Integral of Measurable Function ${ }^{1}$

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this paper we construct integral of measurable function.

MML identifier: MESFUNC5, version: 7.7.01 4.66.942

The terminology and notation used here are introduced in the following articles: [29], [12], [32], [1], [27], [18], [33], [9], [2], [34], [13], [11], [10], [28], [31], [20], [30], [3], [4], [5], [14], [7], [17], [15], [16], [26], [8], [19], [21], [24], [23], [6], [22], and [25].

1. Lemmas for Extended Real Numbers

One can prove the following propositions:
(1) For all extended real numbers x, y holds $|x-y|=|y-x|$.
(2) For all extended real numbers x, y holds $y-x \leq|x-y|$.
(3) Let x, y be extended real numbers and e be a real number. Suppose $|x-y|<e$ and $x \neq+\infty$ or $y \neq+\infty$ but $x \neq-\infty$ or $y \neq-\infty$. Then $x \neq+\infty$ and $x \neq-\infty$ and $y \neq+\infty$ and $y \neq-\infty$.
(4) For all extended real numbers x, y such that for every real number e such that $0<e$ holds $x<y+\overline{\mathbb{R}}(e)$ holds $x \leq y$.
(5) For all extended real numbers x, y, t such that $t \neq-\infty$ and $t \neq+\infty$ and $x<y$ holds $x+t<y+t$.
(6) For all extended real numbers x, y, t such that $t \neq-\infty$ and $t \neq+\infty$ and $x<y$ holds $x-t<y-t$.

[^0](7) For all real numbers a, b holds $\overline{\mathbb{R}}(a)+\overline{\mathbb{R}}(b)=a+b$ and $-\overline{\mathbb{R}}(a)=-a$.
(8) Let n be a natural number and p be an extended real number. Suppose $0 \leq p$ and $p<n$. Then there exists a natural number k such that $1 \leq k$ and $k \leq 2^{n} \cdot n$ and $\frac{k-1}{2^{n}} \leq p$ and $p<\frac{k}{2^{n}}$.
(9) Let n, k be natural numbers and p be an extended real number. If $1 \leq k$ and $k \leq 2^{n} \cdot n$ and $n \leq p$ and $\frac{k-1}{2^{n}} \leq p$, then $\frac{k}{2^{n}} \leq p$.
(10) For all extended real numbers x, y, w, z such that $-\infty<w$ holds if $x<y$ and $w<z$, then $x+w<y+z$.
(11) For all extended real numbers x, y, k such that $0 \leq k$ holds $k \cdot \max (x, y)=$ $\max (k \cdot x, k \cdot y)$ and $k \cdot \min (x, y)=\min (k \cdot x, k \cdot y)$.
(12) For all extended real numbers x, y, k such that $k \leq 0$ holds $k \cdot \min (x, y)=$ $\max (k \cdot x, k \cdot y)$ and $k \cdot \max (x, y)=\min (k \cdot x, k \cdot y)$.
(13) For all extended real numbers x, y, z such that $0 \leq x$ and $0 \leq z$ and $z+x \leq y$ holds $z \leq y$.

2. Lemmas for Partial Function of Non-empty Set, Extended Real Numbers

Let I_{1} be a set. We say that I_{1} is non-positive if and only if:
(Def. 1) For every extended real number x such that $x \in I_{1}$ holds $x \leq 0$.
Let R be a binary relation. We say that R is non-positive if and only if:
(Def. 2) $\operatorname{rng} R$ is non-positive.
The following propositions are true:
(14) Let X be a set and F be a partial function from X to $\overline{\mathbb{R}}$. Then F is non-positive if and only if for every set n holds $F(n) \leq 0_{\overline{\mathbb{R}}}$.
(15) Let X be a set and F be a partial function from X to $\overline{\mathbb{R}}$. If for every set n such that $n \in \operatorname{dom} F$ holds $F(n) \leq 0_{\overline{\mathbb{R}}}$, then F is non-positive.
Let R be a binary relation. We say that R is without $-\infty$ if and only if:
(Def. 3) $-\infty \notin \operatorname{rng} R$.
We say that R is without $+\infty$ if and only if:
(Def. 4) $\quad+\infty \notin \operatorname{rng} R$.
Let X be a non empty set and let f be a partial function from X to $\overline{\mathbb{R}}$. Let us observe that f is without $-\infty$ if and only if:
(Def. 5) For every set x holds $-\infty<f(x)$.
Let us observe that f is without $+\infty$ if and only if:
(Def. 6) For every set x holds $f(x)<+\infty$.
Next we state four propositions:
(16) Let X be a non empty set and f be a partial function from X to $\overline{\mathbb{R}}$. Then for every set x such that $x \in \operatorname{dom} f$ holds $-\infty<f(x)$ if and only if f is without $-\infty$.
(17) Let X be a non empty set and f be a partial function from X to $\overline{\mathbb{R}}$. Then for every set x such that $x \in \operatorname{dom} f$ holds $f(x)<+\infty$ if and only if f is without $+\infty$.
(18) Let X be a non empty set and f be a partial function from X to $\overline{\mathbb{R}}$. If f is non-negative, then f is without $-\infty$.
(19) Let X be a non empty set and f be a partial function from X to $\overline{\mathbb{R}}$. If f is non-positive, then f is without $+\infty$.
Let X be a non empty set. Note that every partial function from X to $\overline{\mathbb{R}}$ which is non-negative is also without $-\infty$ and every partial function from X to $\overline{\mathbb{R}}$ which is non-positive is also without $+\infty$.

