Some Properties of Some Special Matrices. Part II

Xiaopeng Yue
Qingdao University of Science and Technology
China

Dahai Hu
Qingdao University of Science
and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Abstract

Summary. This article provides definitions of idempotent, nilpotent, involutory, self-reversible, similar, and congruent matrices, the trace of a matrix and their main properties.

MML identifier: MATRIX_8, version: 7.6.01 4.53.937

The terminology and notation used here are introduced in the following articles: [7], [3], [1], [9], [8], [6], [4], [2], [5], [11], and [10].

We adopt the following convention: n is a natural number, K is a field, and $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}$ are matrices over K of dimension n.

Let n be a natural number, let K be a field, and let M_{1} be a matrix over K of dimension n. We say that M_{1} is idempotent if and only if:
(Def. 1) $\quad M_{1} \cdot M_{1}=M_{1}$.
We say that M_{1} is 2-nilpotent if and only if:
(Def. 2) $M_{1} \cdot M_{1}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$.
We say that M_{1} is involutory if and only if:
(Def. 3) $\quad M_{1} \cdot M_{1}=\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
We say that M_{1} is self invertible if and only if:
(Def. 4) $\quad M_{1}$ is invertible and $M_{1}{ }^{\smile}=M_{1}$.
We now state a number of propositions:
(1) $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ is idempotent and involutory.
(2) If $n>0$, then $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$ is idempotent and 2-nilpotent.
(3) If $n>0$ and $M_{2}=M_{1}^{\mathrm{T}}$, then M_{1} is idempotent iff M_{2} is idempotent.
(4) If M_{1} is involutory, then M_{1} is invertible.
(5) If M_{1} is idempotent and M_{2} is idempotent and M_{1} is permutable with M_{2}, then $M_{1} \cdot M_{1}$ is permutable with $M_{2} \cdot M_{2}$.
(6) If $n>0$ and M_{1} is idempotent and M_{2} is idempotent and M_{1} is permutable with M_{2} and $M_{1} \cdot M_{2}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$, then $M_{1}+M_{2}$ is idempotent.
(7) If $n>0$ and M_{1} is idempotent and M_{2} is idempotent and $M_{1} \cdot M_{2}=$ $-M_{2} \cdot M_{1}$, then $M_{1}+M_{2}$ is idempotent.
(8) If M_{1} is idempotent and M_{2} is invertible, then $M_{2}{ }^{\smile} \cdot M_{1} \cdot M_{2}$ is idempotent.
(9) If $n>0$ and M_{1} is invertible and idempotent, then $M_{1} \smile$ is idempotent.
(10) If M_{1} is invertible and idempotent, then $M_{1}=\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(11) If M_{1} is idempotent and M_{2} is idempotent and M_{1} is permutable with M_{2}, then $M_{1} \cdot M_{2}$ is idempotent.
(12) If $n>0$ and M_{1} is idempotent and M_{2} is idempotent and M_{1} is permutable with M_{2} and $M_{3}=M_{1}^{\mathrm{T}} \cdot M_{2}^{\mathrm{T}}$, then M_{3} is idempotent.
(13) If M_{1} is idempotent and M_{2} is idempotent and M_{1} is invertible, then $M_{1} \cdot M_{2}$ is idempotent.
(14) If $n>0$ and M_{1} is idempotent and orthogonal, then M_{1} is symmetrical.
(15) If M_{1} is idempotent and M_{2} is idempotent and $M_{2} \cdot M_{1}=$ $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$, then $M_{1} \cdot M_{2}$ is idempotent.
(16) If M_{1} is idempotent and orthogonal, then $M_{1}=\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(17) If $n>0$ and M_{1} is symmetrical and $M_{2}=M_{1}^{\mathrm{T}}$, then $M_{1} \cdot M_{2}$ is symmetrical.
(18) If $n>0$ and M_{1} is symmetrical and $M_{2}=M_{1}^{\mathrm{T}}$, then $M_{2} \cdot M_{1}$ is symmetrical.
(19) If M_{1} is invertible and $M_{1} \cdot M_{2}=M_{1} \cdot M_{3}$, then $M_{2}=M_{3}$.
(20) If M_{1} is invertible and $M_{2} \cdot M_{1}=M_{3} \cdot M_{1}$, then $M_{2}=M_{3}$.
(21) If $n>0$ and M_{1} is invertible and $M_{2} \cdot M_{1}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$, then $M_{2}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$.
(22) If $n>0$ and M_{1} is invertible and $M_{2} \cdot M_{1}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$, then $M_{2}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$.
(23) If M_{1} is 2-nilpotent and permutable with M_{2} and $n>0$, then $M_{1} \cdot M_{2}$ is 2-nilpotent.
(24) If $n>0$ and M_{1} is 2-nilpotent and M_{2} is 2-nilpotent and M_{1} is permutable with M_{2} and $M_{1} \cdot M_{2}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$, then $M_{1}+M_{2}$ is 2-nilpotent.
(25) If M_{1} is 2-nilpotent and M_{2} is 2-nilpotent and $M_{1} \cdot M_{2}=-M_{2} \cdot M_{1}$ and $n>0$, then $M_{1}+M_{2}$ is 2-nilpotent.
(26) If M_{1} is 2-nilpotent and $M_{2}=M_{1}^{\mathrm{T}}$ and $n>0$, then M_{2} is 2-nilpotent.
(27) If M_{1} is 2-nilpotent and idempotent, then $M_{1}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}$.
(28) If $n>0$, then $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n} \neq\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(29) If $n>0$ and M_{1} is 2-nilpotent, then M_{1} is not invertible.
(30) If M_{1} is self invertible, then M_{1} is involutory.
(31) $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ is self invertible.
(32) If M_{1} is self invertible and idempotent, then $M_{1}=\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(33) If M_{1} is self invertible and symmetrical, then M_{1} is orthogonal.

