of positive matrix, negative matrix, nonpositive matrix, nonnegative matrix, nonzero matrix, module matrix of real elements and their main properties, and we also give the basic inequalities in matrices of real elements.

MML identifier: MATRIX10, version: 7.8.03 4.75.958

The terminology and notation used here are introduced in the following articles: [2], [9], [3], [12], [1], [5], [8], [4], [7], [11], [6], and [10].

1. Some Special Matrices of Real Elements

We use the following convention: a, b are elements of \mathbb{R}, i, j, n are natural numbers, and $M, M_{1}, M_{2}, M_{3}, M_{4}$ are matrices over \mathbb{R} of dimension n.

Let M be a matrix over \mathbb{R}. We say that M is positive if and only if:
(Def. 1) For all i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j}>0$.
We say that M is negative if and only if:
(Def. 2) For all i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j}<0$.
We say that M is nonpositive if and only if:
(Def. 3) For all i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j} \leq 0$. We say that M is nonnegative if and only if:
(Def. 4) For all i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j} \geq 0$.
Let M_{1}, M_{2} be matrices over \mathbb{R}. The predicate $M_{1} \sqsubseteq M_{2}$ is defined as follows:
(Def. 5) For all i, j such that $\langle i, j\rangle \in$ the indices of M_{1} holds $\left(M_{1}\right)_{i, j}<\left(M_{2}\right)_{i, j}$. We say that M_{1} is less or equal with M_{2} if and only if:
(Def. 6) For all i, j such that $\langle i, j\rangle \in$ the indices of M_{1} holds $\left(M_{1}\right)_{i, j} \leq\left(M_{2}\right)_{i, j}$.
Let M be a matrix over \mathbb{R}. The functor $|: M:|$ yielding a matrix over \mathbb{R} is defined by:
(Def. 7) len $|: M:|=\operatorname{len} M$ and width $|: M:|=$ width M and for all i, j such that $\langle i$, $j\rangle \in$ the indices of M holds $\left|: M:\left.\right|_{i, j}=\left|M_{i, j}\right|\right.$.
Let us consider n and let us consider M. Then $-M$ is a matrix over \mathbb{R} of dimension n.

Let us consider n and let us consider M_{1}, M_{2}. Then $M_{1}+M_{2}$ is a matrix over \mathbb{R} of dimension n.

Let us consider n and let us consider M_{1}, M_{2}. Then $M_{1}-M_{2}$ is a matrix over \mathbb{R} of dimension n.

Let us consider n, let a be an element of \mathbb{R}, and let us consider M. Then $a \cdot M$ is a matrix over \mathbb{R} of dimension n.

Let us observe that there exists a matrix over \mathbb{R} which is positive and nonnegative and there exists a matrix over \mathbb{R} which is negative and nonpositive.

Let M be a positive matrix over \mathbb{R}. One can check that M^{T} is positive.
Let M be a negative matrix over \mathbb{R}. Note that M^{T} is negative.
Let M be a nonpositive matrix over \mathbb{R}. One can verify that M^{T} is nonpositive.

Let M be a nonnegative matrix over \mathbb{R}. Observe that M^{T} is nonnegative.
Let us consider n. Observe that $\left(\begin{array}{ccc}1 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 1\end{array}\right)^{n \times n}$ is positive and nonnegative and $\left(\begin{array}{ccc}-1 & \ldots & -1 \\ \vdots & \ddots & \vdots \\ -1 & \ldots & -1\end{array}\right)^{n \times n}$ is negative and nonpositive.

Let us consider n. One can verify that there exists a matrix over \mathbb{R} of dimension n which is positive and nonnegative and there exists a matrix over \mathbb{R} of dimension n which is negative and nonpositive.