The following propositions are true:
(20) Let X be a non empty set, S be a σ-field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then f is without $+\infty$ and without $-\infty$.
(21) Let X be a non empty set, Y be a set, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is non-negative, then $f \upharpoonright Y$ is non-negative.
(22) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and g is without $-\infty$. Then $\operatorname{dom}(f+g)=$ $\operatorname{dom} f \cap \operatorname{dom} g$.
(23) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and g is without $+\infty$. Then $\operatorname{dom}(f-g)=$ $\operatorname{dom} f \cap \operatorname{dom} g$.
(24) Let X be a non empty set, S be a σ-field of subsets of X, f, g be partial functions from X to $\overline{\mathbb{R}}, F$ be a function from \mathbb{Q} into S, r be a real number, and A be an element of S. Suppose f is without $-\infty$ and g is without $-\infty$ and for every rational number p holds $F(p)=A \cap \operatorname{LE-dom}(f, \overline{\mathbb{R}}(p)) \cap$ $(A \cap \operatorname{LE}-\operatorname{dom}(g, \overline{\mathbb{R}}(r-p)))$. Then $A \cap \operatorname{LE}-\operatorname{dom}(f+g, \overline{\mathbb{R}}(r))=\bigcup \operatorname{rng} F$.
Let X be a non empty set and let f be a partial function from X to \mathbb{R}. The functor $\overline{\mathbb{R}}(f)$ yielding a partial function from X to $\overline{\mathbb{R}}$ is defined as follows:
(Def. 7) $\overline{\mathbb{R}}(f)=f$.
Next we state a number of propositions:
(25) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. If f is nonnegative and g is non-negative, then $f+g$ is non-negative.
(26) Let X be a non empty set, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number such that f is non-negative. Then
(i) if $0 \leq c$, then $c f$ is non-negative, and
(ii) if $c \leq 0$, then $c f$ is non-positive.
(27) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that for every set x such that $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $g(x) \leq f(x)$ and $-\infty<g(x)$ and $f(x)<+\infty$. Then $f-g$ is non-negative.
(28) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is non-negative and g is non-negative. Then $\operatorname{dom}(f+g)=$ $\operatorname{dom} f \cap \operatorname{dom} g$ and $f+g$ is non-negative.
(29) Let X be a non empty set and f, g, h be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is non-negative and g is non-negative and h is non-negative. Then $\operatorname{dom}(f+g+h)=\operatorname{dom} f \cap \operatorname{dom} g \cap \operatorname{dom} h$ and $f+g+h$ is nonnegative and for every set x such that $x \in \operatorname{dom} f \cap \operatorname{dom} g \cap \operatorname{dom} h$ holds $(f+g+h)(x)=f(x)+g(x)+h(x)$.
(30) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and g is without $-\infty$. Then
(i) $\operatorname{dom}\left(\max _{+}(f+g)+\max -(f)\right)=\operatorname{dom} f \cap \operatorname{dom} g$,
(ii) $\quad \operatorname{dom}\left(\max _{-}(f+g)+\max _{+}(f)\right)=\operatorname{dom} f \cap \operatorname{dom} g$,
(iii) $\quad \operatorname{dom}\left(\max _{+}(f+g)+\max _{-}(f)+\max _{-}(g)\right)=\operatorname{dom} f \cap \operatorname{dom} g$,
(iv) $\operatorname{dom}\left(\max _{-}(f+g)+\max _{+}(f)+\max _{+}(g)\right)=\operatorname{dom} f \cap \operatorname{dom} g$,
(v) $\max _{+}(f+g)+\max _{-}(f)$ is non-negative, and
(vi) $\max _{-}(f+g)+\max _{+}(f)$ is non-negative.
(31) Let X be a non empty set and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and without $+\infty$ and g is without $-\infty$ and without $+\infty$. Then $\max _{+}(f+g)+\max _{-}(f)+\max _{-}(g)=\max _{-}(f+g)+$ $\max _{+}(f)+\max _{+}(g)$.
(32) Let C be a non empty set, f be a partial function from C to $\overline{\mathbb{R}}$, and c be a real number. If $0 \leq c$, then $\max _{+}(c f)=c \max _{+}(f)$ and max_$(c f)=$ $c \max _{-}(f)$.
(33) Let C be a non empty set, f be a partial function from C to $\overline{\mathbb{R}}$, and c be a real number. If $0 \leq c$, then $\max _{+}((-c) f)=c \max _{-}(f)$ and $\max _{-}((-c) f)=c \max _{+}(f)$.
(34) Let X be a non empty set, f be a partial function from X to $\overline{\mathbb{R}}$, and A be a set. Then $\max _{+}(f \upharpoonright A)=\max _{+}(f) \upharpoonright A$ and $\max _{-}(f \upharpoonright A)=\max _{-}(f) \upharpoonright A$.
(35) Let X be a non empty set, f, g be partial functions from X to $\overline{\mathbb{R}}$, and B be a set. If $B \subseteq \operatorname{dom}(f+g)$, then $\operatorname{dom}((f+g) \upharpoonright B)=B$ and $\operatorname{dom}(f \upharpoonright B+g \upharpoonright B)=B$ and $(f+g) \upharpoonright B=f \upharpoonright B+g \upharpoonright B$.
(36) Let X be a non empty set, f be a partial function from X to $\overline{\mathbb{R}}$, and a be an extended real number. Then EQ-dom $(f, a)=f^{-1}(\{a\})$.

