Connectedness and Continuous Sequences in Finite Topological Spaces

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Abstract

Summary. First, equivalence conditions for connectedness are examined for a finite topological space (originated in [9]). Secondly, definitions of subspace, and components of the subspace of a finite topological space are given. Lastly, concepts of continuous finite sequence and minimum path of finite topological space are proposed.

MML identifier: FINTOPO6, version: 7.8.01 4.70.946

The articles [16], [5], [18], [13], [1], [19], [14], [3], [4], [2], [6], [12], [10], [15], [7], [11], [8], and [17] provide the terminology and notation for this paper.

1. Connectedness and Subspaces

In this paper F_{1} denotes a non empty finite topology space and A, B, C denote subsets of F_{1}.

Let us consider F_{1}. One can check that $\emptyset_{\left(F_{1}\right)}$ is connected.
We now state two propositions:
(1) For all subsets A, B of F_{1} holds $(A \cup B)^{b}=A^{b} \cup B^{b}$.
(2) $\left(\emptyset_{\left(F_{1}\right)}\right)^{b}=\emptyset$.

Let us consider F_{1}. Observe that $\left(\emptyset_{\left(F_{1}\right)}\right)^{b}$ is empty.
Next we state the proposition
(3) Let A be a subset of F_{1}. Suppose that for all subsets B, C of F_{1} such that $A=B \cup C$ and $B \neq \emptyset$ and $C \neq \emptyset$ and B misses C holds B^{b} meets C and B meets C^{b}. Then A is connected.

Let F_{1} be a non empty finite topology space. We say that F_{1} is connected if and only if:
(Def. 1) $\Omega_{\left(F_{1}\right)}$ is connected.
We now state four propositions:
(4) Let A be a subset of F_{1}. Suppose A is connected. Let A_{2}, B_{2} be subsets of F_{1}. Suppose $A=A_{2} \cup B_{2}$ and A_{2} misses B_{2} and A_{2} and B_{2} are separated. Then $A_{2}=\emptyset_{\left(F_{1}\right)}$ or $B_{2}=\emptyset_{\left(F_{1}\right)}$.
(5) Suppose F_{1} is connected. Let A, B be subsets of F_{1}. Suppose $\Omega_{\left(F_{1}\right)}=$ $A \cup B$ and A misses B and A and B are separated. Then $A=\emptyset_{\left(F_{1}\right)}$ or $B=\emptyset_{\left(F_{1}\right)}$.
(6) For all subsets A, B of F_{1} such that F_{1} is symmetric and A^{b} misses B holds A misses B^{b}.
(7) Let A be a subset of F_{1}. Suppose that
(i) $\quad F_{1}$ is symmetric, and
(ii) for all subsets A_{2}, B_{2} of F_{1} such that $A=A_{2} \cup B_{2}$ and A_{2} misses B_{2} and A_{2} and B_{2} are separated holds $A_{2}=\emptyset_{\left(F_{1}\right)}$ or $B_{2}=\emptyset_{\left(F_{1}\right)}$.
Then A is connected.
Let T be a finite topology space. A finite topology space is said to be a subspace of T if it satisfies the conditions (Def. 2).
(Def. 2)(i) The carrier of it \subseteq the carrier of T,
(ii) $\operatorname{dom}($ the neighbour-map of it) $=$ the carrier of it, and
(iii) for every element x of it such that $x \in$ the carrier of it holds (the neighbour-map of it) $(x)=$ (the neighbour-map of $T)(x) \cap$ the carrier of it.
Let T be a finite topology space. Note that there exists a subspace of T which is strict.

Let T be a non empty finite topology space. Note that there exists a subspace of T which is strict and non empty.

Let T be a non empty finite topology space and let P be a non empty subset of T. The functor $T \upharpoonright P$ yields a strict non empty subspace of T and is defined as follows:
(Def. 3) $\quad \Omega_{T \upharpoonright P}=P$.
We now state the proposition
(8) For every non empty subspace X of F_{1} such that F_{1} is filled holds X is filled.
Let F_{1} be a filled non empty finite topology space. Note that every non empty subspace of F_{1} is filled.

