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Summary. The article introduces simple continued fractions. They are

defined as an infinite sequence of integers. The characterization of rational num-

bers in terms of simple continued fractions is shown. We also give definitions

of convergents of continued fractions, and several important properties of simple

continued fractions and their convergents.
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The articles [15], [6], [18], [4], [2], [13], [3], [7], [8], [16], [17], [1], [19], [20], [14],

[10], [5], [9], [11], and [12] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: a, b, k, n, m are natural

numbers, i is an integer, r is a real number, p is a rational number, c is a complex

number, x is a set, and f is a function.

Let us consider n. One can check the following observations:

∗ n÷ 0 is zero,

∗ nmod 0 is zero,
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∗ 0÷ n is zero, and

∗ 0 mod n is zero.

Let us consider c. One can verify that c− c is zero and c
0 is zero.

Let us note that b0c is zero.

The following propositions are true:

(1) If 0 < r and r < 1, then 1 < 1
r .

(2) If i ≤ r and r < i+ 1, then brc = i.

(3) bmn c = m÷ n.
(4) If mmod n = 0, then m

n = m÷ n.
(5) If m

n = m÷ n, then mmod n = 0.

(6) frac(mn ) = mmodn
n .

(7) If p ≥ 0, then there exist natural numbers m, n such that n 6= 0 and

p = m
n .

Let R be a binary relation. We say that R is integer-yielding if and only if:

(Def. 1) rngR ⊆ Z.
One can verify that every binary relation which is natural-yielding is also

integer-yielding.

One can check the following observations:

∗ there exists a function which is natural-yielding,

∗ every binary relation which is empty is also integer-yielding, and

∗ every binary relation which is integer-yielding is also real-yielding.

Let D be a set. One can verify that every partial function from D to Z is

integer-yielding.

Let f be an integer-yielding function and let n be a set. One can verify that

f(n) is integer.

Let us note that there exists a sequence of real numbers which is integer-

yielding.

An integer sequence is an integer-yielding sequence of real numbers.

One can prove the following proposition

(8) f is an integer sequence iff dom f = N and for every x such that x ∈ N
holds f(x) is integer.

Let f be a natural-yielding function and let n be a set. Note that f(n) is

natural.

We now state three propositions:

(9) f is a function from N into Z iff f is an integer sequence.

(10) f is a sequence of naturals iff dom f = N and for every x such that x ∈ N
holds f(x) is natural.

(11) f is a function from N into N iff f is a sequence of naturals.
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2. On the Euclidean Algorithm

Let m, n be natural numbers. The functor modSeq(m,n) yielding a sequence

of naturals is defined by:

(Def. 2) (modSeq(m,n))(0) = mmodn and (modSeq(m,n))(1) = nmod (mmod

n) and for every natural number k holds (modSeq(m,n))(k + 2) =

(modSeq(m,n))(k) mod (modSeq(m,n))(k + 1).

Let m, n be natural numbers. The functor divSeq(m,n) yielding a sequence

of naturals is defined as follows:

(Def. 3) (divSeq(m,n))(0) = m ÷ n and (divSeq(m,n))(1) = n ÷ (m mod

n) and for every natural number k holds (divSeq(m,n))(k + 2) =

(modSeq(m,n))(k) ÷ (modSeq(m,n))(k + 1).

We now state several propositions:

(12) (divSeq(m,n))(1) = n÷ (modSeq(m,n))(0).

(13) (modSeq(m,n))(1) = nmod (modSeq(m,n))(0).

(14) If a ≤ b and (modSeq(m,n))(a) = 0, then (modSeq(m,n))(b) = 0.

(15) If a < b, then (modSeq(m,n))(a) > (modSeq(m,n))(b) or

(modSeq(m,n))(a) = 0.

(16) If (divSeq(m,n))(a + 1) = 0, then (modSeq(m,n))(a) = 0.

(17) If a 6= 0 and a ≤ b and (divSeq(m,n))(a) = 0, then (divSeq(m,n))(b) =

0.

(18) If a < b and (modSeq(m,n))(a) = 0, then (divSeq(m,n))(b) = 0.

(19) If n 6= 0, then m = (divSeq(m,n))(0) · n+ (modSeq(m,n))(0).

(20) If n 6= 0, then m
n = (divSeq(m,n))(0) + 1

n
(modSeq(m,n))(0)

.

One can prove the following propositions:

(21) divSeq(m, 0) = N 7−→ 0.

(22) modSeq(m, 0) = N 7−→ 0.

(23) divSeq(0, n) = N 7−→ 0.

(24) modSeq(0, n) = N 7−→ 0.

(25) There exists a natural number k such that (divSeq(m,n))(k) = 0 and

(modSeq(m,n))(k) = 0.

3. Simple Continued Fractions

Let r be a real number. The remainders for s.c.f. of r yields a sequence of

real numbers and is defined by the conditions (Def. 4).

