Determinant of Some Matrices of Field Elements

Yatsuka Nakamura ${ }^{1}$
Shinshu University
Nagano, Japan

Abstract

Summary. Here, we present determinants of some square matrices of field elements. First, the determinat of $2 * 2$ matrix is shown. Secondly, the determinants of zero matrix and unit matrix are shown, which are equal to 0 in the field and 1 in the field respectively. Thirdly, the determinant of diagonal matrix is shown, which is a product of all diagonal elements of the matrix. At the end, we prove that the determinant of a matrix is the same as the determinant of its transpose.

MML identifier: MATRIX_7, version: 7.6.01 4.53.937

The articles [19], [26], [2], [27], [5], [4], [8], [24], [18], [17], [14], [6], [23], [7], [25], [20], [21], [3], [12], [28], [10], [15], [16], [11], [13], [1], [9], and [22] provide the notation and terminology for this paper.

In this paper n, i, l are natural numbers.
The following propositions are true:
(1) For every permutation f of Seg 2 holds $f=\langle 1,2\rangle$ or $f=\langle 2,1\rangle$.
(2) For every finite sequence f such that $f=\langle 1,2\rangle$ or $f=\langle 2,1\rangle$ holds f is a permutation of Seg 2 .
(3) The permutations of 2-element set $=\{\langle 1,2\rangle,\langle 2,1\rangle\}$.
(4) For every permutation p of $\operatorname{Seg} 2$ such that p is a transposition holds $p=\langle 2,1\rangle$.
(5) Let D be a non empty set, f be a finite sequence of elements of D, and k_{2} be a natural number. If $1 \leq k_{2}$ and $k_{2}<\operatorname{len} f$, then $f=\left(\operatorname{mid}\left(f, 1, k_{2}\right)\right)^{\wedge}$ $\operatorname{mid}\left(f, k_{2}+1, \operatorname{len} f\right)$.

[^0](6) For every non empty set D and for every finite sequence f of elements of D such that $2 \leq \operatorname{len} f$ holds $f=\left(f \upharpoonright\left(\operatorname{len} f-^{\prime} 2\right)\right)^{\wedge} \operatorname{mid}\left(f\right.$, len $f-^{\prime} 1$, len $\left.f\right)$.
(7) For every non empty set D and for every finite sequence f of elements of D such that $1 \leq \operatorname{len} f$ holds $f=\left(f \upharpoonright\left(\operatorname{len} f-^{\prime} 1\right)\right)^{\wedge} \operatorname{mid}(f$, len f, len $f)$.
(8) Let a be an element of A_{2}. Given an element q of the permutations of 2 -element set such that $q=a$ and q is a transposition. Then $a=\langle 2,1\rangle$.
(9) Let n be a natural number, a, b be elements of A_{n}, and p_{2}, p_{1} be elements of the permutations of n-element set. If $a=p_{2}$ and $b=p_{1}$, then $a \cdot b=$ $p_{1} \cdot p_{2}$.
(10) Let a, b be elements of A_{2}. Suppose that
(i) there exists an element p of the permutations of 2-element set such that $p=a$ and p is a transposition, and
(ii) there exists an element q of the permutations of 2-element set such that $q=b$ and q is a transposition.
Then $a \cdot b=\langle 1,2\rangle$.
(11) Let l be a finite sequence of elements of A_{2}. Suppose that
(i) len $l \bmod 2=0$, and
(ii) for every i such that $i \in \operatorname{dom} l$ there exists an element q of the permutations of 2-element set such that $l(i)=q$ and q is a transposition. Then $\prod l=\langle 1,2\rangle$.
(12) For every field K and for every matrix M over K of dimension 2 holds $\operatorname{Det} M=M_{1,1} \cdot M_{2,2}-M_{1,2} \cdot M_{2,1}$.
Let n be a natural number, let K be a field, let M be a matrix over K of dimension n, and let a be an element of K. Then $a \cdot M$ is a matrix over K of dimension n.

The following three propositions are true:
(13) For every field K and for all natural numbers n, m holds $\operatorname{len}\left(\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}\right)=n$ and $\operatorname{dom}\left(\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}\right)=\operatorname{Seg} n$.
(14) Let K be a field, n be a natural number, p be an element of the permutations of n-element set, and i be a natural number. If $i \in \operatorname{Seg} n$, then $p(i) \in \operatorname{Seg} n$.
(15) For every field K and for every natural number n such that $n \geq 1$ holds $\operatorname{Det}\left(\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times n}\right)=0_{K}$.
Let x, y, a, b be sets. The functor $\operatorname{IFIN}(x, y, a, b)$ is defined by:
(Def. 1) $\quad \operatorname{IFIN}(x, y, a, b)= \begin{cases}a, & \text { if } x \in y, \\ b, & \text { otherwise } .\end{cases}$
We now state the proposition
(16) For every field K and for every natural number n such that $n \geq 1$ holds $\operatorname{Det}\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)=1_{K}$.
Let K be a field, let n be a natural number, and let M be a matrix over K of dimension n. We say that M being diagonal if and only if:
(Def. 2) For all natural numbers i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ and $i \neq j$ holds $M_{i, j}=0_{K}$.
One can prove the following propositions:
(17) Let K be a field, n be a natural number, and A be a matrix over K of dimension n. Suppose $n \geq 1$ and A being diagonal. Then $\operatorname{Det} A=($ the multiplication of $K) \circledast($ the diagonal of $A)$.
(18) Let n be a natural number and p be an element of the permutations of n-element set. Then p^{-1} is an element of the permutations of n-element set.
Let us consider n and let p be an element of the permutations of n-element set. Then p^{-1} is an element of the permutations of n-element set.

