Integral of Measurable Function¹

Noboru Endou Gifu National College of Technology Gifu, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this paper we construct integral of measurable function.

MML identifier: MESFUNC5, version: 7.7.01 4.66.942

The terminology and notation used here are introduced in the following articles: [29], [12], [32], [1], [27], [18], [33], [9], [2], [34], [13], [11], [10], [28], [31], [20], [30], [3], [4], [5], [14], [7], [15], [16], [26], [8], [19], [21], [24], [23], [6], [22], and [25].

1. Lemmas for Extended Real Numbers

One can prove the following propositions:

- (1) For all extended real numbers x, y holds |x y| = |y x|.
- (2) For all extended real numbers x, y holds $y x \le |x y|$.
- (3) Let x, y be extended real numbers and e be a real number. Suppose |x-y| < e and $x \neq +\infty$ or $y \neq +\infty$ but $x \neq -\infty$ or $y \neq -\infty$. Then $x \neq +\infty$ and $x \neq -\infty$ and $y \neq +\infty$ and $y \neq -\infty$.
- (4) For all extended real numbers x, y such that for every real number e such that 0 < e holds $x < y + \overline{\mathbb{R}}(e)$ holds $x \le y$.
- (5) For all extended real numbers x, y, t such that $t \neq -\infty$ and $t \neq +\infty$ and x < y holds x + t < y + t.
- (6) For all extended real numbers x, y, t such that $t \neq -\infty$ and $t \neq +\infty$ and x < y holds x t < y t.

¹This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B)16700156.

- (7) For all real numbers a, b holds $\overline{\mathbb{R}}(a) + \overline{\mathbb{R}}(b) = a + b$ and $-\overline{\mathbb{R}}(a) = -a$.
- (8) Let n be a natural number and p be an extended real number. Suppose $0 \le p$ and p < n. Then there exists a natural number k such that $1 \le k$ and $k \le 2^n \cdot n$ and $\frac{k-1}{2^n} \le p$ and $p < \frac{k}{2^n}$.
- (9) Let n, k be natural numbers and p be an extended real number. If $1 \le k$ and $k \le 2^n \cdot n$ and $n \le p$ and $\frac{k-1}{2^n} \le p$, then $\frac{k}{2^n} \le p$.
- (10) For all extended real numbers x, y, w, z such that $-\infty < w$ holds if x < y and w < z, then x + w < y + z.
- (11) For all extended real numbers x, y, k such that $0 \le k$ holds $k \cdot \max(x, y) = \max(k \cdot x, k \cdot y)$ and $k \cdot \min(x, y) = \min(k \cdot x, k \cdot y)$.
- (12) For all extended real numbers x, y, k such that $k \leq 0$ holds $k \cdot \min(x, y) = \max(k \cdot x, k \cdot y)$ and $k \cdot \max(x, y) = \min(k \cdot x, k \cdot y)$.
- (13) For all extended real numbers x, y, z such that $0 \le x$ and $0 \le z$ and $z + x \le y$ holds $z \le y$.

2. Lemmas for Partial Function of Non-empty Set, Extended Real Numbers

Let I_1 be a set. We say that I_1 is non-positive if and only if:

(Def. 1) For every extended real number x such that $x \in I_1$ holds $x \le 0$. Let R be a binary relation. We say that R is non-positive if and only if:

(Def. 2) $\operatorname{rng} R$ is non-positive.

The following propositions are true:

- (14) Let X be a set and F be a partial function from X to $\overline{\mathbb{R}}$. Then F is non-positive if and only if for every set n holds $F(n) \leq 0_{\overline{\mathbb{R}}}$.
- (15) Let X be a set and F be a partial function from X to $\overline{\mathbb{R}}$. If for every set n such that $n \in \text{dom } F$ holds $F(n) \leq 0_{\overline{\mathbb{R}}}$, then F is non-positive.

Let R be a binary relation. We say that R is without $-\infty$ if and only if:

(Def. 3) $-\infty \notin \operatorname{rng} R$.

We say that R is without $+\infty$ if and only if:

(Def. 4) $+\infty \notin \operatorname{rng} R$.

Let X be a non empty set and let f be a partial function from X to $\overline{\mathbb{R}}$. Let us observe that f is without $-\infty$ if and only if:

(Def. 5) For every set x holds $-\infty < f(x)$.

Let us observe that f is without $+\infty$ if and only if:

(Def. 6) For every set x holds $f(x) < +\infty$.

Next we state four propositions:

- (16) Let X be a non empty set and f be a partial function from X to $\overline{\mathbb{R}}$. Then for every set x such that $x \in \text{dom } f \text{ holds } -\infty < f(x)$ if and only if f is without $-\infty$.
- (17) Let X be a non empty set and f be a partial function from X to $\overline{\mathbb{R}}$. Then for every set x such that $x \in \text{dom } f \text{ holds } f(x) < +\infty$ if and only if f is without $+\infty$.
- (18) Let X be a non empty set and f be a partial function from X to $\overline{\mathbb{R}}$. If f is non-negative, then f is without $-\infty$.
- (19) Let X be a non empty set and f be a partial function from X to $\overline{\mathbb{R}}$. If f is non-positive, then f is without $+\infty$.