3. Lemmas for Measurable Function and Simple Valued Function

The following propositions are true:
(37) Let X be a non empty set, S be a σ-field of subsets of X, f, g be partial functions from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose f is without $-\infty$ and g is without $-\infty$ and f is measurable on A and g is measurable on A. Then $f+g$ is measurable on A.
(38) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and $\operatorname{dom} f=\emptyset$. Then there exists a finite sequence F of separated subsets of S and there exist finite sequences a, x of elements of $\overline{\mathbb{R}}$ such that
(i) $\quad F$ and a are representation of f,
(ii) $a(1)=0$,
(iii) for every natural number n such that $2 \leq n$ and $n \in \operatorname{dom} a$ holds $0<a(n)$ and $a(n)<+\infty$,
(iv) $\operatorname{dom} x=\operatorname{dom} F$,
(v) for every natural number n such that $n \in \operatorname{dom} x$ holds $x(n)=a(n)$. $(M \cdot F)(n)$, and
(vi) $\quad \sum x=0$.
(39) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial function from X to $\overline{\mathbb{R}}, A$ be an element of S, and r, s be real numbers. Suppose f is measurable on A and $A \subseteq \operatorname{dom} f$. Then $A \cap$ $\operatorname{GTE}-\operatorname{dom}(f, \overline{\mathbb{R}}(r)) \cap \operatorname{LE}-\operatorname{dom}(f, \overline{\mathbb{R}}(s))$ is measurable on S.
(40) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. If f is simple function in S, then $f \upharpoonright A$ is simple function in S.
(41) Let X be a non empty set, S be a σ-field of subsets of X, A be an element of S, F be a finite sequence of separated subsets of S, and G be a finite sequence. Suppose $\operatorname{dom} F=\operatorname{dom} G$ and for every natural number n such that $n \in \operatorname{dom} F$ holds $G(n)=F(n) \cap A$. Then G is a finite sequence of separated subsets of S.
(42) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial function from X to $\overline{\mathbb{R}}, A$ be an element of S, F, G be finite sequences of separated subsets of S, and a be a finite sequence of elements of $\overline{\mathbb{R}}$. Suppose $\operatorname{dom} F=\operatorname{dom} G$ and for every natural number n such that $n \in$ dom F holds $G(n)=F(n) \cap A$ and F and a are representation of f. Then G and a are representation of $f \upharpoonright A$.
(43) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is simple function in S, then $\operatorname{dom} f$ is an element of S.
(44) Let X be a non empty set, S be a σ-field of subsets of X, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and g is simple function in S. Then $f+g$ is simple function in S.
(45) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number. If f is simple function in S, then $c f$ is simple function in S.
(46) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) f is simple function in S,
(ii) g is simple function in S, and
(iii) for every set x such that $x \in \operatorname{dom}(f-g)$ holds $g(x) \leq f(x)$.

Then $f-g$ is non-negative.
(47) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, A be an element of S, and c be an extended real number. Suppose $c \neq+\infty$ and $c \neq-\infty$. Then there exists a partial function f from X to $\overline{\mathbb{R}}$ such that f is simple function in S and $\operatorname{dom} f=A$ and for every set x such that $x \in A$ holds $f(x)=c$.
(48) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and B, B_{1} be elements of S. Suppose f is measurable on B and $B_{1}=\operatorname{dom} f \cap B$. Then $f \upharpoonright B$ is measurable on B_{1}.
(49) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, A be an element of S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) $A \subseteq \operatorname{dom} f$,
(ii) f is measurable on A,
(iii) g is measurable on A,
(iv) f is without $-\infty$, and
(v) g is without $-\infty$.

Then $\max _{+}(f+g)+\max _{-}(f)$ is measurable on A.
(50) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, A be an element of S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) $A \subseteq \operatorname{dom} f \cap \operatorname{dom} g$,
(ii) f is measurable on A,
(iii) g is measurable on A,
(iv) f is without $-\infty$, and
(v) g is without $-\infty$.