(Def. 4)(i) (The remainders for s.c.f. of r)(0) = r, and

(ii) for every natural number n holds (the remainders for s.c.f. of r)(n+1) =
1

frac (the remainders for s.c.f. of r)(n) .
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Let r be a real number. We introduce rfs r as a synonym of the remainders

for s.c.f. of r.

Let r be a real number. The simple continued fraction of r yielding an

integer sequence is defined by:

(Def. 5) For every natural number n holds (the simple continued fraction of

r)(n) = b(rfs r)(n)c.
Let r be a real number. We introduce scf r as a synonym of the simple

continued fraction of r.

The following propositions are true:

(26) (rfs r)(n+ 1) = 1
(rfs r)(n)−(scf r)(n) .

(27) If (rfs r)(n) = 0 and n ≤ m, then (rfs r)(m) = 0.

(28) If (rfs r)(n) = 0 and n ≤ m, then (scf r)(m) = 0.

(29) (rfs i)(n+ 1) = 0.

(30) (scf i)(0) = i and (scf i)(n+ 1) = 0.

(31) If i > 1, then (rfs( 1
i ))(1) = i and (rfs( 1

i ))(n+ 2) = 0.

(32) If i > 1, then (scf( 1
i ))(0) = 0 and (scf( 1

i ))(1) = i and (scf( 1
i ))(n+2) = 0.

(33) If for every n holds (scf r)(n) = 0, then (rfs r)(n) = 0.

(34) If for every n holds (scf r)(n) = 0, then r = 0.

(35) frac r = r − (scf r)(0).

(36) (rfs r)(n+ 1) = (rfs( 1
frac r ))(n).

(37) (scf r)(n+ 1) = (scf( 1
frac r ))(n).

(38) If n ≥ 1, then (scf r)(n) ≥ 0.

(39) If n ≥ 1, then (scf r)(n) ∈ N.
(40) If n ≥ 1 and (scf r)(n) 6= 0, then (scf r)(n) ≥ 1.

(41) (scf(mn ))(k) = (divSeq(m,n))(k) and (rfs(mn ))(1) = n
(modSeq(m,n))(0) and

(rfs(mn ))(k + 2) = (modSeq(m,n))(k)
(modSeq(m,n))(k+1) .

(42) r is rational iff there exists n such that for every m such that m ≥ n

holds (scf r)(m) = 0.

(43) If for every n holds (scf r)(n) 6= 0, then r is irrational.

4. Convergents of Simple Continued Fractions

In the sequel n1, n2 are natural numbers.

Let r be a real number. The convergent numerators of r yielding a sequence

of real numbers is defined by the conditions (Def. 6).

(Def. 6)(i) (The convergent numerators of r)(0) = (scf r)(0),

(ii) (the convergent numerators of r)(1) = (scf r)(1) · (scf r)(0) + 1, and
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(iii) for every natural number n holds (the convergent numerators of r)(n+

2) = (scf r)(n+2)·(the convergent numerators of r)(n+1)+(the convergent

numerators of r)(n).

Let r be a real number. The convergent denominators of r yields a sequence

of real numbers and is defined by the conditions (Def. 7).

(Def. 7)(i) (The convergent denominators of r)(0) = 1,

(ii) (the convergent denominators of r)(1) = (scf r)(1), and

(iii) for every natural number n holds (the convergent denominators of

r)(n+2) = (scf r)(n+2) · (the convergent denominators of r)(n+1)+(the

convergent denominators of r)(n).

Let r be a real number. We introduce cn r as a synonym of the convergent

numerators of r. We introduce cd r as a synonym of the convergent denominators

of r.

One can prove the following propositions:

(44) If (scf r)(0) > 0, then for every n holds (cn r)(n) ∈ N.
(45) If (scf r)(0) > 0, then for every n holds (cn r)(n) > 0.

(46) If (scf r)(0) > 0, then for every n holds (cn r)(n + 2) > (scf r)(n + 2) ·
(cn r)(n+ 1).

(47) If (scf r)(0) > 0, then for every n such that n1 = (cn r)(n + 1) and

n2 = (cn r)(n) holds gcd(n1, n2) = 1.

(48) If (scf r)(0) > 0 and for every n holds (scf r)(n) 6= 0, then for every n

holds (cn r)(n) ≥ τn.
(49) If (scf r)(0) > 0 and for every n holds (scf r)(n) ≤ b, then for every n

holds (cn r)(n) ≤ ( b+
√
b2+4
2 )n+1.

(50) (cd r)(n) ∈ N.
(51) (cd r)(n) ≥ 0.

(52) If (scf r)(1) > 0, then for every n holds (cd r)(n) > 0.

(53) (cd r)(n+ 2) ≥ (scf r)(n+ 2) · (cd r)(n+ 1).

(54) If (scf r)(1) > 0, then for every n holds (cd r)(n + 2) > (scf r)(n + 2) ·
(cd r)(n+ 1).

(55) If for every n holds (scf r)(n) > 0, then for every n such that n ≥ 1 holds
1

(cd r)(n)·(cd r)(n+1) <
1

(scf r)(n+1)·(cd r)(n)2 .