Let X be a non empty set. Note that every partial function from X to $\overline{\mathbb{R}}$ which is non-negative is also without $-\infty$ and every partial function from X to $\overline{\mathbb{R}}$ which is non-positive is also without $+\infty$.

The following propositions are true:

- (20) Let X be a non empty set, S be a σ -field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then f is without $+\infty$ and without $-\infty$.
- (21) Let X be a non empty set, Y be a set, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is non-negative, then $f \upharpoonright Y$ is non-negative.
- (22) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and g is without $-\infty$. Then $\operatorname{dom}(f+g) = \operatorname{dom} f \cap \operatorname{dom} g$.
- (23) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and g is without $+\infty$. Then $\operatorname{dom}(f-g) = \operatorname{dom} f \cap \operatorname{dom} g$.
- (24) Let X be a non empty set, S be a σ -field of subsets of X, f, g be partial functions from X to $\overline{\mathbb{R}}$, F be a function from \mathbb{Q} into S, r be a real number, and A be an element of S. Suppose f is without $-\infty$ and g is without $-\infty$ and for every rational number p holds $F(p) = A \cap \text{LE-dom}(f, \overline{\mathbb{R}}(p)) \cap (A \cap \text{LE-dom}(g, \overline{\mathbb{R}}(r-p)))$. Then $A \cap \text{LE-dom}(f+g, \overline{\mathbb{R}}(r)) = \bigcup \text{rng } F$.

Let X be a non empty set and let f be a partial function from X to \mathbb{R} . The functor $\overline{\mathbb{R}}(f)$ yielding a partial function from X to $\overline{\mathbb{R}}$ is defined as follows:

(Def. 7) $\overline{\mathbb{R}}(f) = f$.

Next we state a number of propositions:

- (25) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. If f is nonnegative and g is non-negative, then f + g is non-negative.
- (26) Let X be a non empty set, f be a partial function from X to \mathbb{R} , and c be a real number such that f is non-negative. Then
 - (i) if $0 \le c$, then c f is non-negative, and

- (ii) if $c \leq 0$, then c f is non-positive.
- (27) Let X be a non empty set and f, g be partial functions from X to \mathbb{R} . Suppose that for every set x such that $x \in \text{dom } f \cap \text{dom } g$ holds $g(x) \leq f(x)$ and $-\infty < g(x)$ and $f(x) < +\infty$. Then f g is non-negative.
- (28) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is non-negative and g is non-negative. Then $dom(f+g) = dom f \cap dom g$ and f+g is non-negative.
- (29) Let X be a non empty set and f, g, h be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is non-negative and g is non-negative and h is non-negative. Then $dom(f+g+h)=dom f\cap dom g\cap dom h$ and f+g+h is non-negative and for every set x such that $x\in dom f\cap dom g\cap dom h$ holds (f+g+h)(x)=f(x)+g(x)+h(x).
- (30) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and g is without $-\infty$. Then
 - (i) $\operatorname{dom}(\max_{+}(f+g) + \max_{-}(f)) = \operatorname{dom} f \cap \operatorname{dom} g,$
 - (ii) $\operatorname{dom}(\max_{-}(f+g) + \max_{+}(f)) = \operatorname{dom} f \cap \operatorname{dom} g,$
- (iii) $\operatorname{dom}(\max_{+}(f+g) + \max_{-}(f) + \max_{-}(g)) = \operatorname{dom} f \cap \operatorname{dom} g,$
- (iv) $\operatorname{dom}(\max_{-}(f+g) + \max_{+}(f) + \max_{+}(g)) = \operatorname{dom} f \cap \operatorname{dom} g,$
- (v) $\max_{+}(f+g) + \max_{-}(f)$ is non-negative, and
- (vi) $\max_{-}(f+g) + \max_{+}(f)$ is non-negative.
- (31) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and without $+\infty$ and g is without $-\infty$ and without $+\infty$. Then $\max_+(f+g) + \max_-(f) + \max_-(g) = \max_-(f+g) + \max_+(f) + \max_+(g)$.
- (32) Let C be a non empty set, f be a partial function from C to $\overline{\mathbb{R}}$, and c be a real number. If $0 \le c$, then $\max_+(cf) = c \max_+(f)$ and $\max_-(cf) = c \max_-(f)$.
- (33) Let C be a non empty set, f be a partial function from C to $\overline{\mathbb{R}}$, and c be a real number. If $0 \leq c$, then $\max_{+}((-c)f) = c \max_{-}(f)$ and $\max_{-}((-c)f) = c \max_{+}(f)$.
- (34) Let X be a non empty set, f be a partial function from X to $\overline{\mathbb{R}}$, and A be a set. Then $\max_+(f \upharpoonright A) = \max_+(f) \upharpoonright A$ and $\max_-(f \upharpoonright A) = \max_-(f) \upharpoonright A$.
- (35) Let X be a non empty set, f, g be partial functions from X to $\overline{\mathbb{R}}$, and B be a set. If $B \subseteq \text{dom}(f+g)$, then $\text{dom}((f+g) \upharpoonright B) = B$ and $\text{dom}(f \upharpoonright B + g \upharpoonright B) = B$ and $(f+g) \upharpoonright B = f \upharpoonright B + g \upharpoonright B$.
- (36) Let X be a non empty set, f be a partial function from X to $\overline{\mathbb{R}}$, and a be an extended real number. Then EQ-dom $(f, a) = f^{-1}(\{a\})$.