Next we state a number of propositions:
(9) For every non empty subspace X of F_{1} such that F_{1} is symmetric holds X is symmetric.
(10) For every subspace X^{\prime} of F_{1} holds every subset of X^{\prime} is a subset of F_{1}.
(11) For every subset P of F_{1} holds P is closed iff P^{c} is open.
(12) Let A be a subset of F_{1}. Then A is open if and only if the following conditions are satisfied:
(i) for every element z of F_{1} such that $U(z) \subseteq A$ holds $z \in A$, and
(ii) for every element x of F_{1} such that $x \in A$ holds $U(x) \subseteq A$.
(13) Let X^{\prime} be a non empty subspace of F_{1}, A be a subset of F_{1}, and A_{1} be a subset of X^{\prime}. If $A=A_{1}$, then $A_{1}^{b}=A^{b} \cap \Omega_{X^{\prime}}$.
(14) Let X^{\prime} be a non empty subspace of F_{1}, P_{1}, Q_{1} be subsets of F_{1}, and P, Q be subsets of X^{\prime}. Suppose $P=P_{1}$ and $Q=Q_{1}$. If P and Q are separated, then P_{1} and Q_{1} are separated.
(15) Let X^{\prime} be a non empty subspace of F_{1}, P, Q be subsets of F_{1}, and P_{1}, Q_{1} be subsets of X^{\prime}. Suppose $P=P_{1}$ and $Q=Q_{1}$ and $P \cup Q \subseteq \Omega_{X^{\prime}}$. If P and Q are separated, then P_{1} and Q_{1} are separated.
(16) For every non empty subset A of F_{1} holds A is connected iff $F_{1} \upharpoonright A$ is connected.
(17) Let F_{1} be a filled non empty finite topology space and A be a non empty subset of F_{1}. Suppose F_{1} is symmetric. Then A is connected if and only if for all subsets P, Q of F_{1} such that $A=P \cup Q$ and P misses Q and P and Q are separated holds $P=\emptyset_{\left(F_{1}\right)}$ or $Q=\emptyset_{\left(F_{1}\right)}$.
(18) For every subset A of F_{1} such that F_{1} is filled and connected and $A \neq \emptyset$ and $A^{\mathrm{c}} \neq \emptyset$ holds $A^{\delta} \neq \emptyset$.
(19) For every subset A of F_{1} such that F_{1} is filled, symmetric, and connected and $A \neq \emptyset$ and $A^{\mathrm{c}} \neq \emptyset$ holds $A^{\delta_{i}} \neq \emptyset$.
(20) For every subset A of F_{1} such that F_{1} is filled, symmetric, and connected and $A \neq \emptyset$ and $A^{\mathrm{c}} \neq \emptyset$ holds $A^{\delta_{o}} \neq \emptyset$.
(21) For every subset A of F_{1} holds $A^{\delta_{i}}$ misses $A^{\delta_{o}}$.
(22) For every filled non empty finite topology space F_{1} and for every subset A of F_{1} holds $A^{\delta_{o}}=A^{b} \backslash A$.
(23) For all subsets A, B of F_{1} such that A and B are separated holds $A^{\delta_{o}}$ misses B.
(24) Let A, B be subsets of F_{1}. Suppose F_{1} is filled and A misses B and $A^{\delta_{o}}$ misses B and $B^{\delta_{o}}$ misses A. Then A and B are separated.
(25) For every point x of F_{1} holds $\{x\}$ is connected.

