A Theory of Matrices of Real Elements

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Nobuyuki Tamura
Shinshu University
Nagano, Japan

Wenpai Chang
Shinshu University
Nagano, Japan

Summary. Here, the concept of matrix of real elements is introduced. This is defined as a special case of the general concept of matrix of a field. For such a real matrix, the notions of addition, subtraction, scalar product are defined. For any real finite sequences, two transformations to matrices are introduced. One of the matrices is of width 1 , and the other is of length 1 . By such transformations, two products of a matrix and a finite sequence are defined. Also the linearity of such product is shown.

MML identifier: MATRIXR1, version: 7.6.02 4.59.938

The papers [16], [19], [6], [3], [10], [18], [15], [1], [14], [12], [20], [7], [2], [17], [13], [22], [8], [11], [5], [4], [21], and [9] provide the terminology and notation for this paper.

1. Preliminaries

In this paper i, j are natural numbers.
We now state a number of propositions:
(1) For all real numbers r_{1}, r_{2} and for all elements f_{1}, f_{2} of \mathbb{R}_{F} such that $r_{1}=f_{1}$ and $r_{2}=f_{2}$ holds $r_{1}+r_{2}=f_{1}+f_{2}$.
(2) For all real numbers r_{1}, r_{2} and for all elements f_{1}, f_{2} of \mathbb{R}_{F} such that $r_{1}=f_{1}$ and $r_{2}=f_{2}$ holds $r_{1} \cdot r_{2}=f_{1} \cdot f_{2}$.
(3) For every finite sequence F of elements of \mathbb{R} holds $F+-F=\langle\underbrace{0, \ldots, 0}_{\text {len } F}\rangle$ and $F-F=\langle\underbrace{0, \ldots, 0}_{\operatorname{len} F}\rangle$.
(4) For all finite sequences F_{1}, F_{2} of elements of \mathbb{R} such that len $F_{1}=\operatorname{len} F_{2}$ holds $F_{1}-F_{2}=F_{1}+-F_{2}$.
(5) For every finite sequence F of elements of \mathbb{R} holds $F-\langle\underbrace{0, \ldots, 0}_{\text {len } F}\rangle=F$.
(6) For every finite sequence F of elements of \mathbb{R} holds $\langle\underbrace{0, \ldots, 0}_{\text {len } F}\rangle-F=-F$.
(7) For all finite sequences F_{1}, F_{2} of elements of \mathbb{R} such that len $F_{1}=\operatorname{len} F_{2}$ holds $F_{1}--F_{2}=F_{1}+F_{2}$.
(8) For all finite sequences F_{1}, F_{2} of elements of \mathbb{R} such that len $F_{1}=\operatorname{len} F_{2}$ holds $-\left(F_{1}-F_{2}\right)=F_{2}-F_{1}$.
(9) For all finite sequences F_{1}, F_{2} of elements of \mathbb{R} such that len $F_{1}=\operatorname{len} F_{2}$ holds $-\left(F_{1}-F_{2}\right)=-F_{1}+F_{2}$.
(10) For all finite sequences F_{1}, F_{2} of elements of \mathbb{R} such that len $F_{1}=\operatorname{len} F_{2}$ and $F_{1}-F_{2}=\langle\underbrace{0, \ldots, 0}_{\text {len } F_{1}}\rangle$ holds $F_{1}=F_{2}$.
(11) For all finite sequences F_{1}, F_{2}, F_{3} of elements of \mathbb{R} such that len $F_{1}=$ len F_{2} and len $F_{2}=\operatorname{len} F_{3}$ holds $F_{1}-F_{2}-F_{3}=F_{1}-\left(F_{2}+F_{3}\right)$.
(12) For all finite sequences F_{1}, F_{2}, F_{3} of elements of \mathbb{R} such that len $F_{1}=$ len F_{2} and len $F_{2}=\operatorname{len} F_{3}$ holds $F_{1}+\left(F_{2}-F_{3}\right)=\left(F_{1}+F_{2}\right)-F_{3}$.
(13) For all finite sequences F_{1}, F_{2}, F_{3} of elements of \mathbb{R} such that len $F_{1}=$ len F_{2} and len $F_{2}=$ len F_{3} holds $F_{1}-\left(F_{2}-F_{3}\right)=\left(F_{1}-F_{2}\right)+F_{3}$.
(14) For all finite sequences F_{1}, F_{2} of elements of \mathbb{R} such that len $F_{1}=\operatorname{len} F_{2}$ holds $F_{1}=\left(F_{1}+F_{2}\right)-F_{2}$.
(15) For all finite sequences F_{1}, F_{2} of elements of \mathbb{R} such that len $F_{1}=\operatorname{len} F_{2}$ holds $F_{1}=\left(F_{1}-F_{2}\right)+F_{2}$.

