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Summary. Here, the concept of matrix of real elements is introduced.

This is defined as a special case of the general concept of matrix of a field.

For such a real matrix, the notions of addition, subtraction, scalar product are

defined. For any real finite sequences, two transformations to matrices are in-

troduced. One of the matrices is of width 1, and the other is of length 1. By

such transformations, two products of a matrix and a finite sequence are defined.

Also the linearity of such product is shown.
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The papers [16], [19], [6], [3], [10], [18], [15], [1], [14], [12], [20], [7], [2], [17], [13],

[22], [8], [11], [5], [4], [21], and [9] provide the terminology and notation for this

paper.

1. Preliminaries

In this paper i, j are natural numbers.

We now state a number of propositions:

(1) For all real numbers r1, r2 and for all elements f1, f2 of RF such that

r1 = f1 and r2 = f2 holds r1 + r2 = f1 + f2.

(2) For all real numbers r1, r2 and for all elements f1, f2 of RF such that

r1 = f1 and r2 = f2 holds r1 · r2 = f1 · f2.

(3) For every finite sequence F of elements of R holds F +−F = 〈0, . . . , 0︸ ︷︷ ︸
lenF

〉

and F − F = 〈0, . . . , 0︸ ︷︷ ︸
lenF

〉.
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(4) For all finite sequences F1, F2 of elements of R such that lenF1 = lenF2

holds F1 − F2 = F1 +−F2.

(5) For every finite sequence F of elements of R holds F − 〈0, . . . , 0︸ ︷︷ ︸
lenF

〉 = F.

(6) For every finite sequence F of elements of R holds 〈0, . . . , 0︸ ︷︷ ︸
lenF

〉 − F = −F .

(7) For all finite sequences F1, F2 of elements of R such that lenF1 = lenF2

holds F1 −−F2 = F1 + F2.

(8) For all finite sequences F1, F2 of elements of R such that lenF1 = lenF2

holds −(F1 − F2) = F2 − F1.

(9) For all finite sequences F1, F2 of elements of R such that lenF1 = lenF2

holds −(F1 − F2) = −F1 + F2.

(10) For all finite sequences F1, F2 of elements of R such that lenF1 = lenF2

and F1 − F2 = 〈0, . . . , 0︸ ︷︷ ︸
lenF1

〉 holds F1 = F2.

(11) For all finite sequences F1, F2, F3 of elements of R such that lenF1 =

lenF2 and lenF2 = lenF3 holds F1 − F2 − F3 = F1 − (F2 + F3).

(12) For all finite sequences F1, F2, F3 of elements of R such that lenF1 =

lenF2 and lenF2 = lenF3 holds F1 + (F2 − F3) = (F1 + F2)− F3.

(13) For all finite sequences F1, F2, F3 of elements of R such that lenF1 =

lenF2 and lenF2 = lenF3 holds F1 − (F2 − F3) = (F1 − F2) + F3.

(14) For all finite sequences F1, F2 of elements of R such that lenF1 = lenF2

holds F1 = (F1 + F2)− F2.

(15) For all finite sequences F1, F2 of elements of R such that lenF1 = lenF2

holds F1 = (F1 − F2) + F2.

2. Matrices of Real Elements

The following propositions are true:

(16) Let K be a non empty groupoid, p be a finite sequence of elements of

K, and a be an element of K. Then len(a · p) = len p.

(17) Let r be a real number, f3 be an element of RF, p be a finite sequence

of elements of R, and f4 be a finite sequence of elements of RF. If r = f3

and p = f4, then r · p = f3 · f4.

(18) Let K be a field, a be an element of K, and A be a matrix over K. Then

the indices of a ·A = the indices of A.

(19) Let K be a field, a be an element of K, and M be a matrix over K. If

1 ≤ i and i ≤ widthM, then (a ·M)�,i = a ·M�,i.
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(20) Let K be a field, a be an element of K, M be a matrix over K, and i be a

natural number. If 1 ≤ i and i ≤ lenM, then Line(a·M, i) = a·Line(M, i).

(21) Let K be a field and A, B be matrices over K. Suppose widthA =

lenB. Then there exists a matrix C over K such that lenC = lenA and

widthC = widthB and for all i, j such that 〈〈i, j〉〉 ∈ the indices of C holds

Ci,j = Line(A, i) · B�,j.
(22) Let K be a field, a be an element of K, and A, B be matrices over K. If

widthA = lenB and lenA > 0 and lenB > 0, then A · (a ·B) = a · (A ·B).

Let A be a matrix over R. The functor (R → RF)A yielding a matrix over

RF is defined as follows:

(Def. 1) (R→ RF)A = A.

Let A be a matrix over RF. The functor (RF → R)A yielding a matrix over

R is defined by:

(Def. 2) (RF → R)A = A.

We now state two propositions:

(23) Let D1, D2 be sets, A be a matrix over D1, and B be a matrix over

D2. Suppose A = B. Let given i, j. If 〈〈i, j〉〉 ∈ the indices of A, then

Ai,j = Bi,j .