Let us consider F_{1} and let x be a point of F_{1}. Note that $\{x\}$ is connected.
Let F_{1} be a non empty finite topology space and let A be a subset of F_{1}.
We say that A is a component of F_{1} if and only if:
(Def. 4) $\quad A$ is connected and for every subset B of F_{1} such that B is connected holds if $A \subseteq B$, then $A=B$.
One can prove the following propositions:
(26) For every subset A of F_{1} such that A is a component of F_{1} holds $A \neq$ $\emptyset_{\left(F_{1}\right)}$.
(27) If A is closed and B is closed and A misses B, then A and B are separated.
(28) If F_{1} is filled and $\Omega_{\left(F_{1}\right)}=A \cup B$ and A and B are separated, then A is open and closed.
(29) For all subsets A, B, A_{1}, B_{1} of F_{1} such that A and B are separated and $A_{1} \subseteq A$ and $B_{1} \subseteq B$ holds A_{1} and B_{1} are separated.
(30) If A and B are separated and A and C are separated, then A and $B \cup C$ are separated.
(31) Suppose that
(i) $\quad F_{1}$ is filled and symmetric, and
(ii) for all subsets A, B of F_{1} such that $\Omega_{\left(F_{1}\right)}=A \cup B$ and $A \neq \emptyset_{\left(F_{1}\right)}$ and $B \neq \emptyset_{\left(F_{1}\right)}$ and A is closed and B is closed holds A meets B. Then F_{1} is connected.
(32) Suppose F_{1} is connected. Let A, B be subsets of F_{1}. Suppose $\Omega_{\left(F_{1}\right)}=$ $A \cup B$ and $A \neq \emptyset_{\left(F_{1}\right)}$ and $B \neq \emptyset_{\left(F_{1}\right)}$ and A is closed and B is closed. Then A meets B.
(33) If F_{1} is filled and A is connected and $A \subseteq B \cup C$ and B and C are separated, then $A \subseteq B$ or $A \subseteq C$.
(34) Let A, B be subsets of F_{1}. Suppose F_{1} is symmetric and A is connected and B is connected and A and B are not separated. Then $A \cup B$ is connected.
(35) For all subsets A, C of F_{1} such that F_{1} is symmetric and C is connected and $C \subseteq A$ and $A \subseteq C^{b}$ holds A is connected.
(36) For every subset C of F_{1} such that F_{1} is filled and symmetric and C is connected holds C^{b} is connected.
(37) Suppose F_{1} is filled, symmetric, and connected and A is connected and $\Omega_{\left(F_{1}\right)} \backslash A=B \cup C$ and B and C are separated. Then $A \cup B$ is connected.
(38) Let X^{\prime} be a non empty subspace of F_{1}, A be a subset of F_{1}, and B be a subset of X^{\prime}. Suppose F_{1} is symmetric and $A=B$. Then A is connected if and only if B is connected.
(39) For every subset A of F_{1} such that F_{1} is filled and symmetric and A is a component of F_{1} holds A is closed.
(40) Let A, B be subsets of F_{1}. Suppose F_{1} is symmetric and A is a component of F_{1} and B is a component of F_{1}. Then $A=B$ or A and B are separated.
(41) Let A, B be subsets of F_{1}. Suppose F_{1} is filled and symmetric and A is a component of F_{1} and B is a component of F_{1}. Then $A=B$ or A misses B.
(42) Let C be a subset of F_{1}. Suppose F_{1} is filled and symmetric and C is connected. Let S be a subset of F_{1}. If S is a component of F_{1}, then C misses S or $C \subseteq S$.
Let F_{1} be a non empty finite topology space, let A be a non empty subset of F_{1}, and let B be a subset of F_{1}. We say that B is a component of A if and only if:
(Def. 5) There exists a subset B_{1} of $F_{1} \upharpoonright A$ such that $B_{1}=B$ and B_{1} is a component of $F_{1} \upharpoonright A$.
We now state the proposition
(43) Let D be a non empty subset of F_{1}. Suppose F_{1} is filled and symmetric and $D=\Omega_{\left(F_{1}\right)} \backslash A$. Suppose F_{1} is connected and A is connected and C is a component of D. Then $\Omega_{\left(F_{1}\right)} \backslash C$ is connected.

2. Continuous Finite Sequences and Minimum Path

Let us consider F_{1} and let f be a finite sequence of elements of F_{1}. We say that f is continuous if and only if the conditions (Def. 6) are satisfied.
(Def. 6)(i) $1 \leq \operatorname{len} f$, and
(ii) for every natural number i and for every element x_{1} of F_{1} such that $1 \leq i$ and $i<\operatorname{len} f$ and $x_{1}=f(i)$ holds $f(i+1) \in U\left(x_{1}\right)$.
Let us consider F_{1} and let x be an element of F_{1}. Observe that $\langle x\rangle$ is continuous.