Then $\max _{-}(f+g)+\max _{+}(f)$ is measurable on A.
(51) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and A be a set. If $A \in S$, then $0 \leq M(A)$.
(52) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) there exists an element E_{1} of S such that $E_{1}=\operatorname{dom} f$ and f is measurable on E_{1},
(ii) there exists an element E_{2} of S such that $E_{2}=\operatorname{dom} g$ and g is measurable on E_{2},
(iii) $f^{-1}(\{+\infty\}) \in S$,
(iv) $f^{-1}(\{-\infty\}) \in S$,
(v) $g^{-1}(\{+\infty\}) \in S$, and
(vi) $g^{-1}(\{-\infty\}) \in S$.

Then $\operatorname{dom}(f+g) \in S$.
(53) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) there exists an element E_{1} of S such that $E_{1}=\operatorname{dom} f$ and f is measurable on E_{1}, and
(ii) there exists an element E_{2} of S such that $E_{2}=\operatorname{dom} g$ and g is measurable on E_{2}.
Then there exists an element E of S such that $E=\operatorname{dom}(f+g)$ and $f+g$ is measurable on E.
(54) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose $\operatorname{dom} f=A$. Then f is measurable on B if and only if f is measurable on $A \cap B$.
(55) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Given an element A of S such that $\operatorname{dom} f=A$. Let c be a real number and B be an element of S. If f is measurable on B, then $c f$ is measurable on B.

4. Sequence of Extended Real Numbers

A sequence of extended reals is a function from \mathbb{N} into $\overline{\mathbb{R}}$.
Let s_{1} be a sequence of extended reals. We say that s_{1} is convergent to finite number if and only if the condition (Def. 8) is satisfied.
(Def. 8) There exists a real number g such that for every real number p if $0<p$, then there exists a natural number n such that for every natural number m such that $n \leq m$ holds $\left|s_{1}(m)-\overline{\mathbb{R}}(g)\right|<p$.
Let s_{1} be a sequence of extended reals. We say that s_{1} is convergent to $+\infty$ if and only if the condition (Def. 9) is satisfied.
(Def. 9) Let g be a real number. Suppose $0<g$. Then there exists a natural number n such that for every natural number m such that $n \leq m$ holds $g \leq s_{1}(m)$.

Let s_{1} be a sequence of extended reals. We say that s_{1} is convergent to $-\infty$ if and only if the condition (Def. 10) is satisfied.
(Def. 10) Let g be a real number. Suppose $g<0$. Then there exists a natural number n such that for every natural number m such that $n \leq m$ holds $s_{1}(m) \leq g$.
We now state two propositions:
(56) Let s_{1} be a sequence of extended reals. Suppose s_{1} is convergent to $+\infty$. Then s_{1} is not convergent to $-\infty$ and s_{1} is not convergent to finite number.
(57) Let s_{1} be a sequence of extended reals. Suppose s_{1} is convergent to $-\infty$. Then s_{1} is not convergent to $+\infty$ and s_{1} is not convergent to finite number.
Let s_{1} be a sequence of extended reals. We say that s_{1} is convergent if and only if:
(Def. 11) s_{1} is convergent to finite number, or convergent to $+\infty$, or convergent to $-\infty$.
Let s_{1} be a sequence of extended reals. Let us assume that s_{1} is convergent. The functor $\lim s_{1}$ yields an extended real number and is defined by the conditions (Def. 12).
(Def. 12)(i) There exists a real number g such that $\lim s_{1}=g$ and for every real number p such that $0<p$ there exists a natural number n such that for every natural number m such that $n \leq m$ holds $\left|s_{1}(m)-\lim s_{1}\right|<p$ and s_{1} is convergent to finite number, or
(ii) $\lim s_{1}=+\infty$ and s_{1} is convergent to $+\infty$, or
(iii) $\lim s_{1}=-\infty$ and s_{1} is convergent to $-\infty$.

We now state a number of propositions:
(58) Let s_{1} be a sequence of extended reals and r be a real number. Suppose that for every natural number n holds $s_{1}(n)=r$. Then s_{1} is convergent to finite number and $\lim s_{1}=r$.
(59) Let F be a finite sequence of elements of $\overline{\mathbb{R}}$. If for every natural number n such that $n \in \operatorname{dom} F$ holds $0 \leq F(n)$, then $0 \leq \sum F$.
(60) Let L be a sequence of extended reals. Suppose that for all natural numbers n, m such that $n \leq m$ holds $L(n) \leq L(m)$. Then L is convergent and $\lim L=\sup \operatorname{rng} L$.
(61) For all sequences L, G of extended reals such that for every natural number n holds $L(n) \leq G(n)$ holds sup $\operatorname{rng} L \leq \sup \operatorname{rng} G$.
(62) For every sequence L of extended reals and for every natural number n holds $L(n) \leq \sup \operatorname{rng} L$.
(63) Let L be a sequence of extended reals and K be an extended real number. If for every natural number n holds $L(n) \leq K$, then sup $\operatorname{rng} L \leq K$.
(64) Let L be a sequence of extended reals and K be an extended real number. If $K \neq+\infty$ and for every natural number n holds $L(n) \leq K$, then sup rng $L<+\infty$.
(65) Let L be a sequence of extended reals. Suppose L is without $-\infty$. Then $\sup \operatorname{rng} L \neq+\infty$ if and only if there exists a real number K such that $0<K$ and for every natural number n holds $L(n) \leq K$.
(66) Let L be a sequence of extended reals and c be an extended real number. Suppose that for every natural number n holds $L(n)=c$. Then L is convergent and $\lim L=c$ and $\lim L=\sup r n g$.
(67) Let J, K, L be sequences of extended reals. Suppose that
(i) for all natural numbers n, m such that $n \leq m$ holds $J(n) \leq J(m)$,
(ii) for all natural numbers n, m such that $n \leq m$ holds $K(n) \leq K(m)$,
(iii) J is without $-\infty$,
(iv) K is without $-\infty$, and
(v) for every natural number n holds $J(n)+K(n)=L(n)$.