We now state a number of propositions:
(1) For every element x_{1} of \mathbb{R}_{F} and for every real number x_{2} such that $x_{1}=x_{2}$ holds $-x_{1}=-x_{2}$.
(2) For every matrix M over \mathbb{R} such that $\langle i, j\rangle \in$ the indices of M holds $(-M)_{i, j}=-M_{i, j}$.
(3) For all matrices M_{1}, M_{2} over \mathbb{R} such that len $M_{1}=\operatorname{len} M_{2}$ and width $M_{1}=$ width M_{2} and $\langle i, j\rangle \in$ the indices of M_{1} holds $\left(M_{1}-M_{2}\right)_{i, j}=$ $\left(M_{1}\right)_{i, j}-\left(M_{2}\right)_{i, j}$.
(4) For every matrix M over \mathbb{R} such that $\operatorname{len}(a \cdot M)=$ len M and $\operatorname{width}(a$. $M)=\operatorname{width} M$ and $\langle i, j\rangle \in$ the indices of M holds $(a \cdot M)_{i, j}=a \cdot M_{i, j}$.
(5) The indices of $M=$ the indices of $|: M:|$.
(6) $|: a \cdot M:|=|a| \cdot|: M:|$.
(7) If M is negative, then $-M$ is positive.
(8) If M_{1} is positive and M_{2} is positive, then $M_{1}+M_{2}$ is positive.
(9) If $-M_{2} \sqsubseteq M_{1}$, then $M_{1}+M_{2}$ is positive.
(10) If M_{1} is nonnegative and M_{2} is positive, then $M_{1}+M_{2}$ is positive.
(11) If M_{1} is positive and M_{2} is negative and $\left|: M_{2}:|\sqsubseteq|: M_{1}:\right|$, then $M_{1}+M_{2}$ is positive.
(12) If M_{1} is positive and M_{2} is negative, then $M_{1}-M_{2}$ is positive.
(13) If $M_{2} \sqsubseteq M_{1}$, then $M_{1}-M_{2}$ is positive.
(14) If $a>0$ and M is positive, then $a \cdot M$ is positive.
(15) If $a<0$ and M is negative, then $a \cdot M$ is positive.
(16) If M is positive, then $-M$ is negative.
(17) If M_{1} is negative and M_{2} is negative, then $M_{1}+M_{2}$ is negative.
(18) If $M_{1} \sqsubseteq-M_{2}$, then $M_{1}+M_{2}$ is negative.
(19) If M_{1} is positive and M_{2} is negative and $\left|: M_{1}:|\sqsubseteq|: M_{2}:\right|$, then $M_{1}+M_{2}$ is negative.
(20) If $M_{1} \sqsubseteq M_{2}$, then $M_{1}-M_{2}$ is negative.
(21) If M_{1} is positive and M_{2} is negative, then $M_{2}-M_{1}$ is negative.
(22) If $a<0$ and M is positive, then $a \cdot M$ is negative.
(23) If $a>0$ and M is negative, then $a \cdot M$ is negative.
(24) If M is nonnegative, then $-M$ is nonpositive.
(25) If M is negative, then M is nonpositive.
(26) If M_{1} is nonpositive and M_{2} is nonpositive, then $M_{1}+M_{2}$ is nonpositive.
(27) If M_{1} is less or equal with $-M_{2}$, then $M_{1}+M_{2}$ is nonpositive.
(28) If M_{1} is less or equal with M_{2}, then $M_{1}-M_{2}$ is nonpositive.
(29) If $a \leq 0$ and M is positive, then $a \cdot M$ is nonpositive.
(30) If $a \geq 0$ and M is negative, then $a \cdot M$ is nonpositive.
(31) If $a \geq 0$ and M is nonpositive, then $a \cdot M$ is nonpositive.
(32) If $a \leq 0$ and M is nonnegative, then $a \cdot M$ is nonpositive.
(33) $|: M:|$ is nonnegative.
(34) If M_{1} is positive, then M_{1} is nonnegative.
(35) If M is nonpositive, then $-M$ is nonnegative.
(36) If M_{1} is nonnegative and M_{2} is nonnegative, then $M_{1}+M_{2}$ is nonnegative.
(37) If $-M_{1}$ is less or equal with M_{2}, then $M_{1}+M_{2}$ is nonnegative.
(38) If M_{2} is less or equal with M_{1}, then $M_{1}-M_{2}$ is nonnegative.
(39) If $a \geq 0$ and M is positive, then $a \cdot M$ is nonnegative.
(40) If $a \leq 0$ and M is negative, then $a \cdot M$ is nonnegative.
(41) If $a \leq 0$ and M is nonpositive, then $a \cdot M$ is nonnegative.
(42) If $a \geq 0$ and M is nonnegative, then $a \cdot M$ is nonnegative.
(43) If $a \geq 0$ and $b \geq 0$ and M_{1} is nonnegative and M_{2} is nonnegative, then $a \cdot M_{1}+b \cdot M_{2}$ is nonnegative.