(24) For every field K and for all matrices A, B over K holds the indices of

A+B = the indices of A.

Let A, B be matrices over R. The functor A+B yields a matrix over R and

is defined by:

(Def. 3) A+B = (RF → R)((R→ RF)A+ (R→ RF)B).

One can prove the following two propositions:

(25) Let A, B be matrices over R. Then len(A+B) = lenA and width(A+

B) = widthA and for all i, j such that 〈〈i, j〉〉 ∈ the indices of A holds

(A+B)i,j = Ai,j +Bi,j.

(26) Let A, B, C be matrices over R. Suppose lenA = lenB and widthA =

widthB and lenC = lenA and widthC = widthA and for all i, j such

that 〈〈i, j〉〉 ∈ the indices of A holds Ci,j = Ai,j +Bi,j. Then C = A+B.

Let A be a matrix over R. The functor −A yields a matrix over R and is

defined as follows:

(Def. 4) −A = (RF → R)(−(R→ RF)A).

Let A, B be matrices over R. The functor A− B yielding a matrix over R
is defined as follows:

(Def. 5) A−B = (RF → R)((R→ RF)A− (R→ RF)B).

The functor A ·B yielding a matrix over R is defined by:

(Def. 6) A ·B = (RF → R)((R→ RF)A · (R→ RF)B).
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Let a be a real number and let A be a matrix over R. The functor a · A
yields a matrix over R and is defined as follows:

(Def. 7) For every element e1 of RF such that e1 = a holds a · A = (RF →
R)(e1 · (R→ RF)A).

The following propositions are true:

(27) For every real number a and for every matrix A over R holds len(a ·A) =

lenA and width(a ·A) = widthA.

(28) For every real number a and for every matrix A over R holds the indices

of a ·A = the indices of A.

(29) Let a be a real number, A be a matrix over R, and i2, j2 be natural

numbers. If 〈〈i2, j2〉〉 ∈ the indices of A, then (a ·A)i2,j2 = a ·Ai2,j2 .
(30) For every real number a and for every matrix A over R such that lenA >

0 and widthA > 0 holds (a ·A)T = a · AT.

(31) Let a be a real number, i be a natural number, and A be a matrix over

R. Suppose lenA > 0 and i ∈ domA. Then

(i) there exists a finite sequence p of elements of R such that p = A(i),

and

(ii) for every finite sequence q of elements of R such that q = A(i) holds

(a ·A)(i) = a · q.
(32) For every matrix A over R holds 1 ·A = A.

(33) For every matrix A over R holds A+A = 2 ·A.
(34) For every matrix A over R holds A+A+A = 3 ·A.

Let n, m be natural numbers. The functor




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

yields a

matrix over R and is defined by:

(Def. 8)




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

= (RF → R)(




0 . . . 0
...

. . .
...

0 . . . 0




n×m

RF

).

One can prove the following propositions:

(35) For all matrices A, B over R such that lenB > 0 holds A−−B = A+B.

(36) Let n, m be natural numbers and A be a matrix over R. If lenA = n

and widthA = m and n > 0, then A +




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

= A and




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

+A = A.



a theory of matrices of real elements 25

(37) For all matrices A, B over R such that lenA = lenB and

widthA = widthB and lenA > 0 and A = A + B holds B =


0 . . . 0
...

. . .
...

0 . . . 0




lenA×widthA

R

.

(38) For all matrices A, B over R such that lenA = lenB and widthA =

widthB and lenA > 0 and A + B =




0 . . . 0
...

. . .
...

0 . . . 0




lenA×widthA

R

holds

B = −A.
(39) For all matrices A, B over R such that lenA = lenB and

widthA = widthB and lenA > 0 and B − A = B holds A =


0 . . . 0
...

. . .
...

0 . . . 0




lenA×widthA

R

.

(40) For every real number a and for all matrices A, B over R such that

widthA = lenB and lenA > 0 and lenB > 0 holds A · (a ·B) = a · (A ·B).

(41) Let a be a real number and A, B be matrices over R. If widthA = lenB

and lenA > 0 and lenB > 0 and widthB > 0, then (a ·A) ·B = a · (A ·B).

(42) For every matrix M over R such that lenM > 0 holds M +


0 . . . 0
...

. . .
...

0 . . . 0




lenM×widthM

R

= M.

(43) For every real number a and for all matrices A, B over R such that

lenA = lenB and widthA = widthB and lenA > 0 holds a · (A + B) =

a · A+ a · B.
(44) For every matrix A over R such that lenA > 0 holds 0 · A =


0 . . . 0
...

. . .
...

0 . . . 0




lenA×widthA

R

.

Let x be a finite sequence of elements of R. Let us assume that lenx > 0.

The functor ColVec2Mx x yields a matrix over R and is defined as follows:

(Def. 9) len ColVec2Mx x = lenx and width ColVec2Mx x = 1 and for every j

such that j ∈ domx holds (ColVec2Mx x)(j) = 〈x(j)〉.
The following three propositions are true:

(45) Let x be a finite sequence of elements of R and M be a matrix over R.