Then L is convergent and $\lim L=\sup \operatorname{rng} L$ and $\lim L=\lim J+\lim K$ and sup rng $L=\sup \operatorname{rng} K+\sup \operatorname{rng} J$.
(68) Let L, K be sequences of extended reals and c be a real number. Suppose $0 \leq c$ and L is without $-\infty$ and for every natural number n holds $K(n)=$ $\overline{\mathbb{R}}(c) \cdot L(n)$. Then sup $\operatorname{rng} K=\overline{\mathbb{R}}(c) \cdot \sup \operatorname{rng} L$ and K is without $-\infty$.
(69) Let L, K be sequences of extended reals and c be a real number. Suppose that
(i) $0 \leq c$,
(ii) for all natural numbers n, m such that $n \leq m$ holds $L(n) \leq L(m)$,
(iii) for every natural number n holds $K(n)=\overline{\mathbb{R}}(c) \cdot L(n)$, and
(iv) L is without $-\infty$.

Then
(v) for all natural numbers n, m such that $n \leq m$ holds $K(n) \leq K(m)$,
(vi) K is without $-\infty$ and convergent,
(vii) $\lim K=\sup \operatorname{rng} K$, and
(viii) $\quad \lim K=\overline{\mathbb{R}}(c) \cdot \lim L$.

5. Sequence of Extended Real Valued Functions

Let X be a non empty set, let H be a sequence of partial functions from X into $\overline{\mathbb{R}}$, and let x be an element of X. The functor $H \# x$ yields a sequence of extended reals and is defined as follows:
(Def. 13) For every natural number n holds $(H \# x)(n)=H(n)(x)$.
Let D_{1}, D_{2} be sets, let F be a function from \mathbb{N} into $D_{1} \dot{\rightarrow} D_{2}$, and let n be a natural number. Then $F(n)$ is a partial function from D_{1} to D_{2}.

Next we state the proposition
(70) Let X be a non empty set, S be a σ-field of subsets of X, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-negative. Then there exists a sequence F of partial functions from X into $\overline{\mathbb{R}}$ such that
(i) for every natural number n holds $F(n)$ is simple function in S and $\operatorname{dom} F(n)=\operatorname{dom} f$,
(ii) for every natural number n holds $F(n)$ is non-negative,
(iii) for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in \operatorname{dom} f$ holds $F(n)(x) \leq F(m)(x)$, and
(iv) for every element x of X such that $x \in \operatorname{dom} f$ holds $F \# x$ is convergent and $\lim (F \# x)=f(x)$.

6. Integral of Non Negative Simple Valued Function

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. The functor $\int^{\prime} f \mathrm{~d} M$ yielding an element of $\overline{\mathbb{R}}$ is defined as follows:
(Def. 14)

$$
\int^{\prime} f \mathrm{~d} M=\left\{\begin{array}{l}
\int_{X} f \mathrm{~d} M, \text { if } \operatorname{dom} f \neq \emptyset \\
0_{\overline{\mathbb{R}}}, \text { otherwise }
\end{array}\right.
$$

The following propositions are true:
(71) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and g is simple function in S and f is nonnegative and g is non-negative. Then $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$ and $\int^{\prime} f+g \mathrm{~d} M=\int^{\prime} f \upharpoonright \operatorname{dom}(f+g) \mathrm{d} M+\int^{\prime} g \upharpoonright \operatorname{dom}(f+g) \mathrm{d} M$.
(72) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number. Suppose f is simple function in S and f is non-negative and $0 \leq c$. Then $\int^{\prime} c f \mathrm{~d} M=\overline{\mathbb{R}}(c) \cdot \int^{\prime} f \mathrm{~d} M$.
(73) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose f is simple function in S and f is non-negative and A misses B. Then $\int^{\prime} f \upharpoonright(A \cup B) \mathrm{d} M=\int^{\prime} f \upharpoonright A \mathrm{~d} M+\int^{\prime} f \upharpoonright B \mathrm{~d} M$.
(74) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is simple function in S and f is non-negative, then $0 \leq \int^{\prime} f \mathrm{~d} M$.
(75) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) $\quad f$ is simple function in S,
(ii) f is non-negative,
(iii) g is simple function in S,
(iv) g is non-negative, and
(v) for every set x such that $x \in \operatorname{dom}(f-g)$ holds $g(x) \leq f(x)$.