Let n be a natural number, let K be a field, and let M_{1}, M_{2} be matrices over K of dimension n. We say that M_{1} is similar to M_{2} if and only if:
(Def. 5) There exists a matrix M over K of dimension n such that M is invertible and $M_{1}=M^{\smile} \cdot M_{2} \cdot M$.
Let us notice that the predicate M_{1} is similar to M_{2} is reflexive and symmetric. The following propositions are true:
(34) If M_{1} is similar to M_{2} and M_{2} is similar to M_{3} and $n>0$, then M_{1} is similar to M_{3}.
(35) If M_{1} is similar to M_{2} and M_{2} is idempotent, then M_{1} is idempotent.
(36) If M_{1} is similar to M_{2} and M_{2} is 2-nilpotent and $n>0$, then M_{1} is 2-nilpotent.
(37) If M_{1} is similar to M_{2} and M_{2} is involutory, then M_{1} is involutory.
(38) If M_{1} is similar to M_{2} and $n>0$, then $M_{1}+\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ is similar to $M_{2}+\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$.
(39) If M_{1} is similar to M_{2} and $n>0$, then $M_{1}+M_{1}$ is similar to $M_{2}+M_{2}$.
(40) If M_{1} is similar to M_{2} and $n>0$, then $M_{1}+M_{1}+M_{1}$ is similar to $M_{2}+M_{2}+M_{2}$.
(41) If M_{1} is invertible, then $M_{2} \cdot M_{1}$ is similar to $M_{1} \cdot M_{2}$.
(42) If M_{2} is invertible and M_{1} is similar to M_{2} and $n>0$, then M_{1} is invertible.
(43) If M_{2} is invertible and M_{1} is similar to M_{2} and $n>0$, then $M_{1}{ }^{\smile}$ is similar to $M_{2} \smile$.
Let n be a natural number, let K be a field, and let M_{1}, M_{2} be matrices over K of dimension n. We say that M_{1} is congruent to M_{2} if and only if:
(Def. 6) There exists a matrix M over K of dimension n such that M is invertible and $M_{1}=M^{\mathrm{T}} \cdot M_{2} \cdot M$.
Next we state several propositions:
(44) If $n>0$, then M_{1} is congruent to M_{1}.
(45) If M_{1} is congruent to M_{2} and $n>0$, then M_{2} is congruent to M_{1}.
(46) If M_{1} is congruent to M_{2} and M_{2} is congruent to M_{3} and $n>0$, then M_{1} is congruent to M_{3}.
(47) If M_{1} is congruent to M_{2} and $n>0$, then $M_{1}+M_{1}$ is congruent to $M_{2}+M_{2}$.
(48) If M_{1} is congruent to M_{2} and $n>0$, then $M_{1}+M_{1}+M_{1}$ is congruent to $M_{2}+M_{2}+M_{2}$.
(49) If M_{1} is orthogonal, then $M_{2} \cdot M_{1}$ is congruent to $M_{1} \cdot M_{2}$.
(50) If M_{2} is invertible and M_{1} is congruent to M_{2} and $n>0$, then M_{1} is invertible.
(51) If M_{2} is invertible and M_{1} is congruent to M_{2} and $n>0$ and $M_{5}=M_{1}^{\mathrm{T}}$ and $M_{6}=M_{2}^{\mathrm{T}}$, then M_{5} is congruent to M_{6}.
(52) If M_{4} is orthogonal and $M_{1}=M_{4}^{\mathrm{T}} \cdot M_{2} \cdot M_{4}$, then M_{1} is similar to M_{2}.