3. Lemmas for Measurable Function and Simple Valued Function

The following propositions are true:

- (37) Let X be a non empty set, S be a σ -field of subsets of X, f, g be partial functions from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose f is without $-\infty$ and g is without $-\infty$ and f is measurable on A and g is measurable on f.
- (38) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and dom $f = \emptyset$. Then there exists a finite sequence F of separated subsets of S and there exist finite sequences a, x of elements of $\overline{\mathbb{R}}$ such that
 - (i) F and a are representation of f,
 - (ii) a(1) = 0,
- (iii) for every natural number n such that $2 \le n$ and $n \in \text{dom } a$ holds 0 < a(n) and $a(n) < +\infty$,
- (iv) $\operatorname{dom} x = \operatorname{dom} F$,
- (v) for every natural number n such that $n \in \text{dom } x \text{ holds } x(n) = a(n) \cdot (M \cdot F)(n)$, and
- (vi) $\sum x = 0$.
- (39) Let X be a non empty set, S be a σ -field of subsets of X, f be a partial function from X to $\overline{\mathbb{R}}$, A be an element of S, and r, s be real numbers. Suppose f is measurable on A and $A \subseteq \text{dom } f$. Then $A \cap \text{GTE-dom}(f,\overline{\mathbb{R}}(r)) \cap \text{LE-dom}(f,\overline{\mathbb{R}}(s))$ is measurable on S.
- (40) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. If f is simple function in S, then $f \upharpoonright A$ is simple function in S.
- (41) Let X be a non empty set, S be a σ -field of subsets of X, A be an element of S, F be a finite sequence of separated subsets of S, and G be a finite sequence. Suppose dom F = dom G and for every natural number n such that $n \in \text{dom } F$ holds $G(n) = F(n) \cap A$. Then G is a finite sequence of separated subsets of S.
- (42) Let X be a non empty set, S be a σ -field of subsets of X, f be a partial function from X to $\overline{\mathbb{R}}$, A be an element of S, F, G be finite sequences of separated subsets of S, and a be a finite sequence of elements of $\overline{\mathbb{R}}$. Suppose dom F = dom G and for every natural number n such that $n \in \text{dom } F$ holds $G(n) = F(n) \cap A$ and F and G are representation of G. Then G and G are representation of G.
- (43) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is simple function in S, then dom f is an element of S.

- (44) Let X be a non empty set, S be a σ -field of subsets of X, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and g is simple function in S. Then f + g is simple function in S.
- (45) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number. If f is simple function in S, then c f is simple function in S.
- (46) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) f is simple function in S,
 - (ii) g is simple function in S, and
- (iii) for every set x such that $x \in \text{dom}(f g)$ holds $g(x) \le f(x)$. Then f - g is non-negative.
- (47) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, A be an element of S, and c be an extended real number. Suppose $c \neq +\infty$ and $c \neq -\infty$. Then there exists a partial function f from X to $\overline{\mathbb{R}}$ such that f is simple function in S and dom f = A and for every set x such that $x \in A$ holds f(x) = c.
- (48) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and B, B_1 be elements of S. Suppose f is measurable on B and $B_1 = \text{dom } f \cap B$. Then $f \upharpoonright B$ is measurable on B_1 .
- (49) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, A be an element of S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) $A \subseteq \text{dom } f$,
 - (ii) f is measurable on A,
- (iii) g is measurable on A,
- (iv) f is without $-\infty$, and
- (v) g is without $-\infty$. Then $\max_{+}(f+g) + \max_{-}(f)$ is measurable on A.
- (50) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, A be an element of S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) $A \subseteq \operatorname{dom} f \cap \operatorname{dom} g$,
 - (ii) f is measurable on A,
- (iii) g is measurable on A,
- (iv) f is without $-\infty$, and
- (v) g is without $-\infty$.

Then $\max_{-}(f+g) + \max_{+}(f)$ is measurable on A.

(51) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and A be a set. If $A \in S$, then $0 \le M(A)$.