2. Matrices of Real Elements

The following propositions are true:
(16) Let K be a non empty groupoid, p be a finite sequence of elements of K, and a be an element of K. Then $\operatorname{len}(a \cdot p)=\operatorname{len} p$.
(17) Let r be a real number, f_{3} be an element of \mathbb{R}_{F}, p be a finite sequence of elements of \mathbb{R}, and f_{4} be a finite sequence of elements of \mathbb{R}_{F}. If $r=f_{3}$ and $p=f_{4}$, then $r \cdot p=f_{3} \cdot f_{4}$.
(18) Let K be a field, a be an element of K, and A be a matrix over K. Then the indices of $a \cdot A=$ the indices of A.
(19) Let K be a field, a be an element of K, and M be a matrix over K. If $1 \leq i$ and $i \leq$ width M, then $(a \cdot M)_{\square, i}=a \cdot M_{\square, i}$.
(20) Let K be a field, a be an element of K, M be a matrix over K, and i be a natural number. If $1 \leq i$ and $i \leq \operatorname{len} M$, then Line $(a \cdot M, i)=a \cdot \operatorname{Line}(M, i)$.
(21) Let K be a field and A, B be matrices over K. Suppose width $A=$ len B. Then there exists a matrix C over K such that $\operatorname{len} C=\operatorname{len} A$ and width $C=$ width B and for all i, j such that $\langle i, j\rangle \in$ the indices of C holds $C_{i, j}=\operatorname{Line}(A, i) \cdot B_{\square, j}$.
(22) Let K be a field, a be an element of K, and A, B be matrices over K. If width $A=\operatorname{len} B$ and len $A>0$ and len $B>0$, then $A \cdot(a \cdot B)=a \cdot(A \cdot B)$.
Let A be a matrix over \mathbb{R}. The functor $\left(\mathbb{R} \rightarrow \mathbb{R}_{\mathrm{F}}\right) A$ yielding a matrix over \mathbb{R}_{F} is defined as follows:
(Def. 1) $\quad\left(\mathbb{R} \rightarrow \mathbb{R}_{\mathrm{F}}\right) A=A$.
Let A be a matrix over \mathbb{R}_{F}. The functor $\left(\mathbb{R}_{\mathrm{F}} \rightarrow \mathbb{R}\right) A$ yielding a matrix over \mathbb{R} is defined by:
(Def. 2) $\quad\left(\mathbb{R}_{\mathrm{F}} \rightarrow \mathbb{R}\right) A=A$.
We now state two propositions:
(23) Let D_{1}, D_{2} be sets, A be a matrix over D_{1}, and B be a matrix over D_{2}. Suppose $A=B$. Let given i, j. If $\langle i, j\rangle \in$ the indices of A, then $A_{i, j}=B_{i, j}$.
(24) For every field K and for all matrices A, B over K holds the indices of $A+B=$ the indices of A.
Let A, B be matrices over \mathbb{R}. The functor $A+B$ yields a matrix over \mathbb{R} and is defined by:
(Def. 3) $\quad A+B=\left(\mathbb{R}_{\mathrm{F}} \rightarrow \mathbb{R}\right)\left(\left(\mathbb{R} \rightarrow \mathbb{R}_{\mathrm{F}}\right) A+\left(\mathbb{R} \rightarrow \mathbb{R}_{\mathrm{F}}\right) B\right)$.
One can prove the following two propositions:
(25) Let A, B be matrices over \mathbb{R}. Then $\operatorname{len}(A+B)=\operatorname{len} A$ and $\operatorname{width}(A+$ $B)=\operatorname{width} A$ and for all i, j such that $\langle i, j\rangle \in$ the indices of A holds $(A+B)_{i, j}=A_{i, j}+B_{i, j}$.
(26) Let A, B, C be matrices over \mathbb{R}. Suppose len $A=\operatorname{len} B$ and width $A=$ width B and $\operatorname{len} C=\operatorname{len} A$ and width $C=$ width A and for all i, j such that $\langle i, j\rangle \in$ the indices of A holds $C_{i, j}=A_{i, j}+B_{i, j}$. Then $C=A+B$.
Let A be a matrix over \mathbb{R}. The functor $-A$ yields a matrix over \mathbb{R} and is defined as follows:
(Def. 4) $-A=\left(\mathbb{R}_{F} \rightarrow \mathbb{R}\right)\left(-\left(\mathbb{R} \rightarrow \mathbb{R}_{F}\right) A\right)$.
Let A, B be matrices over \mathbb{R}. The functor $A-B$ yielding a matrix over \mathbb{R} is defined as follows:
(Def. 5) $\quad A-B=\left(\mathbb{R}_{F} \rightarrow \mathbb{R}\right)\left(\left(\mathbb{R} \rightarrow \mathbb{R}_{F}\right) A-\left(\mathbb{R} \rightarrow \mathbb{R}_{F}\right) B\right)$.
The functor $A \cdot B$ yielding a matrix over \mathbb{R} is defined by:
(Def. 6) $\quad A \cdot B=\left(\mathbb{R}_{F} \rightarrow \mathbb{R}\right)\left(\left(\mathbb{R} \rightarrow \mathbb{R}_{F}\right) A \cdot\left(\mathbb{R} \rightarrow \mathbb{R}_{F}\right) B\right)$.

