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Summary. First, equivalence conditions for connectedness are examined
for a finite topological space (originated in [9]). Secondly, definitions of subspace,
and components of the subspace of a finite topological space are given. Lastly,
concepts of continuous finite sequence and minimum path of finite topological
space are proposed.
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The articles [16], [5], [18], [13], [1], [19], [14], [3], [4], [2], [6], [12], [10], [15], [7].
[11], [8], and [17] provide the terminology and notation for this paper.

1. CONNECTEDNESS AND SUBSPACES

In this paper F} denotes a non empty finite topology space and A, B, C
denote subsets of Fj.

Let us consider F;. One can check that @( Fy) is connected.

We now state two propositions:

(1) For all subsets A, B of Fy holds (AU B)® = A® U B®.
2 O))® = 0.
Let us consider Fy. Observe that (0 Fl))b is empty.
Next we state the proposition
(3) Let A be a subset of Fi. Suppose that for all subsets B, C' of F} such
that A= BUC and B # () and C # () and B misses C' holds B® meets C
and B meets C?. Then A is connected.
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Let F1 be a non empty finite topology space. We say that F; is connected
if and only if:

(Def. 1) Q) is connected.

We now state four propositions:

(4) Let A be a subset of F}. Suppose A is connected. Let As, By be subsets
of Fi. Suppose A = Ay U By and Ay misses By and As; and By are
separated. Then Ay = () or By = O(p,).

(5) Suppose F1 is connected. Let A, B be subsets of Fy. Suppose Q(p) =
AU B and A misses B and A and B are separated. Then A = () or
B — (D(Fl)'

(6) For all subsets A, B of I} such that I} is symmetric and A’ misses B
holds A misses B®.

(7) Let A be a subset of F;. Suppose that

(i)  Fy is symmetric, and

(ii)  for all subsets Ay, By of F} such that A = Ay U By and Ag misses By
and As and Bs are separated holds Ay = ®(F1) or By = @(Fl)-

Then A is connected.

Let T be a finite topology space. A finite topology space is said to be a

subspace of T' if it satisfies the conditions (Def. 2).
(Def. 2)(i)  The carrier of it C the carrier of T,

(ii)  dom (the neighbour-map of it) = the carrier of it, and

(iii)  for every element x of it such that x € the carrier of it holds (the
neighbour-map of it)(z) = (the neighbour-map of T")(x) Nthe carrier of it.

Let T be a finite topology space. Note that there exists a subspace of T
which is strict.

Let T be a non empty finite topology space. Note that there exists a subspace
of T which is strict and non empty.

Let T be a non empty finite topology space and let P be a non empty subset
of T. The functor T'[P yields a strict non empty subspace of T" and is defined
as follows:

(Def. 3) QT[P =P

We now state the proposition

(8) For every non empty subspace X of F; such that F} is filled holds X is
filled.

Let F} be a filled non empty finite topology space. Note that every non
empty subspace of F} is filled.

Next we state a number of propositions:

(9) For every non empty subspace X of F; such that F} is symmetric holds
X is symmetric.

(10) For every subspace X’ of F; holds every subset of X’ is a subset of Fj.
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(11) For every subset P of F; holds P is closed iff P is open.

(12) Let A be a subset of Fj. Then A is open if and only if the following
conditions are satisfied:

(i) for every element z of F; such that U(z) C A holds z € A, and
(ii)  for every element z of F; such that x € A holds U(z) C A.

(13) Let X’ be a non empty subspace of F;, A be a subset of Fy, and A; be
a subset of X’. If A= A, then 4, = A* N Qx .

(14) Let X’ be a non empty subspace of Fy, P;, Q1 be subsets of Fj, and
P, @ be subsets of X’. Suppose P = P; and Q = Q. If P and Q are
separated, then P; and Q1 are separated.

(15) Let X’ be a non empty subspace of Fy, P, Q be subsets of Fy, and P,
Q1 be subsets of X’. Suppose P = P; and Q = Qy and PUQ C Qx. If
P and @) are separated, then P; and Q1 are separated.

(16) For every non empty subset A of F; holds A is connected iff F}[A is
connected.

(17) Let Fy be a filled non empty finite topology space and A be a non empty
subset of Fj. Suppose Fj is symmetric. Then A is connected if and only
if for all subsets P, @) of F} such that A= PUQ and P misses (Q and P
and () are separated holds P = (D(F1) or Q = @(Fl).

(18) For every subset A of Fy such that F} is filled and connected and A # ()
and A°® # () holds A% # (.

(19) For every subset A of F such that F} is filled, symmetric, and connected
and A # () and A° # () holds A% # (.