- (52) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) there exists an element E_1 of S such that $E_1 = \text{dom } f$ and f is measurable on E_1 ,
 - (ii) there exists an element E_2 of S such that $E_2 = \text{dom } g$ and g is measurable on E_2 ,
- (iii) $f^{-1}(\{+\infty\}) \in S$,
- (iv) $f^{-1}(\{-\infty\}) \in S$,
- (v) $g^{-1}(\{+\infty\}) \in S$, and
- (vi) $g^{-1}(\{-\infty\}) \in S$. Then $dom(f+g) \in S$.
- (53) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) there exists an element E_1 of S such that $E_1 = \text{dom } f$ and f is measurable on E_1 , and
 - (ii) there exists an element E_2 of S such that $E_2 = \text{dom } g$ and g is measurable on E_2 .
 - Then there exists an element E of S such that E = dom(f+g) and f+g is measurable on E.
- (54) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose dom f = A. Then f is measurable on B if and only if f is measurable on $A \cap B$.
- (55) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Given an element A of S such that dom f = A. Let c be a real number and B be an element of S. If f is measurable on B, then c f is measurable on B.

4. Sequence of Extended Real Numbers

A sequence of extended reals is a function from \mathbb{N} into $\overline{\mathbb{R}}$.

Let s_1 be a sequence of extended reals. We say that s_1 is convergent to finite number if and only if the condition (Def. 8) is satisfied.

(Def. 8) There exists a real number g such that for every real number p if 0 < p, then there exists a natural number n such that for every natural number m such that $n \le m$ holds $|s_1(m) - \overline{\mathbb{R}}(g)| < p$.

Let s_1 be a sequence of extended reals. We say that s_1 is convergent to $+\infty$ if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let g be a real number. Suppose 0 < g. Then there exists a natural number n such that for every natural number m such that $n \le m$ holds $g \le s_1(m)$.

Let s_1 be a sequence of extended reals. We say that s_1 is convergent to $-\infty$ if and only if the condition (Def. 10) is satisfied.

(Def. 10) Let g be a real number. Suppose g < 0. Then there exists a natural number n such that for every natural number m such that $n \leq m$ holds $s_1(m) \leq g$.

We now state two propositions:

- (56) Let s_1 be a sequence of extended reals. Suppose s_1 is convergent to $+\infty$. Then s_1 is not convergent to $-\infty$ and s_1 is not convergent to finite number.
- (57) Let s_1 be a sequence of extended reals. Suppose s_1 is convergent to $-\infty$. Then s_1 is not convergent to $+\infty$ and s_1 is not convergent to finite number.

Let s_1 be a sequence of extended reals. We say that s_1 is convergent if and only if:

(Def. 11) s_1 is convergent to finite number, or convergent to $+\infty$, or convergent to $-\infty$.

Let s_1 be a sequence of extended reals. Let us assume that s_1 is convergent. The functor $\lim s_1$ yields an extended real number and is defined by the conditions (Def. 12).

- (Def. 12)(i) There exists a real number g such that $\lim s_1 = g$ and for every real number p such that 0 < p there exists a natural number n such that for every natural number m such that $n \le m$ holds $|s_1(m) \lim s_1| < p$ and s_1 is convergent to finite number, or
 - (ii) $\lim s_1 = +\infty$ and s_1 is convergent to $+\infty$, or
 - (iii) $\lim s_1 = -\infty$ and s_1 is convergent to $-\infty$.

We now state a number of propositions:

- (58) Let s_1 be a sequence of extended reals and r be a real number. Suppose that for every natural number n holds $s_1(n) = r$. Then s_1 is convergent to finite number and $\lim s_1 = r$.
- (59) Let F be a finite sequence of elements of $\overline{\mathbb{R}}$. If for every natural number n such that $n \in \text{dom } F$ holds $0 \le F(n)$, then $0 \le \sum F$.
- (60) Let L be a sequence of extended reals. Suppose that for all natural numbers n, m such that $n \leq m$ holds $L(n) \leq L(m)$. Then L is convergent and $\lim L = \sup \operatorname{rng} L$.
- (61) For all sequences L, G of extended reals such that for every natural number n holds $L(n) \leq G(n)$ holds $\sup \operatorname{rng} L \leq \sup \operatorname{rng} G$.
- (62) For every sequence L of extended reals and for every natural number n holds $L(n) \leq \sup \operatorname{rng} L$.
- (63) Let L be a sequence of extended reals and K be an extended real number. If for every natural number n holds $L(n) \leq K$, then sup rng $L \leq K$.