Then $\operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{dom} g$ and $\int^{\prime} f \upharpoonright \operatorname{dom}(f-g) \mathrm{d} M=\int^{\prime} f-$ $g \mathrm{~d} M+\int^{\prime} g \upharpoonright \operatorname{dom}(f-g) \mathrm{d} M$.
(76) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) f is simple function in S,
(ii) g is simple function in S,
(iii) f is non-negative,
(iv) g is non-negative, and
(v) for every set x such that $x \in \operatorname{dom}(f-g)$ holds $g(x) \leq f(x)$. Then $\int^{\prime} g \upharpoonright \operatorname{dom}(f-g) \mathrm{d} M \leq \int^{\prime} f \upharpoonright \operatorname{dom}(f-g) \mathrm{d} M$.
(77) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be an extended real number. Suppose $0 \leq c$ and f is simple function in S and for every set x such that $x \in \operatorname{dom} f$ holds $f(x)=c$. Then $\int^{\prime} f \mathrm{~d} M=c \cdot M(\operatorname{dom} f)$.
(78) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and f is non-negative. Then $\int^{\prime} f \upharpoonright \mathrm{EQ}-\operatorname{dom}(f, \overline{\mathbb{R}}(0)) \mathrm{d} M=0$.
(79) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, B be an element of S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and $M(B)=0$ and f is non-negative. Then $\int^{\prime} f\lceil B \mathrm{~d} M=0$.
(80) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, g be a partial function from X to $\overline{\mathbb{R}}, F$ be a sequence of partial functions from X into $\overline{\mathbb{R}}$, and L be a sequence of extended reals. Suppose that g is simple function in S and for every set x such that $x \in$ dom g holds $0<g(x)$ and for every natural number n holds $F(n)$ is simple function in S and for every natural number n holds dom $F(n)=\operatorname{dom} g$ and for every natural number n holds $F(n)$ is non-negative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in \operatorname{dom} g$ holds $F(n)(x) \leq F(m)(x)$ and for every element x of X such that $x \in \operatorname{dom} g$ holds $F \# x$ is convergent and $g(x) \leq \lim (F \# x)$ and for every natural number n holds $L(n)=\int^{\prime} F(n) \mathrm{d} M$. Then L is convergent and $\int^{\prime} g \mathrm{~d} M \leq \lim L$.
(81) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, g be a partial function from X to $\overline{\mathbb{R}}$, and F be a sequence of partial functions from X into $\overline{\mathbb{R}}$. Suppose that g is simple function in S and g is non-negative and for every natural number n holds $F(n)$ is simple
function in S and for every natural number n holds $\operatorname{dom} F(n)=\operatorname{dom} g$ and for every natural number n holds $F(n)$ is non-negative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in \operatorname{dom} g$ holds $F(n)(x) \leq F(m)(x)$ and for every element x of X such that $x \in \operatorname{dom} g$ holds $F \# x$ is convergent and $g(x) \leq \lim (F \# x)$. Then there exists a sequence G of extended reals such that for every natural number n holds $G(n)=\int^{\prime} F(n) \mathrm{d} M$ and G is convergent and sup $\operatorname{rng} G=\lim G$ and $\int^{\prime} g \mathrm{~d} M \leq \lim G$.
(82) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, A be an element of S, F, G be sequences of partial functions from X into $\overline{\mathbb{R}}$, and K, L be sequences of extended reals. Suppose that for every natural number n holds $F(n)$ is simple function in S and dom $F(n)=$ A and for every natural number n holds $F(n)$ is non-negative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in A$ holds $F(n)(x) \leq F(m)(x)$ and for every natural number n holds $G(n)$ is simple function in S and $\operatorname{dom} G(n)=A$ and for every natural number n holds $G(n)$ is non-negative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in A$ holds $G(n)(x) \leq G(m)(x)$ and for every element x of X such that $x \in A$ holds $F \# x$ is convergent and $G \# x$ is convergent and $\lim (F \# x)=\lim (G \# x)$ and for every natural number n holds $K(n)=\int^{\prime} F(n) \mathrm{d} M$ and $L(n)=$ $\int^{\prime} G(n) \mathrm{d} M$. Then K is convergent and L is convergent and $\lim K=\lim L$.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. Let us assume that there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-negative. The functor $\int^{+} f \mathrm{~d} M$ yielding an element of $\overline{\mathbb{R}}$ is defined by the condition (Def. 15).
(Def. 15) There exists a sequence F of partial functions from X into $\overline{\mathbb{R}}$ and there exists a sequence K of extended reals such that
for every natural number n holds $F(n)$ is simple function in S and $\operatorname{dom} F(n)=\operatorname{dom} f$ and for every natural number n holds $F(n)$ is nonnegative and for all natural numbers n, m such that $n \leq m$ and for every element x of X such that $x \in \operatorname{dom} f$ holds $F(n)(x) \leq F(m)(x)$ and for every element x of X such that $x \in \operatorname{dom} f$ holds $F \# x$ is convergent and $\lim (F \# x)=f(x)$ and for every natural number n holds $K(n)=\int^{\prime} F(n) \mathrm{d} M$ and K is convergent and $\int^{+} f \mathrm{~d} M=\lim K$.
The following propositions are true:
(83) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is simple function in S and f is non-negative, then $\int^{+} f \mathrm{~d} M=\int^{\prime} f \mathrm{~d} M$.
(84) Let X be a non empty set, S be a σ-field of subsets of X, M be a
σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A,
(ii) there exists an element B of S such that $B=\operatorname{dom} g$ and g is measurable on B,
(iii) f is non-negative, and
(iv) g is non-negative.