(20) For every subset A of F such that F} is filled, symmetric, and connected
and A # () and A° # () holds A% £ (.

(21) For every subset A of F; holds A% misses A%,

(22) For every filled non empty finite topology space F; and for every subset
A of Fy holds A% = A\ A.

(23) For all subsets A, B of Fy such that A and B are separated holds A%
misses B.

(24) Let A, B be subsets of F}. Suppose Fj is filled and A misses B and A%
misses B and B% misses A. Then A and B are separated.

(25) For every point x of F; holds {z} is connected.

Let us consider F} and let x be a point of F;. Note that {x} is connected.
Let F} be a non empty finite topology space and let A be a subset of Fj.
We say that A is a component of F} if and only if:

(Def. 4) A is connected and for every subset B of F} such that B is connected
holds if A C B, then A = B.

One can prove the following propositions:
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(26) For every subset A of F; such that A is a component of F; holds A #
D).
(27) 1If Ais closed and B is closed and A misses B, then A and B are sepa-
rated.
(28) If Fy is filled and Q(p) = AU B and A and B are separated, then A is
open and closed.
(29) For all subsets A, B, A;, By of F} such that A and B are separated and
A1 C A and By C B holds A; and B are separated.
(30) If A and B are separated and A and C' are separated, then A and BUC
are separated.
(31) Suppose that
(i) I is filled and symmetric, and
(ii)  for all subsets A, B of Fy such that Qp) = AU B and A # () and
B # () and A is closed and B is closed holds A meets B.
Then Fj is connected.

(32) Suppose Fy is connected. Let A, B be subsets of F. Suppose Qg =
AUB and A # Q)(Fl) and B # () and A is closed and B is closed. Then
A meets B.

(33) If Fy is filled and A is connected and A C BUC and B and C are
separated, then A C Bor A C C.

(34) Let A, B be subsets of F}. Suppose F} is symmetric and A is connected
and B is connected and A and B are not separated. Then A U B is
connected.

(35) For all subsets A, C of F} such that F; is symmetric and C' is connected
and C C A and A C C? holds A is connected.

(36) For every subset C' of F} such that F} is filled and symmetric and C' is
connected holds C? is connected.

(37) Suppose F; is filled, symmetric, and connected and A is connected and
Q) \A=BUC and B and C are separated. Then AU B is connected.

(38) Let X’ be a non empty subspace of F;, A be a subset of F}, and B be a
subset of X’. Suppose F; is symmetric and A = B. Then A is connected
if and only if B is connected.

(39) For every subset A of F} such that F} is filled and symmetric and A is
a component of F; holds A is closed.

(40) Let A, B be subsets of Fy. Suppose Fj is symmetric and A is a com-
ponent of F; and B is a component of £. Then A = B or A and B are
separated.

(41) Let A, B be subsets of F;. Suppose F} is filled and symmetric and A is
a component of F; and B is a component of F}. Then A = B or A misses

B.
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(42) Let C be a subset of F}. Suppose F} is filled and symmetric and C' is
connected. Let S be a subset of Fy. If S is a component of FY, then C
misses S or C C S.

Let F} be a non empty finite topology space, let A be a non empty subset
of Fi, and let B be a subset of F;. We say that B is a component of A if and
only if:

(Def. 5) There exists a subset By of Fj[A such that By = B and Bj is a compo-
nent of F1[A.

We now state the proposition

(43) Let D be a non empty subset of Fy. Suppose F7 is filled and symmetric
and D = Qg \ A. Suppose Fj is connected and A is connected and C'is
a component of D. Then Qp) \ C is connected.

2. CONTINUOUS FINITE SEQUENCES AND MINIMUM PATH

Let us consider F; and let f be a finite sequence of elements of F;. We say
that f is continuous if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(1) 1 <len f, and

(ii)  for every natural number i and for every element z; of Fy such that
1<iandi<lenf and z; = f(i) holds f(i+ 1) € U(z).
Let us consider F and let x be an element of Fy. Observe that (z) is
continuous.
One can prove the following two propositions:
(44) Let f be a finite sequence of elements of F; and z, y be elements of Fy. If
f is continuous and y = f(len f) and x € U(y), then f ™ (z) is continuous.
(45) Let f, g be finite sequences of elements of Fj. Suppose f is continuous
and g is continuous and ¢(1) € U(fien ). Then f 7 g is continuous.
Let us consider F} and let A be a subset of F;. We say that A is arcwise
connected if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let x1, x2 be elements of Fy. Suppose 1 € A and x3 € A. Then there
exists a finite sequence f of elements of F such that f is continuous and
g f € A and f(1) = z; and f(len f) = xo.