- (64) Let L be a sequence of extended reals and K be an extended real number. If $K \neq +\infty$ and for every natural number n holds $L(n) \leq K$, then $\sup \operatorname{rng} L < +\infty$.
- (65) Let L be a sequence of extended reals. Suppose L is without $-\infty$. Then $\sup \operatorname{rng} L \neq +\infty$ if and only if there exists a real number K such that 0 < K and for every natural number n holds $L(n) \leq K$.
- (66) Let L be a sequence of extended reals and c be an extended real number. Suppose that for every natural number n holds L(n) = c. Then L is convergent and $\lim L = c$ and $\lim L = \sup \operatorname{rng} L$.
- (67) Let J, K, L be sequences of extended reals. Suppose that
 - (i) for all natural numbers n, m such that $n \leq m$ holds $J(n) \leq J(m)$,
 - (ii) for all natural numbers n, m such that $n \leq m$ holds $K(n) \leq K(m)$,
- (iii) J is without $-\infty$,
- (iv) K is without $-\infty$, and
- (v) for every natural number n holds J(n) + K(n) = L(n). Then L is convergent and $\lim L = \sup \operatorname{rng} L$ and $\lim L = \lim J + \lim K$ and $\sup \operatorname{rng} L = \sup \operatorname{rng} K + \sup \operatorname{rng} J$.
- (68) Let L, K be sequences of extended reals and c be a real number. Suppose $0 \le c$ and L is without $-\infty$ and for every natural number n holds $K(n) = \overline{\mathbb{R}}(c) \cdot L(n)$. Then $\sup \operatorname{rng} K = \overline{\mathbb{R}}(c) \cdot \sup \operatorname{rng} L$ and K is without $-\infty$.
- (69) Let L, K be sequences of extended reals and c be a real number. Suppose that
 - (i) $0 \le c$,
 - (ii) for all natural numbers n, m such that $n \leq m$ holds $L(n) \leq L(m)$,
- (iii) for every natural number n holds $K(n) = \overline{\mathbb{R}}(c) \cdot L(n)$, and
- (iv) L is without $-\infty$.

Then

- (v) for all natural numbers n, m such that $n \leq m$ holds $K(n) \leq K(m)$,
- (vi) K is without $-\infty$ and convergent,
- (vii) $\lim K = \sup \operatorname{rng} K$, and
- (viii) $\lim K = \overline{\mathbb{R}}(c) \cdot \lim L$.

5. SEQUENCE OF EXTENDED REAL VALUED FUNCTIONS

Let X be a non empty set, let H be a sequence of partial functions from X into $\overline{\mathbb{R}}$, and let x be an element of X. The functor H # x yields a sequence of extended reals and is defined as follows:

(Def. 13) For every natural number n holds (H # x)(n) = H(n)(x).

Let D_1 , D_2 be sets, let F be a function from \mathbb{N} into $D_1 \rightarrow D_2$, and let n be a natural number. Then F(n) is a partial function from D_1 to D_2 .

Next we state the proposition

- (70) Let X be a non empty set, S be a σ -field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that A = dom f and f is measurable on A and f is non-negative. Then there exists a sequence F of partial functions from X into $\overline{\mathbb{R}}$ such that
 - (i) for every natural number n holds F(n) is simple function in S and $\operatorname{dom} F(n) = \operatorname{dom} f$,
- (ii) for every natural number n holds F(n) is non-negative,
- (iii) for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in \text{dom } f$ holds $F(n)(x) \leq F(m)(x)$, and
- (iv) for every element x of X such that $x \in \text{dom } f$ holds F # x is convergent and $\lim(F \# x) = f(x)$.

6. Integral of Non Negative Simple Valued Function

Let X be a non empty set, let S be a σ -field of subsets of X, let M be a σ -measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. The functor $\int' f \, \mathrm{d}M$ yielding an element of $\overline{\mathbb{R}}$ is defined as follows:

(Def. 14)
$$\int' f \, \mathrm{d} M = \left\{ \begin{array}{l} \int f \, \mathrm{d} M, \text{ if } \mathrm{dom} \, f \neq \emptyset, \\ X \\ 0_{\overline{\mathbb{R}}}, \text{ otherwise.} \end{array} \right.$$

The following propositions are true:

- (71) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and g is simple function in S and f is nonnegative and g is non-negative. Then $\operatorname{dom}(f+g) = \operatorname{dom} f \cap \operatorname{dom} g$ and $\int' f + g \, \mathrm{d}M = \int' f \upharpoonright \operatorname{dom}(f+g) \, \mathrm{d}M + \int' g \upharpoonright \operatorname{dom}(f+g) \, \mathrm{d}M$.
- (72) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number. Suppose f is simple function in S and f is non-negative and $0 \le c$. Then $\int_{-\infty}^{\infty} c f \, dM = \overline{\mathbb{R}}(c) \cdot \int_{-\infty}^{\infty} f \, dM$.
- (73) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose f is simple function in S and f is non-negative and A misses B. Then $\int' f \upharpoonright (A \cup B) \, \mathrm{d}M = \int' f \upharpoonright A \, \mathrm{d}M + \int' f \upharpoonright B \, \mathrm{d}M$.
- (74) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is simple function in S and f is non-negative, then $0 \leq \int' f \, dM$.
- (75) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) f is simple function in S,

