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Summary. In this article, we give several differentiation formulas of spe-

cial and composite functions including trigonometric function, polynomial func-

tion and logarithmic function.
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The notation and terminology used here are introduced in the following papers:

[13], [15], [1], [16], [2], [4], [10], [11], [17], [5], [14], [12], [3], [7], [6], [9], and [8].

For simplicity, we adopt the following convention: x, a, b, c denote real

numbers, n denotes a natural number, Z denotes an open subset of R, and f ,

f1, f2 denote partial functions from R to R.

Next we state a number of propositions:

(1) If x ∈ dom (the function tan), then (the function cos)(x) 6= 0.

(2) If x ∈ dom (the function cot), then (the function sin)(x) 6= 0.

(3) If Z ⊆ dom( f1

f2
), then for every x such that x ∈ Z holds ( f1

f2
)(x)nZ =

f1(x)nZ
f2(x)nZ

.

(4) Suppose Z ⊆ dom( f1

f2
) and for every x such that x ∈ Z holds f1(x) =

x + a and f2(x) = x − b. Then f1

f2
is differentiable on Z and for every x

such that x ∈ Z holds ( f1

f2
)′�Z(x) = −a−b

(x−b)2 .

(5) Suppose Z ⊆ dom((the function ln) · 1f ) and for every x such that x ∈ Z
holds f(x) = x. Then (the function ln) · 1f is differentiable on Z and for

every x such that x ∈ Z holds ((the function ln) · 1f )′�Z(x) = − 1
x .

(6) Suppose Z ⊆ dom((the function tan) ·f) and for every x such that x ∈ Z
holds f(x) = a · x+ b. Then
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(i) (the function tan) ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·f)′�Z(x) =
a

(the function cos)(a·x+b)2
.

(7) Suppose Z ⊆ dom((the function cot) ·f) and for every x such that x ∈ Z
holds f(x) = a · x+ b. Then

(i) (the function cot) ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·f)′�Z(x) =

− a
(the function sin)(a·x+b)2 .

(8) Suppose Z ⊆ dom((the function tan) · 1f ) and for every x such that x ∈ Z
holds f(x) = x. Then

(i) (the function tan) · 1f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) · 1f )′�Z(x) =

− 1
x2·(the function cos)( 1

x
)2
.

(9) Suppose Z ⊆ dom((the function cot) · 1f ) and for every x such that x ∈ Z
holds f(x) = x. Then

(i) (the function cot) · 1f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) · 1f )′�Z(x) =
1

x2·(the function sin)( 1
x

)2
.

(10) Suppose Z ⊆ dom((the function tan) ·(f1 + c f2)) and f2 = 2
Z and for

every x such that x ∈ Z holds f1(x) = a+ b · x. Then

(i) (the function tan) ·(f1 + c f2) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·(f1+c f2))′�Z(x) =
b+2·c·x

(the function cos)(a+b·x+c·x2)2
.

(11) Suppose Z ⊆ dom((the function cot) ·(f1 + c f2)) and f2 = 2
Z and for

every x such that x ∈ Z holds f1(x) = a+ b · x. Then

(i) (the function cot) ·(f1 + c f2) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·(f1+c f2))′�Z(x) =

− b+2·c·x
(the function sin)(a+b·x+c·x2)2

.

(12) Suppose Z ⊆ dom((the function tan) ·(the function exp)). Then

(i) (the function tan) ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function

exp))′�Z(x) = (the function exp)(x)
(the function cos)((the function exp)(x))2 .

(13) Suppose Z ⊆ dom((the function cot) ·(the function exp)). Then

(i) (the function cot) ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function

exp))′�Z(x) = − (the function exp)(x)
(the function sin)((the function exp)(x))2 .

(14) Suppose Z ⊆ dom((the function tan) ·(the function ln)). Then

(i) (the function tan) ·(the function ln) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function

ln))′�Z(x) = 1
x·(the function cos)((the function ln)(x))2

.

(15) Suppose Z ⊆ dom((the function cot) ·(the function ln)). Then

(i) (the function cot) ·(the function ln) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function

ln))′�Z(x) = − 1
x·(the function sin)((the function ln)(x))2

.

(16) Suppose Z ⊆ dom((the function exp) ·(the function tan)). Then

(i) (the function exp) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function

tan))′�Z(x) = (the function exp)((the function tan)(x))
(the function cos)(x)2

.

(17) Suppose Z ⊆ dom((the function exp) ·(the function cot)). Then

(i) (the function exp) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function

cot))′�Z (x) = − (the function exp)((the function cot)(x))
(the function sin)(x)2 .

(18) Suppose Z ⊆ dom((the function ln) ·(the function tan)). Then

(i) (the function ln) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function

tan))′�Z(x) = 1
(the function cos)(x)·(the function sin)(x) .

(19) Suppose Z ⊆ dom((the function ln) ·(the function cot)). Then

(i) (the function ln) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function

cot))′�Z (x) = − 1
(the function sin)(x)·(the function cos)(x) .

(20) Suppose Z ⊆ dom((nZ) · (the function tan)) and 1 ≤ n. Then

(i) (nZ) · (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((nZ) · (the function tan))′�Z(x) =
n·(the function sin)(x)n−1

Z
(the function cos)(x)n+1

Z
.