2. Some Basic Inequalities in Matrices of Real Elements

Next we state a number of propositions:
(44) If $M_{1} \sqsubseteq M_{2}$, then M_{1} is less or equal with M_{2}.
(45) If $M_{1} \sqsubseteq M_{2}$ and $M_{2} \sqsubseteq M_{3}$, then $M_{1} \sqsubseteq M_{3}$.
(46) If $M_{1} \sqsubseteq M_{2}$ and $M_{3} \sqsubseteq M_{4}$, then $M_{1}+M_{3} \sqsubseteq M_{2}+M_{4}$.
(47) If $M_{1} \sqsubseteq M_{2}$, then $M_{1}+M_{3} \sqsubseteq M_{2}+M_{3}$.
(48) If $M_{1} \sqsubseteq M_{2}$, then $M_{3}-M_{2} \sqsubseteq M_{3}-M_{1}$.
(49) $\left|: M_{1}+M_{2}:\right|$ is less or equal with $\left|: M_{1}:\left|+\left|: M_{2}:\right|\right.\right.$.
(50) If M_{1} is less or equal with M_{2}, then $M_{1}-M_{3}$ is less or equal with $M_{2}-M_{3}$.
(51) If $M_{1}-M_{3}$ is less or equal with $M_{2}-M_{3}$, then M_{1} is less or equal with M_{2}.
(52) If M_{1} is less or equal with $M_{2}-M_{3}$, then M_{3} is less or equal with $M_{2}-M_{1}$.
(53) If $M_{1}-M_{2}$ is less or equal with M_{3}, then $M_{1}-M_{3}$ is less or equal with M_{2}.
(54) If $M_{1} \sqsubseteq M_{2}$ and M_{3} is less or equal with M_{4}, then $M_{1}-M_{4} \sqsubseteq M_{2}-M_{3}$.
(55) If M_{1} is less or equal with M_{2} and $M_{3} \sqsubseteq M_{4}$, then $M_{1}-M_{4} \sqsubseteq M_{2}-M_{3}$.
(56) If $M_{1}-M_{2}$ is less or equal with $M_{3}-M_{4}$, then $M_{1}-M_{3}$ is less or equal with $M_{2}-M_{4}$.
(57) If $M_{1}-M_{2}$ is less or equal with $M_{3}-M_{4}$, then $M_{4}-M_{2}$ is less or equal with $M_{3}-M_{1}$.
(58) If $M_{1}-M_{2}$ is less or equal with $M_{3}-M_{4}$, then $M_{4}-M_{3}$ is less or equal with $M_{2}-M_{1}$.
(59) If $M_{1}+M_{2}$ is less or equal with M_{3}, then M_{1} is less or equal with $M_{3}-M_{2}$.
(60) If $M_{1}+M_{2}$ is less or equal with $M_{3}+M_{4}$, then $M_{1}-M_{3}$ is less or equal with $M_{4}-M_{2}$.
(61) If $M_{1}+M_{2}$ is less or equal with $M_{3}-M_{4}$, then $M_{1}+M_{4}$ is less or equal with $M_{3}-M_{2}$.
(62) If $M_{1}-M_{2}$ is less or equal with $M_{3}+M_{4}$, then $M_{1}-M_{4}$ is less or equal with $M_{3}+M_{2}$.
(63) If M_{1} is less or equal with M_{2}, then $-M_{2}$ is less or equal with $-M_{1}$.
(64) If M_{1} is less or equal with $-M_{2}$, then M_{2} is less or equal with $-M_{1}$.
(65) If $-M_{2}$ is less or equal with M_{1}, then $-M_{1}$ is less or equal with M_{2}.
(66) If M_{1} is positive, then $M_{2} \sqsubseteq M_{2}+M_{1}$.
(67) If M_{1} is negative, then $M_{1}+M_{2} \sqsubseteq M_{2}$.
(68) If M_{1} is nonnegative, then M_{2} is less or equal with $M_{1}+M_{2}$.
(69) If M_{1} is nonpositive, then $M_{1}+M_{2}$ is less or equal with M_{2}.
(70) If M_{1} is nonpositive and M_{3} is less or equal with M_{2}, then $M_{3}+M_{1}$ is less or equal with M_{2}.
(71) If M_{1} is nonpositive and $M_{3} \sqsubseteq M_{2}$, then $M_{3}+M_{1} \sqsubseteq M_{2}$.