(56) If for every n holds (scf r)(n) ≤ b, then for every n holds (cd r)(n+ 1) ≤
( b+
√
b2+4
2 )n+1.

(57) If n1 = (cd r)(n+ 1) and n2 = (cd r)(n), then gcd(n1, n2) = 1.

(58) If for every n holds (scf r)(n) > 0, then for every n holds (cd r)(n+1)
(cd r)(n) ≥

1
(scf r)(n+2) .
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(59) If for every n holds (scf r)(n) > 0, then for every n holds (cd r)(n+ 2) ≤
2 · (scf r)(n+ 2) · (cd r)(n+ 1).

(60) If for every n holds (scf r)(n) 6= 0, then for every n holds
1

(scf r)(n+1)·(cd r)(n)2 ≤ 1
(cd r)(n)2 .

(61) If for every n holds (scf r)(n) 6= 0, then for every n holds (cd r)(n+ 1) ≥
τn.

(62) If a > 0 and for every n holds (scf r)(n) ≥ a, then for every n holds

(cd r)(n+ 1) ≥ (a+
√
a2+4
2 )n.

(63) (cn r)(n+2)
(cd r)(n+2) = (scf r)(n+2)·(cn r)(n+1)+(cn r)(n)

(scf r)(n+2)·(cd r)(n+1)+(cd r)(n) .

(64) (cn r)(n+ 1) · (cd r)(n)− (cn r)(n) · (cd r)(n+ 1) = (−1)n.

(65) If for every n holds (cd r)(n) 6= 0, then (cn r)(n+1)
(cd r)(n+1) −

(cn r)(n)
(cd r)(n) =

(−1)n

(cd r)(n+1)·(cd r)(n) .

(66) (cn r)(n+ 2) · (cd r)(n)− (cn r)(n) · (cd r)(n+ 2) = (−1)n · (scf r)(n+ 2).

(67) If for every n holds (cd r)(n) 6= 0, then (cn r)(n+2)
(cd r)(n+2) −

(cn r)(n)
(cd r)(n) =

(−1)n·(scf r)(n+2)
(cd r)(n+2)·(cd r)(n) .

(68) If for every n holds (scf r)(n) 6= 0, then for every n such that n ≥ 1 holds
(cn r)(n)
(cd r)(n) = (cn r)(n+1)−(cn r)(n−1)

(cd r)(n+1)−(cd r)(n−1) .

(69) If for every n holds (cd r)(n) 6= 0, then for every n holds | (cn r)(n+1)
(cd r)(n+1) −

(cn r)(n)
(cd r)(n) | = 1

|(cd r)(n+1)·(cd r)(n)| .

(70) If (scf r)(1) > 0, then for every n holds (cn r)(2·n+1)
(cd r)(2·n+1) >

(cn r)(2·n)
(cd r)(2·n) .

Let r be a real number. The convergents of continued fractions of r yielding

a sequence of real numbers is defined as follows:

(Def. 8) The convergents of continued fractions of r = cn r/ cd r.

Let r be a real number. We introduce cocf r as a synonym of the convergents

of continued fractions of r.

One can prove the following propositions:

(71) (cocf r)(0) = (scf r)(0).

(72) If (scf r)(1) 6= 0, then (cocf r)(1) = (scf r)(0) + 1
(scf r)(1) .

(73) If for every n holds (scf r)(n) > 0, then (cocf r)(2) = (scf r)(0) +
1

(scf r)(1)+ 1
(scf r)(2)

.

(74) If for every n holds (scf r)(n) > 0, then (cocf r)(3) = (scf r)(0) +
1

(scf r)(1)+ 1

(scf r)(2)+ 1
(scf r)(3)

.

(75) If for every n holds (scf r)(n) > 0, then for every n such that n ≥ 1 holds
(cn r)(2·n+1)
(cd r)(2·n+1) <

(cn r)(2·n−1)
(cd r)(2·n−1) .
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(76) If for every n holds (scf r)(n) > 0, then for every n such that n ≥ 1 holds
(cn r)(2·n)
(cd r)(2·n) >

(cn r)(2·n−2)
(cd r)(2·n−2) .

(77) If for every n holds (scf r)(n) > 0, then for every n such that n ≥ 1 holds
(cn r)(2·n)
(cd r)(2·n) <

(cn r)(2·n−1)
(cd r)(2·n−1) .

Let r be a real number. The back continued fraction of r yields a sequence

of real numbers and is defined by the conditions (Def. 9).

(Def. 9)(i) (The back continued fraction of r)(0) = (scf r)(0), and

(ii) for every natural number n holds (the back continued fraction of r)(n+

1) = 1
(the back continued fraction of r)(n) + (scf r)(n+ 1).

Let r be a real number. We introduce bcf r as a synonym of the back

continued fraction of r.

One can prove the following proposition

(78) If (scf r)(0) > 0, then for every n holds (bcf r)(n+ 1) = (cn r)(n+1)
(cn r)(n) .
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