(21) Suppose Z ⊆ dom((nZ) · (the function cot)) and 1 ≤ n. Then

(i) (nZ) · (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((nZ) · (the function cot))′�Z (x) =

−n·(the function cos)(x)n−1
Z

(the function sin)(x)n+1
Z

.

(22) Suppose that

(i) Z ⊆ dom((the function tan)+ 1
the function cos), and

(ii) for every x such that x ∈ Z holds 1 + (the function sin)(x) 6= 0 and

1− (the function sin)(x) 6= 0.

Then

(iii) (the function tan)+ 1
the function cos is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ((the function tan)+ 1
the function cos)′�Z(x) =

1
1−(the function sin)(x) .



112 bo li and peng wang

(23) Suppose that

(i) Z ⊆ dom((the function tan)− 1
the function cos), and

(ii) for every x such that x ∈ Z holds 1 − (the function sin)(x) 6= 0 and

1 + (the function sin)(x) 6= 0.

Then

(iii) (the function tan)− 1
the function cos is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ((the function tan)− 1
the function cos)′�Z(x) =

1
1+(the function sin)(x) .

(24) Suppose Z ⊆ dom((the function tan)−idZ). Then

(i) (the function tan)−idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan)−idZ)′�Z(x) =
(the function sin)(x)2

(the function cos)(x)2 .

(25) Suppose Z ⊆ dom(−the function cot − idZ). Then

(i) −the function cot− idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−the function cot − idZ)′�Z(x) =
(the function cos)(x)2

(the function sin)(x)2
.

(26) Suppose Z ⊆ dom( 1
a ((the function tan) ·f)− idZ) and for every x such

that x ∈ Z holds f(x) = a · x and a 6= 0. Then

(i) 1
a ((the function tan) ·f)− idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
a ((the function tan) ·f) −

idZ)′�Z(x) = (the function sin)(a·x)2

(the function cos)(a·x)2 .

(27) Suppose Z ⊆ dom((− 1
a) ((the function cot) ·f) − idZ) and for every x

such that x ∈ Z holds f(x) = a · x and a 6= 0. Then

(i) (− 1
a ) ((the function cot) ·f)− idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((− 1
a) ((the function cot) ·f) −

idZ)′�Z(x) = (the function cos)(a·x)2

(the function sin)(a·x)2
.

(28) Suppose Z ⊆ dom(f (the function tan)) and for every x such that x ∈ Z
holds f(x) = a · x+ b. Then

(i) f (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f (the function tan))′�Z(x) =
a·(the function sin)(x)
(the function cos)(x) + a·x+b

(the function cos)(x)2
.

(29) Suppose Z ⊆ dom(f (the function cot)) and for every x such that x ∈ Z
holds f(x) = a · x+ b. Then

(i) f (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f (the function cot))′�Z (x) =
a·(the function cos)(x)
(the function sin)(x) − a·x+b

(the function sin)(x)2
.

(30) Suppose Z ⊆ dom((the function exp) (the function tan)). Then

(i) (the function exp) (the function tan) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function exp) (the function

tan))′�Z(x) = (the function exp)(x)·(the function sin)(x)
(the function cos)(x) + (the function exp)(x)

(the function cos)(x)2
.

(31) Suppose Z ⊆ dom((the function exp) (the function cot)). Then

(i) (the function exp) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) (the function

cot))′�Z (x) = (the function exp)(x)·(the function cos)(x)
(the function sin)(x) − (the function exp)(x)

(the function sin)(x)2 .

(32) Suppose Z ⊆ dom((the function ln) (the function tan)). Then

(i) (the function ln) (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the function

tan))′�Z(x) =
(the function sin)(x)
(the function cos)(x)

x + (the function ln)(x)
(the function cos)(x)2

.

(33) Suppose Z ⊆ dom((the function ln) (the function cot)). Then

(i) (the function ln) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the function

cot))′�Z (x) =
(the function cos)(x)
(the function sin)(x)

x − (the function ln)(x)
(the function sin)(x)2

.

(34) Suppose Z ⊆ dom( 1
f (the function tan)) and for every x such that x ∈ Z

holds f(x) = x. Then

(i) 1
f (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
f (the function tan))′�Z (x) =

−
(the function sin)(x)
(the function cos)(x)

x2 +
1
x

(the function cos)(x)2 .

(35) Suppose Z ⊆ dom( 1
f (the function cot)) and for every x such that x ∈ Z

holds f(x) = x. Then

(i) 1
f (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
f (the function cot))′�Z (x) =

−
(the function cos)(x)
(the function sin)(x)

x2 −
1
x

(the function sin)(x)2
.
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[2] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[4] Jaros law Kotowicz. Partial functions from a domain to a domain. Formalized Mathemat-

ics, 1(4):697–702, 1990.
[5] Jaros law Kotowicz. Partial functions from a domain to the set of real numbers. Formalized

Mathematics, 1(4):703–709, 1990.
[6] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-

ics, 1(2):269–272, 1990.
[7] Rafa l Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,

1990.
[8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–

130, 1991.
[9] Konrad Raczkowski and Pawe l Sadowski. Real function differentiability. Formalized

Mathematics, 1(4):797–801, 1990.



114 bo li and peng wang

[10] Konrad Raczkowski and Pawe l Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777–780, 1990.

[11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195–200,
2004.

[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
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