- (ii) f is non-negative,
- (iii) g is simple function in S,
- (iv) g is non-negative, and
- (v) for every set x such that $x \in \text{dom}(f-g)$ holds $g(x) \leq f(x)$. Then $\text{dom}(f-g) = \text{dom } f \cap \text{dom } g$ and $\int' f \upharpoonright \text{dom}(f-g) \, dM = \int' f - g \, dM + \int' g \upharpoonright \text{dom}(f-g) \, dM$.
- (76) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) f is simple function in S,
 - (ii) g is simple function in S,
- (iii) f is non-negative,
- (iv) q is non-negative, and
- (v) for every set x such that $x \in \text{dom}(f-g)$ holds $g(x) \leq f(x)$. Then $\int_{-\infty}^{\infty} g \upharpoonright \text{dom}(f-g) \, dM \leq \int_{-\infty}^{\infty} f \upharpoonright \text{dom}(f-g) \, dM$.
- (77) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be an extended real number. Suppose $0 \le c$ and f is simple function in S and for every set x such that $x \in \text{dom } f$ holds f(x) = c. Then $\int_{-\infty}^{\infty} f \, dM = c \cdot M(\text{dom } f)$.
- (78) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and f is non-negative. Then $\int_{-\infty}^{\infty} f \cdot \mathbb{E} \mathbb{Q} \text{dom}(f, \overline{\mathbb{R}}(0)) dM = 0$.
- (79) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, B be an element of S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and M(B) = 0 and f is non-negative. Then $\int f \cdot B \, dM = 0$.
- (80) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, g be a partial function from X to $\overline{\mathbb{R}}$, F be a sequence of partial functions from X into $\overline{\mathbb{R}}$, and L be a sequence of extended reals. Suppose that g is simple function in S and for every set x such that $x \in \operatorname{dom} g$ holds 0 < g(x) and for every natural number n holds $f(n) = \operatorname{dom} g$ and for every natural number n holds dom $f(n) = \operatorname{dom} g$ and for every natural number n holds f(n) is non-negative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in \operatorname{dom} g$ holds $f(n)(x) \leq f(m)(x)$ and for every element x of X such that $x \in \operatorname{dom} g$ holds $f(n)(x) \leq f(n)(x)$ and for every element x of x such that $x \in \operatorname{dom} g$ holds $x \in \operatorname{dom} g$ holds
- (81) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, g be a partial function from X to $\overline{\mathbb{R}}$, and F be a sequence of partial functions from X into $\overline{\mathbb{R}}$. Suppose that g is simple function in S and g is non-negative and for every natural number n holds F(n) is simple

function in S and for every natural number n holds dom $F(n) = \operatorname{dom} g$ and for every natural number n holds F(n) is non-negative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in \operatorname{dom} g$ holds $F(n)(x) \leq F(m)(x)$ and for every element x of X such that $x \in \operatorname{dom} g$ holds F # x is convergent and $g(x) \leq \lim(F \# x)$. Then there exists a sequence G of extended reals such that for every natural number n holds $G(n) = \int_{-\infty}^{\infty} F(n) \, \mathrm{d}M$ and G is convergent and $\operatorname{sup} \operatorname{rng} G = \lim_{n \to \infty} G$ and $\int_{-\infty}^{\infty} g \, \mathrm{d}M \leq \lim_{n \to \infty} G$.

(82) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, A be an element of S, F, G be sequences of partial functions from X into $\overline{\mathbb{R}}$, and K, L be sequences of extended reals. Suppose that for every natural number n holds F(n) is simple function in S and dom F(n) = A and for every natural number n holds F(n) is non-negative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in A$ holds $F(n)(x) \leq F(m)(x)$ and for every natural number n holds G(n) is simple function in S and dom G(n) = A and for every natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in A$ holds $F(n)(x) \leq G(m)(x)$ and for every element x of X such that $x \in A$ holds $F(n)(x) \leq G(m)(x)$ and for every element x of x such that $x \in A$ holds $x \in A$ holds $x \in A$ is convergent and $x \in A$ holds $x \in A$ holds holds $x \in A$ holds $x \in A$ holds hol

Let X be a non empty set, let S be a σ -field of subsets of X, let M be a σ -measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. Let us assume that there exists an element A of S such that $A = \operatorname{dom} f$ and f is measurable on A and f is non-negative. The functor $\int^+ f \, \mathrm{d}M$ yielding an element of $\overline{\mathbb{R}}$ is defined by the condition (Def. 15).

(Def. 15) There exists a sequence F of partial functions from X into $\overline{\mathbb{R}}$ and there exists a sequence K of extended reals such that for every natural number n holds F(n) is simple function in S and $\operatorname{dom} F(n) = \operatorname{dom} f$ and for every natural number n holds F(n) is nonnegative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in \operatorname{dom} f$ holds $F(n)(x) \leq F(m)(x)$ and for every element x of X such that $x \in \operatorname{dom} f$ holds F # x is convergent and $\operatorname{lim}(F \# x) = f(x)$ and for every natural number n holds $K(n) = \int_{-\infty}^{\infty} F(n) \, dM$ and K is convergent and $\int_{-\infty}^{\infty} f \, dM = \lim_{n \to \infty} K$.

