Difference and Difference Quotient

Bo Li
Qingdao University of Science
and Technology
China

Yan Zhang
Qingdao University of Science
and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we give the definitions of forward difference, backward difference, central difference and difference quotient, and some of their important properties.

MML identifier: DIFF_1, version: 7.8.03 4.75.958

The articles [2], [6], [1], [13], [16], [17], [14], [4], [5], [9], [8], [12], [18], [7], [15], [11], [10], [3], and [19] provide the terminology and notation for this paper.

For simplicity, we follow the rules: n, m, i are elements of $\mathbb{N}, h, r, r_{1}, r_{2}$, x_{0}, x_{1}, x_{2}, x are real numbers, f is a partial function from \mathbb{R} to \mathbb{R}, and S is a sequence of partial functions from \mathbb{R} into \mathbb{R}.

Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. The functor $\operatorname{Shift}(f, h)$ yields a partial function from \mathbb{R} to \mathbb{R} and is defined by:
(Def. 1) $\quad \operatorname{dom} \operatorname{Shift}(f, h)=-h+\operatorname{dom} f$ and for every x such that $x \in-h+\operatorname{dom} f$ holds $(\operatorname{Shift}(f, h))(x)=f(x+h)$.
Let f be a function from \mathbb{R} into \mathbb{R} and let h be a real number. Then $\operatorname{Shift}(f, h)$ is a function from \mathbb{R} into \mathbb{R} and it can be characterized by the condition:
(Def. 2) For every x holds $(\operatorname{Shift}(f, h))(x)=f(x+h)$.
Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. The functor $\mathrm{fD}(f, h)$ yielding a partial function from \mathbb{R} to \mathbb{R} is defined as follows:
(Def. 3) $\quad \mathrm{fD}(f, h)=\operatorname{Shift}(f, h)-f$.
Let f be a function from \mathbb{R} into \mathbb{R} and let h be a real number. Then $\mathrm{fD}(f, h)$ is a function from \mathbb{R} into \mathbb{R}.

Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. The functor $\mathrm{bD}(f, h)$ yields a partial function from \mathbb{R} to \mathbb{R} and is defined by:
(Def. 4) $\mathrm{bD}(f, h)=f-\operatorname{Shift}(f,-h)$.
Let f be a function from \mathbb{R} into \mathbb{R} and let h be a real number. Then $\mathrm{bD}(f, h)$ is a function from \mathbb{R} into \mathbb{R}.

We now state the proposition
(1) $\mathrm{bD}(f, h)=-\mathrm{fD}(f,-h)$.

Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. The functor $\mathrm{c}(f, h)$ yielding a partial function from \mathbb{R} to \mathbb{R} is defined by:
(Def. 5) $\quad \mathrm{cD}(f, h)=\operatorname{Shift}\left(f, \frac{h}{2}\right)-\operatorname{Shift}\left(f,-\frac{h}{2}\right)$.
Let f be a function from \mathbb{R} into \mathbb{R} and let h be a real number. Then $\mathrm{cD}(f, h)$ is a function from \mathbb{R} into \mathbb{R}.

Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. The forward difference of f and h yields a sequence of partial functions from \mathbb{R} into \mathbb{R} and is defined by the conditions (Def. 6).
(Def. 6)(i) (The forward difference of f and $h)(0)=f$, and
(ii) for every n holds (the forward difference of f and $h)(n+1)=\mathrm{fD}($ (the forward difference of f and $h)(n), h)$.
Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. We introduce $\operatorname{fdif}(f, h)$ as a synonym of the forward difference of f and h.