Then there exists an element C of S such that $C=\operatorname{dom}(f+g)$ and $\int^{+} f+g \mathrm{~d} M=\int^{+} f \upharpoonright C \mathrm{~d} M+\int^{+} g \upharpoonright C \mathrm{~d} M$.
(85) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-negative. Then $0 \leq \int^{+} f \mathrm{~d} M$.
(86) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative. Then $0 \leq \int^{+} f\lceil A \mathrm{~d} M$.
(87) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative and A misses B. Then $\int^{+} f \upharpoonright(A \cup B) \mathrm{d} M=\int^{+} f \upharpoonright A \mathrm{~d} M+\int^{+} f \upharpoonright B \mathrm{~d} M$.
(88) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative and $M(A)=0$. Then $\int^{+} f \upharpoonright A \mathrm{~d} M=0$.
(89) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative and $A \subseteq B$. Then $\int^{+} f \upharpoonright A \mathrm{~d} M \leq$ $\int^{+} f \upharpoonright B \mathrm{~d} M$.
(90) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and E, A be elements of S. Suppose f is non-negative and $E=\operatorname{dom} f$ and f is measurable on E and $M(A)=0$. Then $\int^{+} f \upharpoonright(E \backslash A) \mathrm{d} M=\int^{+} f \mathrm{~d} M$.
(91) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) there exists an element E of S such that $E=\operatorname{dom} f$ and $E=\operatorname{dom} g$ and f is measurable on E and g is measurable on E,
(ii) f is non-negative,
(iii) g is non-negative, and
(iv) for every element x of X such that $x \in \operatorname{dom} g$ holds $g(x) \leq f(x)$. Then $\int^{+} g \mathrm{~d} M \leq \int^{+} f \mathrm{~d} M$.
(92) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number. Suppose $0 \leq c$ and there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-negative. Then $\int^{+} c f \mathrm{~d} M=$ $\overline{\mathbb{R}}(c) \cdot \int^{+} f \mathrm{~d} M$.
(93) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose that
(i) there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A, and
(ii) for every element x of X such that $x \in \operatorname{dom} f$ holds $0=f(x)$. Then $\int^{+} f \mathrm{~d} M=0$.

7. Integral of Measurable Function

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. The functor $\int f \mathrm{~d} M$ yielding an element of $\overline{\mathbb{R}}$ is defined as follows:
(Def. 16) $\int f \mathrm{~d} M=\int^{+} \max _{+}(f) \mathrm{d} M-\int^{+} \max _{-}(f) \mathrm{d} M$.
We now state several propositions:
(94) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-negative. Then $\int f \mathrm{~d} M=\int^{+} f \mathrm{~d} M$.
(95) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S and f is non-negative. Then $\int f \mathrm{~d} M=\int^{+} f \mathrm{~d} M$ and $\int f \mathrm{~d} M=\int^{\prime} f \mathrm{~d} M$.
(96) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-negative. Then $0 \leq \int f \mathrm{~d} M$.
(97) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative and A misses B. Then $\int f \upharpoonright(A \cup B) \mathrm{d} M=\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$.
(98) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative. Then $0 \leq \int f \upharpoonright A \mathrm{~d} M$.
(99) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative and $A \subseteq B$. Then $\int f \upharpoonright A \mathrm{~d} M \leq$ $\int f \upharpoonright B \mathrm{~d} M$.
(100) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and $M(A)=0$. Then $\int f \upharpoonright A \mathrm{~d} M=0$.
(101) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and E, A be elements of S. If $E=\operatorname{dom} f$ and f is measurable on E and $M(A)=0$, then $\int f \upharpoonright(E \backslash A) \mathrm{d} M=\int f \mathrm{~d} M$.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to $\overline{\mathbb{R}}$. We say that f is integrable on M if and only if:
(Def. 17) There exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and $\int^{+} \max _{+}(f) \mathrm{d} M<+\infty$ and $\int^{+} \max _{-}(f) \mathrm{d} M<+\infty$.
One can prove the following propositions:
(102) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M. Then $0 \leq \int^{+} \max _{+}(f) \mathrm{d} M$ and $0 \leq \int^{+} \max _{-}(f) \mathrm{d} M$ and $-\infty<\int f \mathrm{~d} M$ and $\int f \mathrm{~d} M<+\infty$.
(103) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose f is integrable on M. Then $\int^{+} \max _{+}(f \upharpoonright A) \mathrm{d} M \leq$ $\int^{+} \max _{+}(f) \mathrm{d} M$ and $\int^{+} \max _{-}(f \upharpoonright A) \mathrm{d} M \leq \int^{+} \max _{-}(f) \mathrm{d} M$ and $f \upharpoonright A$ is integrable on M.
(104) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose f is integrable on M and A misses B. Then $\int f \upharpoonright(A \cup B) \mathrm{d} M=\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$.
(105) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A, B be elements of S. Suppose f is integrable on M and $B=\operatorname{dom} f \backslash A$. Then $f \upharpoonright A$ is integrable on M and $\int f \mathrm{~d} M=\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$.
(106) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Given an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A. Then f is integrable on M if and only if $|f|$ is integrable on M.
(107) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. If f is integrable on M, then $\left|\int f \mathrm{~d} M\right| \leq \int|f| \mathrm{d} M$.
(108) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose that
(i) there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A,
(ii) $\operatorname{dom} f=\operatorname{dom} g$,
(iii) g is integrable on M, and
(iv) for every element x of X such that $x \in \operatorname{dom} f$ holds $|f(x)| \leq g(x)$.