Let n be a natural number, let K be a field, and let M be a matrix over K of dimension n. The functor $\operatorname{Trace}(M)$ yields an element of K and is defined by:
(Def. 7) $\quad \operatorname{Trace}(M)=\sum($ the diagonal of $M)$.
The following propositions are true:
(53) If $M_{2}=M_{1}^{\mathrm{T}}$, then $\operatorname{Trace}\left(M_{1}\right)=\operatorname{Trace}\left(M_{2}\right)$.
(54) $\operatorname{Trace}\left(M_{1}+M_{2}\right)=\operatorname{Trace}\left(M_{1}\right)+\operatorname{Trace}\left(M_{2}\right)$.
(55) $\operatorname{Trace}\left(M_{1}+M_{2}+M_{3}\right)=\operatorname{Trace}\left(M_{1}\right)+\operatorname{Trace}\left(M_{2}\right)+\operatorname{Trace}\left(M_{3}\right)$.
(56) $\operatorname{Trace}\left(\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}\right)=0_{K}$.
(57) If $n>0$, then $\operatorname{Trace}\left(-M_{1}\right)=-\operatorname{Trace}\left(M_{1}\right)$.
(58) If $n>0$, then $-\operatorname{Trace}\left(-M_{1}\right)=\operatorname{Trace}\left(M_{1}\right)$.
(59) If $n>0$, then $\operatorname{Trace}\left(M_{1}+-M_{1}\right)=0_{K}$.
(60) If $n>0$, then $\operatorname{Trace}\left(M_{1}-M_{2}\right)=\operatorname{Trace}\left(M_{1}\right)-\operatorname{Trace}\left(M_{2}\right)$.
(61) If $n>0$, then $\operatorname{Trace}\left(\left(M_{1}-M_{2}\right)+M_{3}\right)=\left(\operatorname{Trace}\left(M_{1}\right)-\operatorname{Trace}\left(M_{2}\right)\right)+$ Trace $\left(M_{3}\right)$.
(62) If $n>0$, then $\operatorname{Trace}\left(\left(M_{1}+M_{2}\right)-M_{3}\right)=\left(\operatorname{Trace}\left(M_{1}\right)+\operatorname{Trace}\left(M_{2}\right)\right)-$ Trace $\left(M_{3}\right)$.
(63) If $n>0$, then $\operatorname{Trace}\left(M_{1}-M_{2}-M_{3}\right)=\operatorname{Trace}\left(M_{1}\right)-\operatorname{Trace}\left(M_{2}\right)-$ Trace $\left(M_{3}\right)$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[4] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[5] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[9] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[10] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.
[11] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