The following propositions are true:

- (83) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is simple function in S and f is non-negative, then $\int_{-\infty}^{+\infty} f \, \mathrm{d}M = \int_{-\infty}^{\infty} f \, \mathrm{d}M$.
- (84) Let X be a non empty set, S be a σ -field of subsets of X, M be a

- σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
- (i) there exists an element A of S such that A = dom f and f is measurable on A,
- (ii) there exists an element B of S such that B = dom g and g is measurable on B,
- (iii) f is non-negative, and
- (iv) g is non-negative. Then there exists an element C of S such that C = dom(f+g) and $\int_{-\infty}^{+\infty} f + g \, dM = \int_{-\infty}^{+\infty} f \, C \, dM + \int_{-\infty}^{+\infty} g \, C \, dM$.
- (85) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that A = dom f and f is measurable on A and f is non-negative. Then $0 \leq \int^+ f \, \mathrm{d}M$.
- (86) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that E = dom f and f is measurable on E and f is non-negative. Then $0 \leq \int^+ f \upharpoonright A \, dM$.
- (87) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose there exists an element E of S such that $E = \operatorname{dom} f$ and f is measurable on E and f is non-negative and A misses B. Then $\int_{-\infty}^{+\infty} f (A \cup B) dM = \int_{-\infty}^{+\infty} f A dM + \int_{-\infty}^{+\infty} f B dM$.
- (88) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that $E = \operatorname{dom} f$ and f is measurable on E and f is non-negative and M(A) = 0. Then $\int_{-\infty}^{+\infty} f |A| dM = 0$.
- (89) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose there exists an element E of S such that $E = \operatorname{dom} f$ and f is measurable on E and f is non-negative and $A \subseteq B$. Then $\int^+ f \upharpoonright A \, dM \le \int^+ f \upharpoonright B \, dM$.
- (90) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and E, A be elements of S. Suppose f is non-negative and $E = \operatorname{dom} f$ and f is measurable on E and M(A) = 0. Then $\int^+ f \upharpoonright (E \setminus A) \, \mathrm{d}M = \int^+ f \, \mathrm{d}M$.
- (91) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) there exists an element E of S such that E = dom f and E = dom g and f is measurable on E and g is measurable on E,
 - (ii) f is non-negative,

- (iii) g is non-negative, and
- (iv) for every element x of X such that $x \in \text{dom } g$ holds $g(x) \leq f(x)$. Then $\int_{-\infty}^{+\infty} g \, dM \leq \int_{-\infty}^{+\infty} f \, dM$.
- (92) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number. Suppose $0 \le c$ and there exists an element A of S such that $A = \operatorname{dom} f$ and f is measurable on A and f is non-negative. Then $\int^+ c f \, dM = \overline{\mathbb{R}}(c) \cdot \int^+ f \, dM$.
- (93) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) there exists an element A of S such that A = dom f and f is measurable on A, and
 - (ii) for every element x of X such that $x \in \text{dom } f$ holds 0 = f(x). Then $\int_{-\infty}^{+\infty} f \, dM = 0$.

7. Integral of Measurable Function

Let X be a non empty set, let S be a σ -field of subsets of X, let M be a σ -measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. The functor $\int f \, \mathrm{d}M$ yielding an element of $\overline{\mathbb{R}}$ is defined as follows:

(Def. 16) $\int f dM = \int^{+} \max_{+}(f) dM - \int^{+} \max_{-}(f) dM$.

We now state several propositions:

- (94) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that A = dom f and f is measurable on A and f is non-negative. Then $\int f \, dM = \int^+ f \, dM$.
- (95) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and f is non-negative. Then $\int f dM = \int^+ f dM$ and $\int f dM = \int' f dM$.
- (96) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that A = dom f and f is measurable on A and f is non-negative. Then $0 \le \int f \, dM$.
- (97) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose there exists an element E of S such that $E = \operatorname{dom} f$ and f is measurable on E and f is non-negative and A misses B. Then $\int f \upharpoonright (A \cup B) \, \mathrm{d}M = \int f \upharpoonright A \, \mathrm{d}M + \int f \upharpoonright B \, \mathrm{d}M.$

- (98) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that E = dom f and f is measurable on E and f is non-negative. Then $0 \leq \int f \upharpoonright A \, dM$.
- (99) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose there exists an element E of S such that $E = \operatorname{dom} f$ and f is measurable on E and f is non-negative and $A \subseteq B$. Then $\int f \upharpoonright A \, dM \le \int f \upharpoonright B \, dM$.
- (100) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that E = dom f and f is measurable on E and M(A) = 0. Then $\int f \upharpoonright A \, dM = 0$.
- (101) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and E, A be elements of S. If $E = \operatorname{dom} f$ and f is measurable on E and M(A) = 0, then $\int f \upharpoonright (E \setminus A) \, \mathrm{d}M = \int f \, \mathrm{d}M$.
- Let X be a non empty set, let S be a σ -field of subsets of X, let M be a σ -measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. We say that f is integrable on M if and only if:
- (Def. 17) There exists an element A of S such that A = dom f and f is measurable on A and $\int_{-\infty}^{+\infty} \max_{+\infty} f(f) dM < +\infty$ and $\int_{-\infty}^{+\infty} \max_{+\infty} f(f) dM < +\infty$. One can prove the following propositions:
 - (102) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M. Then $0 \leq \int^+ \max_+(f) dM$ and $0 \leq \int^+ \max_-(f) dM$ and $-\infty < \int f dM$ and $\int f dM < +\infty$.
 - (103) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose f is integrable on M. Then $\int^+ \max_+(f \upharpoonright A) \, \mathrm{d}M \le \int^+ \max_+(f) \, \mathrm{d}M$ and $\int^+ \max_-(f \upharpoonright A) \, \mathrm{d}M \le \int^+ \max_-(f) \, \mathrm{d}M$ and $f \upharpoonright A$ is integrable on M.
 - (104) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose f is integrable on M and A misses B. Then $\int f \upharpoonright (A \cup B) \, \mathrm{d}M = \int f \upharpoonright A \, \mathrm{d}M + \int f \upharpoonright B \, \mathrm{d}M.$
 - (105) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose f is integrable on M and $B = \text{dom } f \setminus A$. Then $f \upharpoonright A$ is integrable on M and $\int f \, dM = \int f \upharpoonright A \, dM + \int f \upharpoonright B \, dM$.