(72) If M_{1} is negative and M_{3} is less or equal with M_{2}, then $M_{3}+M_{1} \sqsubseteq M_{2}$.
(73) If M_{1} is nonnegative and M_{2} is less or equal with M_{3}, then M_{2} is less or equal with $M_{1}+M_{3}$.
(74) If M_{1} is positive and M_{2} is less or equal with M_{3}, then $M_{2} \sqsubseteq M_{1}+M_{3}$.
(75) If M_{1} is nonnegative and $M_{2} \sqsubseteq M_{3}$, then $M_{2} \sqsubseteq M_{1}+M_{3}$.
(76) If M_{1} is nonnegative, then $M_{2}-M_{1}$ is less or equal with M_{2}.
(77) If M_{1} is positive, then $M_{2}-M_{1} \sqsubseteq M_{2}$.
(78) If M_{1} is nonpositive, then M_{2} is less or equal with $M_{2}-M_{1}$.
(79) If M_{1} is negative, then $M_{2} \sqsubseteq M_{2}-M_{1}$.
(80) If M_{1} is less or equal with M_{2}, then $M_{2}-M_{1}$ is nonnegative.
(81) If M_{1} is nonnegative and $M_{2} \sqsubseteq M_{3}$, then $M_{2}-M_{1} \sqsubseteq M_{3}$.
(82) If M_{1} is nonpositive and M_{2} is less or equal with M_{3}, then M_{2} is less or equal with $M_{3}-M_{1}$.
(83) If M_{1} is nonpositive and $M_{2} \sqsubseteq M_{3}$, then $M_{2} \sqsubseteq M_{3}-M_{1}$.
(84) If M_{1} is negative and M_{2} is less or equal with M_{3}, then $M_{2} \sqsubseteq M_{3}-M_{1}$.
(85) If $M_{1} \sqsubseteq M_{2}$ and $a>0$, then $a \cdot M_{1} \sqsubseteq a \cdot M_{2}$.
(86) If $M_{1} \sqsubseteq M_{2}$ and $a \geq 0$, then $a \cdot M_{1}$ is less or equal with $a \cdot M_{2}$.
(87) If $M_{1} \sqsubseteq M_{2}$ and $a<0$, then $a \cdot M_{2} \sqsubseteq a \cdot M_{1}$.
(88) If $M_{1} \sqsubseteq M_{2}$ and $a \leq 0$, then $a \cdot M_{2}$ is less or equal with $a \cdot M_{1}$.
(89) If M_{1} is less or equal with M_{2} and $a \geq 0$, then $a \cdot M_{1}$ is less or equal with $a \cdot M_{2}$.
(90) If M_{1} is less or equal with M_{2} and $a \leq 0$, then $a \cdot M_{2}$ is less or equal with $a \cdot M_{1}$.
(91) If $a \geq 0$ and $a \leq b$ and M_{1} is nonnegative and less or equal with M_{2}, then $a \cdot M_{1}$ is less or equal with $b \cdot M_{2}$.
(92) If $a \leq 0$ and $b \leq a$ and M_{1} is nonpositive and M_{2} is less or equal with M_{1}, then $a \cdot M_{1}$ is less or equal with $b \cdot M_{2}$.
(93) If $a<0$ and $b \leq a$ and M_{1} is negative and $M_{2} \sqsubseteq M_{1}$, then $a \cdot M_{1} \sqsubseteq b \cdot M_{2}$.
(94) If $a \geq 0$ and $a<b$ and M_{1} is nonnegative and $M_{1} \sqsubseteq M_{2}$, then $a \cdot M_{1} \sqsubseteq$ $b \cdot M_{2}$.
(95) If $a \geq 0$ and $a<b$ and M_{1} is positive and less or equal with M_{2}, then $a \cdot M_{1} \sqsubseteq b \cdot M_{2}$.
(96) If $a>0$ and $a \leq b$ and M_{1} is positive and $M_{1} \sqsubseteq M_{2}$, then $a \cdot M_{1} \sqsubseteq b \cdot M_{2}$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Yatsuka Nakamura, Nobuyuki Tamura, and Wenpai Chang. A theory of matrices of real elements. Formalized Mathematics, 14(1):21-28, 2006.
[8] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

