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Summary. We formalized some basic properties of the Möbius function

which is defined classically as

µ(n) =

8
><
>:

1, if n = 1,

0, if p2|n for some prime p,

(−1)r, if n = p1p2 · · · pr, where pi are distinct primes.

as e.g., its multiplicativity. To enable smooth reasoning about the sum of

this number-theoretic function, we introduced an underlying many-sorted set

indexed by the set of natural numbers. Its elements are just values of the Möbius

function.

The second part of the paper is devoted to the notion of the radical of number,

i.e. the product of its all prime factors.

The formalization (which is very much like the one developed in Isabelle proof

assistant connected with Avigad’s formal proof of Prime Number Theorem) was

done according to the book [13].
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1. Preliminaries

The scheme LambdaNATC deals with an element A of N, a set B, and a

unary functor F yielding a set, and states that:

There exists a function f from N into B such that f(0) = A and

for every non zero natural number x holds f(x) = F(x)

provided the parameters have the following properties:

• A ∈ B, and

• For every non zero natural number x holds F(x) ∈ B.
One can check that there exists a natural number which is non prime and

non zero.

One can prove the following propositions:

(1) For every non zero natural number n such that n 6= 1 holds n ≥ 2.

(2) For all natural numbers k, n, i such that 1 ≤ k holds i ∈ Seg n iff

k · i ∈ Seg(k · n).

(3) For all natural numbers m, n such that m and n are relative prime holds

m > 0 or n > 0.

(4) For every non prime natural number n such that n 6= 1 there exists a

prime number p such that p | n and p 6= n.

(5) For every natural number n such that n 6= 1 there exists a prime number

p such that p | n.
(6) For every prime number p and for every non zero natural number n holds

p | n iff p -count(n) > 0.

(7) support PPF(1) = ∅.
(8) For every prime number p holds support PPF(p) = {p}.
In the sequel m, n are natural numbers.

We now state the proposition

(9) For every prime number p such that n 6= 0 and m ≤ p -count(n) holds

pm | n.
Let us observe that every natural number which is odd is also non zero.

The following propositions are true:

(10) For every natural number a and for every prime number p such that

p2 | a holds p | a.
(11) Let p be a prime natural number and m, n be non zero natural numbers.

If m and n are relative prime and p2 | m · n, then p2 | m or p2 | n.
(12) For every real bag N over N such that supportN = {n} holds

∑
N =

N(n).

Let us mention that CFS(∅) is empty.

The following propositions are true:
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(13) Let p be a prime number. Suppose p | n. Then {d; d ranges over natural

numbers: d > 0 ∧ d | n ∧ p | d} = {p · d; d ranges over natural numbers:

d > 0 ∧ d | n÷ p}.
(14) For every non zero natural number n there exists a natural number k

such that support PPF(n) ⊆ Seg k.

(15) For every non zero natural number n and for every prime number p such

that p /∈ support PPF(n) holds p -count(n) = 0.

(16) Let k be a natural number and n be a non zero natural number. If

support PPF(n) ⊆ Seg(k + 1) and support PPF(n) 6⊆ Seg k, then k + 1 is

a prime number.

(17) For all non zero natural numbers m, n such that for every prime

number p holds p -count(m) ≤ p -count(n) holds support PPF(m) ⊆
support PPF(n).

(18) Let k be a natural number and n be a non zero natural number.

Suppose support PPF(n) ⊆ Seg(k + 1). Then there exists a non zero

natural number m and there exists a natural number e such that

support PPF(m) ⊆ Seg k and n = m · (k + 1)e and for every prime num-

ber p holds if p ∈ support PPF(m), then p -count(m) = p -count(n) and if

p /∈ support PPF(m), then p -count(m) ≤ p -count(n).

(19) For all non zero natural numbers m, n such that for every prime number

p holds p -count(m) ≤ p -count(n) holds m | n.

2. Squarefree Numbers

Let x be a natural number. We say that x is square-containing if and only

if:

(Def. 1) There exists a prime number p such that p2 | x.
One can prove the following proposition

(20) Let n be a natural number. Given a non zero natural number p such

that p 6= 1 and p2 | n. Then n is square-containing.