Let a be a real number and let A be a matrix over \mathbb{R}. The functor $a \cdot A$ yields a matrix over \mathbb{R} and is defined as follows:
(Def. 7) For every element e_{1} of \mathbb{R}_{F} such that $e_{1}=a$ holds $a \cdot A=\left(\mathbb{R}_{\mathrm{F}} \rightarrow\right.$ $\mathbb{R})\left(e_{1} \cdot\left(\mathbb{R} \rightarrow \mathbb{R}_{\mathrm{F}}\right) A\right)$.
The following propositions are true:
(27) For every real number a and for every matrix A over \mathbb{R} holds len $(a \cdot A)=$ len A and $\operatorname{width}(a \cdot A)=$ width A.
(28) For every real number a and for every matrix A over \mathbb{R} holds the indices of $a \cdot A=$ the indices of A.
(29) Let a be a real number, A be a matrix over \mathbb{R}, and i_{2}, j_{2} be natural numbers. If $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of A, then $(a \cdot A)_{i_{2}, j_{2}}=a \cdot A_{i_{2}, j_{2}}$.
(30) For every real number a and for every matrix A over \mathbb{R} such that len $A>$ 0 and width $A>0$ holds $(a \cdot A)^{\mathrm{T}}=a \cdot A^{\mathrm{T}}$.
(31) Let a be a real number, i be a natural number, and A be a matrix over \mathbb{R}. Suppose len $A>0$ and $i \in \operatorname{dom} A$. Then
(i) there exists a finite sequence p of elements of \mathbb{R} such that $p=A(i)$, and
(ii) for every finite sequence q of elements of \mathbb{R} such that $q=A(i)$ holds $(a \cdot A)(i)=a \cdot q$.
(32) For every matrix A over \mathbb{R} holds $1 \cdot A=A$.
(33) For every matrix A over \mathbb{R} holds $A+A=2 \cdot A$.
(34) For every matrix A over \mathbb{R} holds $A+A+A=3 \cdot A$.