One can prove the following two propositions:
(44) Let f be a finite sequence of elements of F_{1} and x, y be elements of F_{1}. If f is continuous and $y=f(\operatorname{len} f)$ and $x \in U(y)$, then $f \frown\langle x\rangle$ is continuous.
(45) Let f, g be finite sequences of elements of F_{1}. Suppose f is continuous and g is continuous and $g(1) \in U\left(f_{\operatorname{len} f}\right)$. Then $f \frown g$ is continuous.
Let us consider F_{1} and let A be a subset of F_{1}. We say that A is arcwise connected if and only if the condition (Def. 7) is satisfied.
(Def. 7) Let x_{1}, x_{2} be elements of F_{1}. Suppose $x_{1} \in A$ and $x_{2} \in A$. Then there exists a finite sequence f of elements of F_{1} such that f is continuous and $\operatorname{rng} f \subseteq A$ and $f(1)=x_{1}$ and $f(\operatorname{len} f)=x_{2}$.
Let us consider F_{1}. Observe that $\emptyset_{\left(F_{1}\right)}$ is arcwise connected.
Let us consider F_{1} and let x be an element of F_{1}. One can verify that $\{x\}$ is arcwise connected.

The following three propositions are true:
(46) For every subset A of F_{1} such that F_{1} is symmetric holds A is connected iff A is arcwise connected.
(47) Let g be a finite sequence of elements of F_{1} and k be a natural number. If g is continuous and $1 \leq k$, then $g \upharpoonright k$ is continuous.
(48) Let g be a finite sequence of elements of F_{1} and k be an element of \mathbb{N}. If g is continuous and $k<\operatorname{len} g$, then $g_{\lfloor k}$ is continuous.

Let us consider F_{1}, let g be a finite sequence of elements of F_{1}, let A be a subset of F_{1}, and let x_{1}, x_{2} be elements of F_{1}. We say that g is minimum path in A between x_{1} and x_{2} if and only if the conditions (Def. 8) are satisfied.
(Def. 8)(i) g is continuous,
(ii) $\operatorname{rng} g \subseteq A$,
(iii) $g(1)=x_{1}$,
(iv) $g(\operatorname{len} g)=x_{2}$, and
(v) for every finite sequence h of elements of F_{1} such that h is continuous and $\operatorname{rng} h \subseteq A$ and $h(1)=x_{1}$ and $h($ len $h)=x_{2}$ holds len $g \leq$ len h.
One can prove the following propositions:
(49) For every subset A of F_{1} and for every element x of F_{1} such that $x \in A$ holds $\langle x\rangle$ is minimum path in A between x and x.
(50) Let A be a subset of F_{1}. Then A is arcwise connected if and only if for all elements x_{1}, x_{2} of F_{1} such that $x_{1} \in A$ and $x_{2} \in A$ holds there exists a finite sequence of elements of F_{1} which is minimum path in A between x_{1} and x_{2}.
(51) Let A be a subset of F_{1} and x_{1}, x_{2} be elements of F_{1}. Given a finite sequence f of elements of F_{1} such that f is continuous and $\operatorname{rng} f \subseteq A$ and $f(1)=x_{1}$ and $f(\operatorname{len} f)=x_{2}$. Then there exists a finite sequence of elements of F_{1} which is minimum path in A between x_{1} and x_{2}.
(52) Let g be a finite sequence of elements of F_{1}, A be a subset of F_{1}, x_{1}, x_{2} be elements of F_{1}, and k be an element of \mathbb{N}. Suppose g is minimum path in A between x_{1} and x_{2} and $1 \leq k$ and $k \leq \operatorname{len} g$. Then $g \upharpoonright k$ is continuous and $\operatorname{rng}(g \upharpoonright k) \subseteq A$ and $(g \upharpoonright k)(1)=x_{1}$ and $(g \upharpoonright k)(\operatorname{len}(g \upharpoonright k))=g_{k}$.
(53) Let g be a finite sequence of elements of F_{1}, A be a subset of F_{1}, x_{1}, x_{2} be elements of F_{1}, and k be an element of \mathbb{N}. Suppose g is minimum path in A between x_{1} and x_{2} and $k<\operatorname{len} g$. Then $g_{\mid k}$ is continuous and $\operatorname{rng}\left(g_{\downarrow k}\right) \subseteq A$ and $g_{\downarrow k}(1)=g_{1+k}$ and $g_{\downarrow k}\left(\operatorname{len}\left(g_{\backslash k}\right)\right)=x_{2}$.
(54) Let g be a finite sequence of elements of F_{1}, A be a subset of F_{1}, and x_{1}, x_{2} be elements of F_{1}. Suppose g is minimum path in A between x_{1} and x_{2}. Let k be a natural number. If $1 \leq k$ and $k \leq \operatorname{len} g$, then $g \upharpoonright k$ is minimum path in A between x_{1} and g_{k}.
(55) Let g be a finite sequence of elements of F_{1}, A be a subset of F_{1}, and x_{1}, x_{2} be elements of F_{1}. If g is minimum path in A between x_{1} and x_{2}, then g is one-to-one.