Let x be a natural number. We introduce x is squarefree as an antonym of

x is square-containing.

The following propositions are true:

(21) 0 is square-containing.

(22) 1 is squarefree.

(23) Every prime number is squarefree.

Let us observe that every element of N which is prime is also squarefree.

The subset SCNAT of N is defined as follows:

(Def. 2) For every natural number n holds n ∈ SCNAT iff n is squarefree.
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Let us mention that there exists a natural number which is squarefree and

there exists a natural number which is square-containing.

One can check that every natural number which is square and non trivial is

also square-containing.

We now state several propositions:

(24) If n is squarefree, then for every prime number p holds p -count(n) ≤ 1.

(25) If m · n is squarefree, then m is squarefree.

(26) If m is squarefree and n | m, then n is squarefree.

(27) Let p be a prime number and m, d be natural numbers. If m is squarefree

and p | m and d | m÷ p, then d | m and p - d.
(28) For every prime number p and for all natural numbers m, d such that

p | m and d | m and p - d holds d | m÷ p.
(29) Let p be a prime number and m be a natural number. Suppose m is

squarefree and p | m. Then {d; d ranges over natural numbers: 0 < d ∧ d |
m ∧ p - d} = {d; d ranges over natural numbers: 0 < d ∧ d | m÷ p}.

3. Möbius Function

Let n be a natural number. The functor µ(n) yielding a real number is

defined by:

(Def. 3)(i) µ(n) = 0 if n is square-containing,

(ii) there exists a non zero natural number n′ such that n′ = n and µ(n) =

(−1)card support PPF(n′), otherwise.

One can prove the following four propositions:

(30) µ(1) = 1.

(31) µ(2) = −1.

(32) µ(3) = −1.

(33) For every natural number n such that n is squarefree holds µ(n) 6= 0.

Let n be a squarefree natural number. Observe that µ(n) is non zero.

We now state several propositions:

(34) For every prime number p holds µ(p) = −1.

(35) For all non zero natural numbers m, n such that m and n are relative

prime holds µ(m · n) = µ(m) · µ(n).

(36) For every prime number p and for every natural number n such that

1 ≤ n and n · p is squarefree holds µ(n · p) = −µ(n).

(37) For all non zero natural numbers m, n such that m and n are not relative

prime holds µ(m · n) = 0.

(38) For every natural number n holds n ∈ SCNAT iff µ(n) 6= 0.
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4. Natural Divisors

Let n be a natural number. The functor NatDivisors n yields a subset of N
and is defined by:

(Def. 4) NatDivisors n = {k; k ranges over elements of N: k 6= 0 ∧ k | n}.
We now state two propositions:

(39) For all natural numbers n, k holds k ∈ NatDivisorsn iff 0 < k and k | n.
(40) For every non zero natural number n holds NatDivisorsn ⊆ Seg n.

Let n be a non zero natural number. Note that NatDivisors n is finite and

has non empty elements.

One can prove the following proposition

(41) NatDivisors 1 = {1}.

5. The Sum of Values of Möbius Function

Let X be a set. The functor SMoebiusX yielding a many sorted set indexed

by N is defined as follows:

(Def. 5) support SMoebiusX = X∩SCNAT and for every natural number k such

that k ∈ support SMoebiusX holds (SMoebiusX)(k) = µ(k).

Let X be a set. One can check that SMoebiusX is real-yielding.

Let X be a finite set. Note that SMoebiusX is finite-support.

One can prove the following three propositions:

(42)
∑

SMoebius NatDivisors 1 = 1.

(43) For all finite subsets X, Y of N such that X misses Y holds

support SMoebiusX ∪ support SMoebiusY = support(SMoebiusX +

SMoebiusY ).

(44) For all finite subsetsX, Y of N such thatX misses Y holds SMoebius(X∪
Y ) = SMoebiusX + SMoebiusY.