Let n, m be natural numbers. The functor $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{n \times m}$ yields a matrix over \mathbb{R} and is defined by:
(Def. 8) $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{n \times m}=\left(\mathbb{R}_{F} \rightarrow \mathbb{R}\right)\left(\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}_{F}}^{n \times m}\right)$.
One can prove the following propositions:
(35) For all matrices A, B over \mathbb{R} such that len $B>0$ holds $A--B=A+B$.
(36) Let n, m be natural numbers and A be a matrix over \mathbb{R}. If len $A=n$ and width $A=m$ and $n>0$, then $A+\left(\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{array}\right)_{\mathbb{R}}^{n \times m}=A$ and

$$
\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right)_{\mathbb{R}}^{n \times m}+A=A
$$

(37) For all matrices A, B over \mathbb{R} such that $\operatorname{len} A=\operatorname{len} B$ and width $A=\operatorname{width} B$ and $\operatorname{len} A>0$ and $A=A+B$ holds $B=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{\operatorname{len} A \times \text { width } A} \quad$.
(38) For all matrices A, B over \mathbb{R} such that len $A=\operatorname{len} B$ and width $A=$ width B and len $A>0$ and $A+B=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{\operatorname{len} A \times \operatorname{width} A} \quad$ holds $B=-A$.
(39) For all matrices A, B over \mathbb{R} such that len $A=\operatorname{len} B$ and width $A=$ width B and len $A>0$ and $B-A=B$ holds $A=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{\operatorname{len} A \times \text { width } A}$.
(40) For every real number a and for all matrices A, B over \mathbb{R} such that width $A=\operatorname{len} B$ and len $A>0$ and len $B>0$ holds $A \cdot(a \cdot B)=a \cdot(A \cdot B)$.
(41) Let a be a real number and A, B be matrices over \mathbb{R}. If width $A=\operatorname{len} B$ and len $A>0$ and len $B>0$ and width $B>0$, then $(a \cdot A) \cdot B=a \cdot(A \cdot B)$.
(42) For every matrix M over \mathbb{R} such that len $M>0$ holds $M+$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{\operatorname{len} M \times \text { width } M}=M$.
(43) For every real number a and for all matrices A, B over \mathbb{R} such that len $A=\operatorname{len} B$ and width $A=$ width B and len $A>0$ holds $a \cdot(A+B)=$ $a \cdot A+a \cdot B$.
(44) For every matrix A over \mathbb{R} such that len $A>0$ holds $0 \cdot A=$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{\operatorname{len} A \times \text { width } A}$
Let x be a finite sequence of elements of \mathbb{R}. Let us assume that len $x>0$. The functor ColVec2Mx x yields a matrix over \mathbb{R} and is defined as follows:
(Def. 9) len ColVec2Mx $x=\operatorname{len} x$ and width ColVec2Mx $x=1$ and for every j such that $j \in \operatorname{dom} x$ holds (ColVec $2 \mathrm{Mx} x)(j)=\langle x(j)\rangle$.
The following three propositions are true:
(45) Let x be a finite sequence of elements of \mathbb{R} and M be a matrix over \mathbb{R}. If len $x>0$, then $M=\operatorname{ColVec} 2 \mathrm{Mx} x$ iff $M_{\square, 1}=x$ and width $M=1$.
(46) For all finite sequences x_{1}, x_{2} of elements of \mathbb{R} such that len $x_{1}=$