Let us consider F;. Observe that (7)( Fy) 18 arcwise connected.
Let us consider F} and let = be an element of Fj. One can verify that {x}
is arcwise connected.
The following three propositions are true:
(46) For every subset A of F such that F} is symmetric holds A is connected
iff A is arcwise connected.
(47) Let g be a finite sequence of elements of F; and k be a natural number.
If g is continuous and 1 < k, then g[k is continuous.
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(48) Let g be a finite sequence of elements of F; and k be an element of N.
If g is continuous and k < len g, then g is continuous.

Let us consider F1i, let g be a finite sequence of elements of Fy, let A be a
subset of £}, and let x1, xo be elements of F;. We say that ¢ is minimum path
in A between z1 and 9 if and only if the conditions (Def. 8) are satisfied.

(Def. 8)(1) g is continuous,
(i) gy C A,
) g<1> = T,
(iv) g(leng) = z9, and
(v)

(iii

for every finite sequence h of elements of Fy such that A is continuous
and rngh C A and h(1) = 1 and h(len h) = x5 holds len g < len h.

One can prove the following propositions:

(49) For every subset A of F; and for every element = of F; such that x € A
holds (x) is minimum path in A between z and x.

(50) Let A be a subset of Fy. Then A is arcwise connected if and only if for
all elements x1, xo of I such that z1 € A and x5 € A holds there exists
a finite sequence of elements of F; which is minimum path in A between
z1 and zo.

(51) Let A be a subset of F} and z1, x2 be elements of F;. Given a finite
sequence f of elements of F} such that f is continuous and rng f C A
and f(1) = z; and f(len f) = z. Then there exists a finite sequence of
elements of F} which is minimum path in A between z1 and xs.

(52) Let g be a finite sequence of elements of F;, A be a subset of Fy, 1, 2
be elements of F1, and k be an element of N. Suppose ¢ is minimum path
in A between x1 and 22 and 1 < k and k < len g. Then g[k is continuous
and rng(g[k) C A and (¢k)(1) = 21 and (g[k)(len(g[k)) = g

(53) Let g be a finite sequence of elements of Fy, A be a subset of Fy, x1,
x9 be elements of F7, and k be an element of N. Suppose ¢ is minimum
path in A between x; and z3 and k < leng. Then g is continuous and
rmg(gx) € A and g|x(1) = g14x and gx(len(g|x)) = z2.

(54) Let g be a finite sequence of elements of F, A be a subset of Fj, and
1, T3 be elements of F}. Suppose ¢ is minimum path in A between z;
and x3. Let k be a natural number. If 1 < k and k£ < leng, then g[k is
minimum path in A between x1 and gj.

(55) Let g be a finite sequence of elements of F}, A be a subset of Fj, and
1, T2 be elements of Fy. If ¢ is minimum path in A between x1 and xo,
then ¢ is one-to-one.

Let us consider F; and let f be a finite sequence of elements of Fy. We say
that f is inversely continuous if and only if the conditions (Def. 9) are satisfied.

(Def. 9)(i) 1 <len f, and
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(ii)  for all natural numbers i, j and for every element y of F; such that
l1<iandi<lenfand1l<jand j<lenf and y = f(i) and i # j and
f(G)eU(y) holdsi=j+1orj=1i+1.

We now state three propositions:

(56) Let g be a finite sequence of elements of F, A be a subset of F}, and x1,
2 be elements of Fj. Suppose g is minimum path in A between z1 and
x9 and F} is symmetric. Then g is inversely continuous.

(57) Let g be a finite sequence of elements of F, A be a subset of F}, and x4,
o be elements of F}. Suppose g is minimum path in A between z; and
xo and F} is filled and symmetric and x1 # x5. Then

(i)  for every natural number ¢ such that 1 < i and ¢ < len g holds rngg N
Ulgi) = {9(i =" 1),9(i),9(i + 1)},
(i) ggnU(g1) ={g(1),9(2)}, and
(i) rnggNU(gleng) = {g(leng —"1),g(len g)}.

(58) Let g be a finite sequence of elements of F}, A be a non empty subset
of Fy, x1, 2 be elements of Fy, and By be a subset of Fi[A. Suppose g
is minimum path in A between x; and xo and F} is filled and symmetric
and x1 # x9 and By = {x1}. Let ¢ be an element of N. If ¢ < len g, then
g(i+ 1) € Finf(By,7) and if ¢ > 1, then g(i + 1) ¢ Finf(Bg,7 —'1).
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