6. Prime Factors of a Number

Let n be a non zero natural number. The functor PFactors n yields a many

sorted set indexed by Prime and is defined by:

(Def. 6) support PFactors n = support PFExp(n) and for every natural number

p such that p ∈ support PFExp(n) holds (PFactors n)(p) = p.

Let n be a non zero natural number. Note that PFactors n is finite-support

and natural-yielding.

One can prove the following propositions:

(45) PFactors 1 = EmptyBag Prime .
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(46) For every prime number p holds PFactors p · 〈p〉 = 〈p〉.
(47) For every prime number p and for every non zero natural number n holds

PFactors(pn) · 〈p〉 = 〈p〉.
(48) For every prime number p and for every non zero natural number n such

that p -count(n) = 0 holds (PFactors n)(p) = 0.

(49) For every non zero natural number n and for every prime number p such

that p -count(n) 6= 0 holds (PFactors n)(p) = p.

(50) For all non zero natural numbers m, n such that m and n are relative

prime holds PFactors(m · n) = PFactorsm+ PFactors n.

(51) Let n be a non zero natural number and A be a finite subset of N.

Suppose A = {k; k ranges over elements of N: 0 < k ∧ k | n ∧ k is

square-containing}. Then SMoebiusA = EmptyBagN.

7. The Radical of a Number

Let n be a non zero natural number. The functor Rad(n) yields a natural

number and is defined as follows:

(Def. 7) Rad(n) =
∏

PFactors n.

The following proposition is true

(52) For every non zero natural number n holds Rad(n) > 0.

Let n be a non zero natural number. Observe that Rad(n) is non zero.

One can prove the following propositions:

(53) For every prime number p holds p = Rad(p).

(54) For every prime number p and for every non zero natural number n holds

Rad(pn) = p.

(55) For every non zero natural number n holds Rad(n) | n.
(56) For every prime number p and for every non zero natural number n holds

p | n iff p | Rad(n).

(57) For every non zero natural number k such that k is squarefree holds

Rad(k) = k.

(58) For every non zero natural number n holds Rad(n) ≤ n.
(59) For every prime number p and for every non zero natural number n holds

p -count(Rad(n)) ≤ p -count(n).

(60) For every non zero natural number n holds Rad(n) = 1 iff n = 1.

(61) For every prime number p and for every non zero natural number n holds

p -count(Rad(n)) ≤ 1.

Let n be a non zero natural number. Note that Rad(n) is squarefree.

One can prove the following propositions:
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(62) For every non zero natural number n holds Rad(Rad(n)) = Rad(n).

(63) Let n be a non zero natural number and p be a prime number. Then

{k; k ranges over elements of N: 0 < k ∧ k | Rad(n) ∧ p | k} ⊆ Seg n.

(64) Let n be a non zero natural number and p be a prime number. Then

{k; k ranges over elements of N: 0 < k ∧ k | Rad(n) ∧ p - k} ⊆ Seg n.

(65) For all non zero natural numbers k, n holds k | n and k is squarefree iff

k | Rad(n).

(66) Let n be a non zero natural number. Then {k; k ranges over natural

numbers: 0 < k ∧ k | n ∧ k is squarefree} = {k; k ranges over natural

numbers: 0 < k ∧ k | Rad(n)}.
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[11] Czes law Byliński. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661–668, 1990.
[12] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford Uni-

versity Press, 1980.
[14] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics,

6(4):573–577, 1997.
[15] Artur Korni lowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized

Mathematics, 12(2):179–186, 2004.
[16] Jaros law Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,

1(3):471–475, 1990.
[17] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-

ics, 1(2):269–272, 1990.
[18] Rafa l Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,

1990.
[19] Rafa l Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes.

Formalized Mathematics, 1(5):829–832, 1990.
[20] Library Committee of the Association of Mizar Users. Binary operations on numbers. To

appear in Formalized Mathematics.
[21] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics,

12(1):49–58, 2004.
[22] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number

of variables. Formalized Mathematics, 9(1):95–110, 2001.
[23] Christoph Schwarzweller and Andrzej Trybulec. The evaluation of multivariate polyno-

mials. Formalized Mathematics, 9(2):331–338, 2001.
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