len x_{2} and len $x_{1}>0$ holds ColVec $2 \operatorname{Mx}\left(x_{1}+x_{2}\right)=\operatorname{ColVec} 2 \mathrm{Mx} x_{1}+$ ColVec $2 \mathrm{Mx} x_{2}$.
(47) For every real number a and for every finite sequence x of elements of \mathbb{R} such that len $x>0$ holds ColVec $2 \mathrm{Mx}(a \cdot x)=a \cdot \operatorname{ColVec} 2 \mathrm{Mx} x$.
Let x be a finite sequence of elements of \mathbb{R}. The functor LineVec $2 \mathrm{Mx} x$ yielding a matrix over \mathbb{R} is defined as follows:
(Def. 10) width LineVec $2 \mathrm{Mx} x=\operatorname{len} x$ and len LineVec $2 \mathrm{Mx} x=1$ and for every j such that $j \in \operatorname{dom} x$ holds $(\operatorname{LineVec} 2 \mathrm{Mx} x)_{1, j}=x(j)$.
The following propositions are true:
(48) Let x be a finite sequence of elements of \mathbb{R} and M be a matrix over \mathbb{R}. Then $M=\operatorname{LineVec} 2 \mathrm{Mx} x$ if and only if the following conditions are satisfied:
(i) $\operatorname{Line}(M, 1)=x$, and
(ii) $\quad \operatorname{len} M=1$.
(49) For every finite sequence x of elements of \mathbb{R} such that len $x>0$ holds $(\text { LineVec } 2 \mathrm{Mx} x)^{\mathrm{T}}=\operatorname{ColVec} 2 \mathrm{Mx} x$ and $(\operatorname{ColVec} 2 \mathrm{Mx} x)^{\mathrm{T}}=\operatorname{LineVec} 2 \mathrm{Mx} x$.
(50) For all finite sequences x_{1}, x_{2} of elements of \mathbb{R} such that len $x_{1}=$ len x_{2} and len $x_{1}>0$ holds LineVec $2 \mathrm{Mx}\left(x_{1}+x_{2}\right)=\operatorname{LineVec} 2 \mathrm{Mx} x_{1}+$ LineVec $2 \mathrm{Mx} x_{2}$.
(51) For every real number a and for every finite sequence x of elements of \mathbb{R} holds LineVec $2 \mathrm{Mx}(a \cdot x)=a \cdot \operatorname{LineVec} 2 \mathrm{Mx} x$.
Let M be a matrix over \mathbb{R} and let x be a finite sequence of elements of \mathbb{R}. The functor $M \cdot x$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:
(Def. 11) $\quad M \cdot x=(M \cdot \operatorname{ColVec} 2 \mathrm{Mx} x)_{\square, 1} \cdot$
The functor $x \cdot M$ yielding a finite sequence of elements of \mathbb{R} is defined as follows:
(Def. 12) $\quad x \cdot M=\operatorname{Line}($ LineVec $2 \mathrm{Mx} x \cdot M, 1)$.
Next we state a number of propositions:
(52) Let x be a finite sequence of elements of \mathbb{R} and A be a matrix over \mathbb{R}. If len $A>0$ and if width $A>0$ and if len $A=\operatorname{len} x \operatorname{or} \operatorname{width}\left(A^{\mathrm{T}}\right)=\operatorname{len} x$, then $A^{\mathrm{T}} \cdot x=x \cdot A$.
(53) Let x be a finite sequence of elements of \mathbb{R} and A be a matrix over \mathbb{R}. If len $A>0$ and if width $A>0$ and if width $A=\operatorname{len} x$ or $\operatorname{len}\left(A^{\mathrm{T}}\right)=\operatorname{len} x$, then $A \cdot x=x \cdot A^{\mathrm{T}}$.
(54) Let A, B be matrices over \mathbb{R}. Suppose len $A=\operatorname{len} B$ and width $A=$ width B. Let i be a natural number. If $1 \leq i$ and $i \leq$ width A, then $(A+B)_{\square, i}=A_{\square, i}+B_{\square, i}$.
(55) Let A, B be matrices over \mathbb{R}. Suppose len $A=\operatorname{len} B$ and width $A=$ width B. Let i be a natural number. If $1 \leq i$ and $i \leq \operatorname{len} A$, then $\operatorname{Line}(A+$