In the sequel f, f_{1}, f_{2} denote functions from \mathbb{R} into \mathbb{R}.
The following propositions are true:
(2) For every n holds $(f d i f(f, h))(n)$ is a function from \mathbb{R} into \mathbb{R}.
(3) For every x holds $(\mathrm{fD}(f, h))(x)=f(x+h)-f(x)$.
(4) For every x holds $(\mathrm{bD}(f, h))(x)=f(x)-f(x-h)$.
(5) For every x holds $(\mathrm{cD}(f, h))(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)$.
(6) If f is constant, then for every x holds $(\operatorname{fdif}(f, h))(n+1)(x)=0$.
(7) $\quad(\operatorname{fdif}(r f, h))(n+1)(x)=r \cdot(\operatorname{fdif}(f, h))(n+1)(x)$.
(8) $\quad\left(\operatorname{fdif}\left(f_{1}+f_{2}, h\right)\right)(n+1)(x)=\left(\operatorname{fdif}\left(f_{1}, h\right)\right)(n+1)(x)+\left(\operatorname{fdif}\left(f_{2}, h\right)\right)(n+1)(x)$.
(9) $\quad\left(\operatorname{fdif}\left(f_{1}-f_{2}, h\right)\right)(n+1)(x)=\left(\operatorname{fdif}\left(f_{1}, h\right)\right)(n+1)(x)-\left(f d i f\left(f_{2}, h\right)\right)(n+1)(x)$.
(10) If $f=r_{1} f_{1}+r_{2} f_{2}$, then for every x holds $(\operatorname{fdif}(f, h))(n+1)(x)=$ $r_{1} \cdot\left(\operatorname{fdif}\left(f_{1}, h\right)\right)(n+1)(x)+r_{2} \cdot\left(\operatorname{fdif}\left(f_{2}, h\right)\right)(n+1)(x)$.
(11) For every x holds $(\operatorname{fdif}(f, h))(1)(x)=(\operatorname{Shift}(f, h))(x)-f(x)$.

Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. The backward difference of f and h yielding a sequence of partial functions from \mathbb{R} into \mathbb{R} is defined by the conditions (Def. 7).
(Def. 7)(i) (The backward difference of f and $h)(0)=f$, and
(ii) for every n holds (the backward difference of f and $h)(n+1)=\mathrm{bD}(($ the backward difference of f and $h)(n), h)$.
Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. We introduce $\operatorname{bdif}(f, h)$ as a synonym of the backward difference of f and h.

We now state several propositions:
(12) For every n holds $(\operatorname{bdif}(f, h))(n)$ is a function from \mathbb{R} into \mathbb{R}.
(13) If f is constant, then for every $x \operatorname{holds}(\operatorname{bdif}(f, h))(n+1)(x)=0$.
(14) $\quad(\operatorname{bdif}(r f, h))(n+1)(x)=r \cdot(\operatorname{bdif}(f, h))(n+1)(x)$.
(15) $\quad\left(\operatorname{bdif}\left(f_{1}+f_{2}, h\right)\right)(n+1)(x)=\left(\operatorname{bdif}\left(f_{1}, h\right)\right)(n+1)(x)+\left(\operatorname{bdif}\left(f_{2}, h\right)\right)(n+$ 1) (x).
(16) $\quad\left(\operatorname{bdif}\left(f_{1}-f_{2}, h\right)\right)(n+1)(x)=\left(\operatorname{bdif}\left(f_{1}, h\right)\right)(n+1)(x)-\left(\operatorname{bdif}\left(f_{2}, h\right)\right)(n+$ 1) (x).
(17) If $f=r_{1} f_{1}+r_{2} f_{2}$, then for every x holds $(\operatorname{bdif}(f, h))(n+1)(x)=$ $r_{1} \cdot\left(\operatorname{bdif}\left(f_{1}, h\right)\right)(n+1)(x)+r_{2} \cdot\left(\operatorname{bdif}\left(f_{2}, h\right)\right)(n+1)(x)$.
(18) $\quad(\operatorname{bdif}(f, h))(1)(x)=f(x)-(\operatorname{Shift}(f,-h))(x)$.

Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. The central difference of f and h yielding a sequence of partial functions from \mathbb{R} into \mathbb{R} is defined by the conditions (Def. 8).
(Def. 8)(i) (The central difference of f and $h)(0)=f$, and
(ii) for every n holds (the central difference of f and $h)(n+1)=\mathrm{c}(($ the central difference of f and $h)(n), h)$.
Let f be a partial function from \mathbb{R} to \mathbb{R} and let h be a real number. We introduce cdif (f, h) as a synonym of the central difference of f and h.

One can prove the following propositions:
(19) For every n holds $(\operatorname{cdif}(f, h))(n)$ is a function from \mathbb{R} into \mathbb{R}.
(20) If f is constant, then for every x holds $(\operatorname{cdif}(f, h))(n+1)(x)=0$.
(21) $\quad(\operatorname{cdif}(r f, h))(n+1)(x)=r \cdot(\operatorname{cdif}(f, h))(n+1)(x)$.
(22) $\quad\left(\operatorname{cdif}\left(f_{1}+f_{2}, h\right)\right)(n+1)(x)=\left(\operatorname{cdif}\left(f_{1}, h\right)\right)(n+1)(x)+\left(\operatorname{cdif}\left(f_{2}, h\right)\right)(n+$ 1) (x).
(23) $\quad\left(\operatorname{cdif}\left(f_{1}-f_{2}, h\right)\right)(n+1)(x)=\left(\operatorname{cdif}\left(f_{1}, h\right)\right)(n+1)(x)-\left(\operatorname{cdif}\left(f_{2}, h\right)\right)(n+$ 1) (x).
(24) If $f=r_{1} f_{1}+r_{2} f_{2}$, then for every $x \operatorname{holds}(\operatorname{cdif}(f, h))(n+1)(x)=$ $r_{1} \cdot\left(\operatorname{cdif}\left(f_{1}, h\right)\right)(n+1)(x)+r_{2} \cdot\left(\operatorname{cdif}\left(f_{2}, h\right)\right)(n+1)(x)$.
(25) $\quad(\operatorname{cdif}(f, h))(1)(x)=\left(\operatorname{Shift}\left(f, \frac{h}{2}\right)\right)(x)-\left(\operatorname{Shift}\left(f,-\frac{h}{2}\right)\right)(x)$.
(26) $\quad(\operatorname{fdif}(f, h))(n)(x)=(\operatorname{bdif}(f, h))(n)(x+n \cdot h)$.
(27) $\quad(\operatorname{fdif}(f, h))(2 \cdot n)(x)=(\operatorname{cdif}(f, h))(2 \cdot n)(x+n \cdot h)$.
(28) $\quad(\operatorname{fdif}(f, h))(2 \cdot n+1)(x)=(\operatorname{cdif}(f, h))(2 \cdot n+1)\left(x+n \cdot h+\frac{h}{2}\right)$.

Let f be a function from \mathbb{R} into \mathbb{R} and let us consider x_{0}, x_{1}. The functor $\Delta\left(f, x_{0}, x_{1}\right)$ yielding a real number is defined as follows:
(Def. 9)(i) $\Delta\left(f, x_{0}, x_{1}\right)=\frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{x_{0}-x_{1}}$ if $x_{0} \neq x_{1}$,
(ii) $x_{0} \neq x_{1}$, otherwise.

Let x_{0}, x_{1}, x_{2} be real numbers and let f be a function from \mathbb{R} into \mathbb{R}. The functor $\left[!f, x_{0}, x_{1}, x_{2}!\right]$ yielding a real number is defined as follows:
(Def. 10)(i) $\quad\left[!f, x_{0}, x_{1}, x_{2}!\right]=\frac{\Delta\left(f, x_{0}, x_{1}\right)-\Delta\left(f, x_{1}, x_{2}\right)}{x_{0}-x_{2}}$ if $x_{0} \neq x_{2}$,
(ii) $x_{0} \neq x_{2}$, otherwise.