- (106) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Given an element A of S such that A = dom f and f is measurable on A. Then f is integrable on M if and only if |f| is integrable on M.
- (107) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is integrable on M, then $|\int f \, \mathrm{d}M| \leq \int |f| \, \mathrm{d}M$.
- (108) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
 - (i) there exists an element A of S such that A = dom f and f is measurable on A,
 - (ii) $\operatorname{dom} f = \operatorname{dom} g$,
 - (iii) g is integrable on M, and
 - (iv) for every element x of X such that $x \in \text{dom } f$ holds $|f(x)| \leq g(x)$. Then f is integrable on M and $\int |f| dM \leq \int g dM$.
- (109) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and r be a real number. Suppose dom $f \in S$ and $0 \le r$ and dom $f \ne \emptyset$ and for every set x such that $x \in \text{dom } f$ holds f(x) = r. Then $\int_X f \, dM = \overline{\mathbb{R}}(r) \cdot M(\text{dom } f)$.
- (110) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and r be a real number. Suppose dom $f \in S$ and $0 \le r$ and for every set x such that $x \in \text{dom } f$ holds f(x) = r. Then $\int_{-\infty}^{r} f \, dM = \overline{\mathbb{R}}(r) \cdot M(\text{dom } f)$.
- (111) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M. Then $f^{-1}(\{+\infty\}) \in S$ and $f^{-1}(\{-\infty\}) \in S$ and $M(f^{-1}(\{+\infty\})) = 0$ and $M(f^{-1}(\{+\infty\})) = 0$ and $M(f^{-1}(\{+\infty\})) = 0$.
- (112) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M and g is integrable on M and f is non-negative and g is non-negative. Then f+g is integrable on M.
- (113) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. If f is integrable on M and g is integrable on M, then $\text{dom}(f+g) \in S$.
- (114) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M and g is integrable on M. Then f+g is integrable on M.
- (115) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is

integrable on M and g is integrable on M. Then there exists an element E of S such that $E = \text{dom } f \cap \text{dom } g$ and $\int f + g \, dM = \int f \upharpoonright E \, dM + \int g \upharpoonright E \, dM$.

(116) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number. Suppose f is integrable on M. Then c f is integrable on M and $\int c f dM = \overline{\mathbb{R}}(c) \cdot \int f dM$.

Let X be a non empty set, let S be a σ -field of subsets of X, let M be a σ -measure on S, let f be a partial function from X to $\overline{\mathbb{R}}$, and let B be an element of S. The functor $\int_{B} f \, dM$ yielding an element of $\overline{\mathbb{R}}$ is defined as follows:

(Def. 18)
$$\int_{B} f \, dM = \int f \upharpoonright B \, dM.$$

The following propositions are true:

- (117) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f, g be partial functions from X to $\overline{\mathbb{R}}$, and B be an element of S. Suppose f is integrable on M and g is integrable on M and G is integrable on G is integrable on G and G is integrable on G and G is integrable on G and G is integrable on G is integrable on G and G is integrable on G in G is integrable on G in G is integrable on G in G in G is integrable on G in G i
- (118) Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, c be a real number, and B be an element of S. Suppose f is integrable on M and f is measurable on B. Then $f \mid B$ is integrable on M and $\int_B c f dM = \overline{\mathbb{R}}(c) \cdot \int_B f dM$.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163–171, 1991.
- [4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [5] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [6] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21–26, 1996.
- [7] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [8] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

- [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491–494, 2001.
- [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495–500, 2001.
- [16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. *Formalized Mathematics*, 9(3):525–529, 2001.
- [17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Some properties of extended real numbers operations: abs. min and max. Formalized Mathematics, 9(3):511–516, 2001.
- [18] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [19] Grigory E. Ivanov. Definition of convex function and Jensen's inequality. Formalized Mathematics, 11(4):349–354, 2003.
- [20] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841–845, 1990.
- [21] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279–288, 1992.
- [22] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [23] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745–749, 1990.
- [24] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [25] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17–21, 1992.
- [26] Yasunari Shidama and Noboru Endou. Lebesgue integral of simple valued function. Formalized Mathematics, 13(1):67-71, 2005.
- [27] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [28] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [29] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990
- [30] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341–347, 2003.
- [31] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received May 24, 2006