$B, i)=\operatorname{Line}(A, i)+\operatorname{Line}(B, i)$.
(56) Let a be a real number, M be a matrix over \mathbb{R}, and i be a natural number. If $1 \leq i$ and $i \leq$ width M, then $(a \cdot M)_{\square, i}=a \cdot M_{\square, i}$.
(57) Let x_{1}, x_{2} be finite sequences of elements of \mathbb{R} and A be a matrix over \mathbb{R}. If len $x_{1}=\operatorname{len} x_{2}$ and width $A=\operatorname{len} x_{1}$ and len $x_{1}>0$ and len $A>0$, then $A \cdot\left(x_{1}+x_{2}\right)=A \cdot x_{1}+A \cdot x_{2}$.
(58) Let x_{1}, x_{2} be finite sequences of elements of \mathbb{R} and A be a matrix over \mathbb{R}. If len $x_{1}=\operatorname{len} x_{2}$ and len $A=\operatorname{len} x_{1}$ and len $x_{1}>0$, then $\left(x_{1}+x_{2}\right) \cdot A=$ $x_{1} \cdot A+x_{2} \cdot A$
(59) Let a be a real number, x be a finite sequence of elements of \mathbb{R}, and A be a matrix over \mathbb{R}. If width $A=\operatorname{len} x$ and len $x>0$ and len $A>0$, then $A \cdot(a \cdot x)=a \cdot(A \cdot x)$.
(60) Let a be a real number, x be a finite sequence of elements of \mathbb{R}, and A be a matrix over \mathbb{R}. If len $A=\operatorname{len} x$ and len $x>0$ and width $A>0$, then $(a \cdot x) \cdot A=a \cdot(x \cdot A)$.
(61) Let x be a finite sequence of elements of \mathbb{R} and A be a matrix over \mathbb{R}. If width $A=\operatorname{len} x$ and len $x>0$ and len $A>0$, then len $(A \cdot x)=\operatorname{len} A$.
(62) Let x be a finite sequence of elements of \mathbb{R} and A be a matrix over \mathbb{R}. If len $A=\operatorname{len} x$ and len $x>0$ and width $A>0$, then len $(x \cdot A)=$ width A.
(63) Let x be a finite sequence of elements of \mathbb{R} and A, B be matrices over \mathbb{R}. If len $A=\operatorname{len} B$ and width $A=$ width B and width $A=\operatorname{len} x$ and len $A>0$ and len $x>0$, then $(A+B) \cdot x=A \cdot x+B \cdot x$.
(64) Let x be a finite sequence of elements of \mathbb{R} and A, B be matrices over \mathbb{R}. If len $A=\operatorname{len} B$ and width $A=$ width B and len $A=\operatorname{len} x$ and width $A>0$ and len $x>0$, then $x \cdot(A+B)=x \cdot A+x \cdot B$.
(65) Let n, m be natural numbers and x be a finite sequence of elements of \mathbb{R}. If len $x=m$ and $n>0$ and $m>0$, then $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{n \times m} \cdot x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(66) Let n, m be natural numbers and x be a finite sequence of elements of \mathbb{R}. If len $x=n$ and $n>0$ and $m>0$, then $x \cdot\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{\mathbb{R}}^{n \times m}=\langle\underbrace{0, \ldots, 0}_{m}\rangle$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czestaw Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[9] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[13] Yatsuka Nakamura and Hiroshi Yamazaki. Calculation of matrices of field elements. Part I. Formalized Mathematics, 11(4):385-391, 2003.
[14] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[21] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[22] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