Let $x_{0}, x_{1}, x_{2}, x_{3}$ be real numbers and let f be a function from \mathbb{R} into \mathbb{R}. The functor $\left[!f, x_{0}, x_{1}, x_{2}, x_{3}!\right]$ yielding a real number is defined by:
(Def. 11)(i) $\quad\left[!f, x_{0}, x_{1}, x_{2}, x_{3}!\right]=\frac{\left[!f, x_{0}, x_{1}, x_{2}!!-\left[!f, x_{1}, x_{2}, x_{3}!\right]\right.}{x_{0}-x_{3}}$ if $x_{0} \neq x_{3}$,
(ii) $x_{0} \neq x_{3}$, otherwise.

We now state several propositions:
(29) If $x_{0} \neq x_{1}$, then $\Delta\left(f, x_{0}, x_{1}\right)=\Delta\left(f, x_{1}, x_{0}\right)$.
(30) If f is constant and $x_{0} \neq x_{1}$, then $\Delta\left(f, x_{0}, x_{1}\right)=0$.
(31) If $x_{0} \neq x_{1}$, then $\Delta\left(r f, x_{0}, x_{1}\right)=r \cdot \Delta\left(f, x_{0}, x_{1}\right)$.
(32) If $x_{0} \neq x_{1}$, then $\Delta\left(f_{1}+f_{2}, x_{0}, x_{1}\right)=\Delta\left(f_{1}, x_{0}, x_{1}\right)+\Delta\left(f_{2}, x_{0}, x_{1}\right)$.
(33) If $x_{0} \neq x_{1}$, then $\Delta\left(r_{1} f_{1}+r_{2} f_{2}, x_{0}, x_{1}\right)=r_{1} \cdot \Delta\left(f_{1}, x_{0}, x_{1}\right)+r_{2}$. $\Delta\left(f_{2}, x_{0}, x_{1}\right)$.
(34) If $x_{0} \neq x_{1}$ and $x_{0} \neq x_{2}$ and $x_{1} \neq x_{2}$, then $\left[!f, x_{0}, x_{1}, x_{2}!\right]=\left[!f, x_{1}, x_{2}, x_{0}\right.$!] and $\left[!f, x_{0}, x_{1}, x_{2}!\right]=\left[!f, x_{2}, x_{1}, x_{0}!\right]$.
(35) If $x_{0} \neq x_{1}$ and $x_{0} \neq x_{2}$ and $x_{1} \neq x_{2}$, then $\left[!f, x_{0}, x_{1}, x_{2}!\right]=\left[!f, x_{2}, x_{0}, x_{1}!\right]$ and $\left[!f, x_{0}, x_{1}, x_{2}!\right]=\left[!f, x_{1}, x_{0}, x_{2}!\right]$.
(36) $\quad(\operatorname{fdif}((f d i f(f, h))(m), h))(n)(x)=(f d i f(f, h))(m+n)(x)$.

Let us consider S. We say that S is sequence-yielding if and only if:
(Def. 12) For every n holds $S(n)$ is a sequence of real numbers.
Let us note that there exists a sequence of partial functions from \mathbb{R} into \mathbb{R} which is sequence-yielding.

A seq sequence is a sequence-yielding sequence of partial functions from \mathbb{R} into \mathbb{R}.

Let S be a seq sequence and let us consider n. Then $S(n)$ is a sequence of real numbers.

In the sequel S denotes a seq sequence.
Next we state the proposition
(37) Suppose that for every n and for every i such that $i \leq n$ holds $S(n)(i)=\binom{n}{i} \cdot\left(\operatorname{fdif}\left(f_{1}, h\right)\right)(i)(x) \cdot\left(f d i f\left(f_{2}, h\right)\right)\left(n-^{\prime} i\right)(x+i \cdot h)$. Then $\left(\operatorname{fdif}\left(f_{1} f_{2}, h\right)\right)(1)(x)=\sum_{\kappa=0}^{1} S(1)(\kappa)$ and $\left(f d i f\left(f_{1} f_{2}, h\right)\right)(2)(x)=$ $\sum_{\kappa=0}^{2} S(2)(\kappa)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
[8] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[11] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[12] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[13] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