If lenx > 0, then M = ColVec2Mx x iff M�,1 = x and widthM = 1.

(46) For all finite sequences x1, x2 of elements of R such that lenx1 =
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lenx2 and len x1 > 0 holds ColVec2Mx(x1 + x2) = ColVec2Mx x1 +

ColVec2Mx x2.

(47) For every real number a and for every finite sequence x of elements of R
such that lenx > 0 holds ColVec2Mx(a · x) = a · ColVec2Mx x.

Let x be a finite sequence of elements of R. The functor LineVec2Mx x

yielding a matrix over R is defined as follows:

(Def. 10) width LineVec2Mx x = len x and len LineVec2Mx x = 1 and for every j

such that j ∈ domx holds (LineVec2Mx x)1,j = x(j).

The following propositions are true:

(48) Let x be a finite sequence of elements of R and M be a matrix over

R. Then M = LineVec2Mx x if and only if the following conditions are

satisfied:

(i) Line(M, 1) = x, and

(ii) lenM = 1.

(49) For every finite sequence x of elements of R such that len x > 0 holds

(LineVec2Mx x)T = ColVec2Mx x and (ColVec2Mx x)T = LineVec2Mx x.

(50) For all finite sequences x1, x2 of elements of R such that lenx1 =

lenx2 and lenx1 > 0 holds LineVec2Mx(x1 + x2) = LineVec2Mx x1 +

LineVec2Mx x2.

(51) For every real number a and for every finite sequence x of elements of R
holds LineVec2Mx(a · x) = a · LineVec2Mx x.

Let M be a matrix over R and let x be a finite sequence of elements of R.

The functor M · x yields a finite sequence of elements of R and is defined as

follows:

(Def. 11) M · x = (M · ColVec2Mx x)�,1.
The functor x·M yielding a finite sequence of elements of R is defined as follows:

(Def. 12) x ·M = Line(LineVec2Mx x ·M, 1).

Next we state a number of propositions:

(52) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenA > 0 and if widthA > 0 and if lenA = len x or width(AT) = lenx,

then AT · x = x · A.
(53) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenA > 0 and if widthA > 0 and if widthA = len x or len(AT) = lenx,

then A · x = x · AT.

(54) Let A, B be matrices over R. Suppose lenA = lenB and widthA =

widthB. Let i be a natural number. If 1 ≤ i and i ≤ widthA, then

(A+B)�,i = A�,i +B�,i.
(55) Let A, B be matrices over R. Suppose lenA = lenB and widthA =

widthB. Let i be a natural number. If 1 ≤ i and i ≤ lenA, then Line(A+
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B, i) = Line(A, i) + Line(B, i).

(56) Let a be a real number, M be a matrix over R, and i be a natural

number. If 1 ≤ i and i ≤ widthM, then (a ·M)�,i = a ·M�,i.
(57) Let x1, x2 be finite sequences of elements of R and A be a matrix over

R. If len x1 = lenx2 and widthA = len x1 and lenx1 > 0 and lenA > 0,

then A · (x1 + x2) = A · x1 +A · x2.

(58) Let x1, x2 be finite sequences of elements of R and A be a matrix over

R. If lenx1 = lenx2 and lenA = lenx1 and lenx1 > 0, then (x1 +x2) ·A =

x1 ·A+ x2 ·A.
(59) Let a be a real number, x be a finite sequence of elements of R, and A

be a matrix over R. If widthA = len x and len x > 0 and lenA > 0, then

A · (a · x) = a · (A · x).

(60) Let a be a real number, x be a finite sequence of elements of R, and A

be a matrix over R. If lenA = len x and len x > 0 and widthA > 0, then

(a · x) · A = a · (x ·A).

(61) Let x be a finite sequence of elements of R and A be a matrix over R.

If widthA = lenx and lenx > 0 and lenA > 0, then len(A · x) = lenA.

(62) Let x be a finite sequence of elements of R and A be a matrix over R.

If lenA = lenx and lenx > 0 and widthA > 0, then len(x ·A) = widthA.

(63) Let x be a finite sequence of elements of R and A, B be matrices over

R. If lenA = lenB and widthA = widthB and widthA = lenx and

lenA > 0 and lenx > 0, then (A+B) · x = A · x+B · x.
(64) Let x be a finite sequence of elements of R and A, B be matrices over R.

If lenA = lenB and widthA = widthB and lenA = lenx and widthA > 0

and lenx > 0, then x · (A+B) = x ·A+ x ·B.
(65) Let n, m be natural numbers and x be a finite sequence of elements of R.

If len x = m and n > 0 andm > 0, then




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

·x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(66) Let n, m be natural numbers and x be a finite sequence of elements of R.

If lenx = n and n > 0 and m > 0, then x·




0 . . . 0
...

. . .
...

0 . . . 0




n×m

R

= 〈0, . . . , 0︸ ︷︷ ︸
m

〉.
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[4] Czes law Byliński. Binary operations applied to finite sequences. Formalized Mathematics,
1(4):643–649, 1990.
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