Let us consider F_{1} and let f be a finite sequence of elements of F_{1}. We say that f is inversely continuous if and only if the conditions (Def. 9) are satisfied.
(Def. 9)(i) $1 \leq \operatorname{len} f$, and
(ii) for all natural numbers i, j and for every element y of F_{1} such that $1 \leq i$ and $i \leq \operatorname{len} f$ and $1 \leq j$ and $j \leq \operatorname{len} f$ and $y=f(i)$ and $i \neq j$ and $f(j) \in U(y)$ holds $i=j+1$ or $j=i+1$.
We now state three propositions:
(56) Let g be a finite sequence of elements of F_{1}, A be a subset of F_{1}, and x_{1}, x_{2} be elements of F_{1}. Suppose g is minimum path in A between x_{1} and x_{2} and F_{1} is symmetric. Then g is inversely continuous.
(57) Let g be a finite sequence of elements of F_{1}, A be a subset of F_{1}, and x_{1}, x_{2} be elements of F_{1}. Suppose g is minimum path in A between x_{1} and x_{2} and F_{1} is filled and symmetric and $x_{1} \neq x_{2}$. Then
(i) for every natural number i such that $1<i$ and $i<\operatorname{len} g$ holds $\operatorname{rng} g \cap$ $U\left(g_{i}\right)=\left\{g\left(i-^{\prime} 1\right), g(i), g(i+1)\right\}$,
(ii) $\quad \operatorname{rng} g \cap U\left(g_{1}\right)=\{g(1), g(2)\}$, and
(iii) $\quad \operatorname{rng} g \cap U\left(g_{\operatorname{len} g}\right)=\left\{g\left(\operatorname{len} g-^{\prime} 1\right), g(\operatorname{len} g)\right\}$.
(58) Let g be a finite sequence of elements of F_{1}, A be a non empty subset of F_{1}, x_{1}, x_{2} be elements of F_{1}, and B_{0} be a subset of $F_{1} \upharpoonright A$. Suppose g is minimum path in A between x_{1} and x_{2} and F_{1} is filled and symmetric and $x_{1} \neq x_{2}$ and $B_{0}=\left\{x_{1}\right\}$. Let i be an element of \mathbb{N}. If $i<\operatorname{len} g$, then $g(i+1) \in \operatorname{Finf}\left(B_{0}, i\right)$ and if $i \geq 1$, then $g(i+1) \notin \operatorname{Finf}\left(B_{0}, i-^{\prime} 1\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Hiroshi Imura and Masayoshi Eguchi. Finite topological spaces. Formalized Mathematics, 3(2):189-193, 1992.
[7] Hiroshi Imura, Masami Tanaka, and Yatsuka Nakamura. Continuous mappings between finite and one-dimensional finite topological spaces. Formalized Mathematics, 12(3):381384, 2004.
[8] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[9] Yatsuka Nakamura. Finite topology concept for discrete spaces. In H. Umegaki, editor, Proceedings of the Eleventh Symposium on Applied Functional Analysis, pages 111-116, Noda-City, Chiba, Japan, 1988. Science University of Tokyo.
[10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[11] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[12] Masami Tanaka and Yatsuka Nakamura. Some set series in finite topological spaces. Fundamental concepts for image processing. Formalized Mathematics, 12(2):125-129, 2004.
[13] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received August 18, 2006