Then f is integrable on M and $\int|f| \mathrm{d} M \leq \int g \mathrm{~d} M$.
(109) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and r be a real number. Suppose $\operatorname{dom} f \in S$ and $0 \leq r$ and $\operatorname{dom} f \neq \emptyset$ and for every set x such that $x \in \operatorname{dom} f$ holds $f(x)=r$. Then $\int_{X} f \mathrm{~d} M=\overline{\mathbb{R}}(r) \cdot M(\operatorname{dom} f)$.
(110) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and r be a real number. Suppose dom $f \in S$ and $0 \leq r$ and for every set x such that $x \in \operatorname{dom} f$ holds $f(x)=r$. Then $\int^{\prime} f \mathrm{~d} M=\overline{\mathbb{R}}(r) \cdot M(\operatorname{dom} f)$.
(111) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M. Then $f^{-1}(\{+\infty\}) \in S$ and $f^{-1}(\{-\infty\}) \in S$ and $M\left(f^{-1}(\{+\infty\})\right)=0$ and $M\left(f^{-1}(\{-\infty\})\right)=0$ and $f^{-1}(\{+\infty\}) \cup$ $f^{-1}(\{-\infty\}) \in S$ and $M\left(f^{-1}(\{+\infty\}) \cup f^{-1}(\{-\infty\})\right)=0$.
(112) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M and g is integrable on M and f is non-negative and g is non-negative. Then $f+g$ is integrable on M.
(113) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. If f is integrable on M and g is integrable on M, then $\operatorname{dom}(f+g) \in S$.
(114) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M and g is integrable on M. Then $f+g$ is integrable on M.
(115) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f, g be partial functions from X to $\overline{\mathbb{R}}$. Suppose f is
integrable on M and g is integrable on M. Then there exists an element E of S such that $E=\operatorname{dom} f \cap \operatorname{dom} g$ and $\int f+g \mathrm{~d} M=\int f \upharpoonright E \mathrm{~d} M+\int g \upharpoonright E \mathrm{~d} M$.
(116) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and c be a real number. Suppose f is integrable on M. Then $c f$ is integrable on M and $\int c f \mathrm{~d} M=\overline{\mathbb{R}}(c) \cdot \int f \mathrm{~d} M$.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, let f be a partial function from X to $\overline{\mathbb{R}}$, and let B be an element of S. The functor $\int_{B} f \mathrm{~d} M$ yielding an element of $\overline{\mathbb{R}}$ is defined as follows:
(Def. 18) $\int_{B} f \mathrm{~d} M=\int f \upharpoonright B \mathrm{~d} M$.
The following propositions are true:
(117) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, f, g be partial functions from X to $\overline{\mathbb{R}}$, and B be an element of S. Suppose f is integrable on M and g is integrable on M and $B \subseteq \operatorname{dom}(f+g)$. Then $f+g$ is integrable on M and $\int_{B} f+g \mathrm{~d} M=$ $\int_{B} f \mathrm{~d} M+\int_{B} g \mathrm{~d} M$.
(118) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}, c$ be a real number, and B be an element of S. Suppose f is integrable on M and f is measurable on B. Then $f \upharpoonright B$ is integrable on M and $\int_{B} c f \mathrm{~d} M=\overline{\mathbb{R}}(c) \cdot \int_{B} f \mathrm{~d} M$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[6] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
[7] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[8] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
[16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
[17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Some properties of extended real numbers operations: abs, min and max. Formalized Mathematics, 9(3):511-516, 2001.
[18] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[19] Grigory E. Ivanov. Definition of convex function and Jensen's inequality. Formalized Mathematics, 11(4):349-354, 2003.
[20] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[21] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
[22] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[23] Andrzej Nȩdzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
[24] Andrzej Nȩdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[25] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[26] Yasunari Shidama and Noboru Endou. Lebesgue integral of simple valued function. Formalized Mathematics, 13(1):67-71, 2005.
[27] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[28] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[29] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[30] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[31] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B) 16700156.