Next we state the proposition
(19) Let n be a natural number, K be a field, and A be a matrix over K of dimension n. Then A^{T} is a matrix over K of dimension n.
Let n be a natural number, let K be a field, and let A be a matrix over K of dimension n. The functor A^{T} yields a matrix over K of dimension n and is defined as follows:
(Def. 3) $\quad A^{\mathrm{T}}=(A \text { qua matrix over } K)^{\mathrm{T}}$.
The following proposition is true
(20) For every group G and for all finite sequences f_{1}, f_{2} of elements of G holds $\left(\prod\left(f_{1}{ }^{\wedge} f_{2}\right)\right)^{-1}=\left(\prod f_{2}\right)^{-1} \cdot\left(\prod f_{1}\right)^{-1}$.
Let G be a group and let f be a finite sequence of elements of G. The functor f^{-1} yields a finite sequence of elements of G and is defined by:
(Def. 4) $\operatorname{len}\left(f^{-1}\right)=\operatorname{len} f$ and for every natural number i such that $i \in \operatorname{Seg} \operatorname{len} f$ holds $\left(f^{-1}\right)_{i}=\left(f_{i}\right)^{-1}$.
One can prove the following propositions:
(21) For every group G holds $\left(\varepsilon_{(\text {the carrier of } G)}\right)^{-1}=\varepsilon_{\text {(the carrier of } G)}$.
(22) For every group G and for all finite sequences f, g of elements of G holds $(f \frown g)^{-1}=\left(f^{-1}\right)^{\wedge} g^{-1}$.
(23) For every group G and for every element a of G holds $\langle a\rangle^{-1}=\left\langle a^{-1}\right\rangle$.
(24) For every group G and for every finite sequence f of elements of G holds $\Pi\left(f \frown(\operatorname{Rev}(f))^{-1}\right)=1_{G}$.
(25) For every group G and for every finite sequence f of elements of G holds $\Pi\left(\left((\operatorname{Rev}(f))^{-1}\right)^{\wedge} f\right)=1_{G}$.
(26) For every group G and for every finite sequence f of elements of G holds $\left(\prod f\right)^{-1}=\prod\left((\operatorname{Rev}(f))^{-1}\right)$.
(27) Let I_{1} be an element of the permutations of n-element set and I_{2} be an element of A_{n}. If $I_{2}=I_{1}$ and $n \geq 1$, then $I_{1}^{-1}=I_{2}{ }^{-1}$.
(28) Let n be a natural number and I_{3} be an element of the permutations of n-element set. If $n \geq 1$, then I_{3} is even iff $I_{3}{ }^{-1}$ is even.
(29) Let n be a natural number, K be a field, p be an element of the permutations of n-element set, and x be an element of K. If $n \geq 1$, then $(-1)^{\operatorname{sgn}(p)} x=(-1)^{\operatorname{sgn}\left(p^{-1}\right)} x$.
(30) Let K be a field and f_{1}, f_{2} be finite sequences of elements of K. Then (the multiplication of $K) \circledast\left(f_{1} \frown f_{2}\right)=\left((\right.$ the multiplication of $\left.K) \circledast\left(f_{1}\right)\right)$. $\left((\right.$ the multiplication of $\left.K) \circledast\left(f_{2}\right)\right)$.
(31) Let K be a field and R_{1}, R_{2} be finite sequences of elements of K. Suppose R_{1} and R_{2} are fiberwise equipotent. Then (the multiplication of K) \circledast $\left(R_{1}\right)=($ the multiplication of $K) \circledast\left(R_{2}\right)$.
(32) Let n be a natural number, K be a field, p be an element of the permutations of n-element set, and f, g be finite sequences of elements of K. If $n \geq 1$ and len $f=n$ and $g=f \cdot p$, then f and g are fiberwise equipotent.
(33) Let n be a natural number, K be a field, p be an element of the permutations of n-element set, and f, g be finite sequences of elements of K. Suppose $n \geq 1$ and len $f=n$ and $g=f \cdot p$. Then (the multiplication of $K) \circledast f=($ the multiplication of $K) \circledast g$.
(34) Let n be a natural number, K be a field, p be an element of the permutations of n-element set, and f be a finite sequence of elements of K. If $n \geq 1$ and len $f=n$, then $f \cdot p$ is a finite sequence of elements of K.
(35) Let n be a natural number, K be a field, p be an element of the permutations of n-element set, and A be a matrix over K of dimension n. If $n \geq 1$, then $p^{-1}-$ Path $A^{\mathrm{T}}=(p-\mathrm{Path} A) \cdot p^{-1}$.
(36) Let n be a natural number, K be a field, p be an element of the permutations of n-element set, and A be a matrix over K of dimension n. Suppose $n \geq 1$. Then (the product on paths of $\left.A^{\mathrm{T}}\right)\left(p^{-1}\right)=$ (the product on paths of $A)(p)$.
(37) Let n be a natural number, K be a field, and A be a matrix over K of dimension n. If $n \geq 1$, then $\operatorname{Det} A=\operatorname{Det}\left(A^{\mathrm{T}}\right)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990
[9] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[12] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[13] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[14] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[15] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997. http://fm.mizar.org/1997-6/pdf6-2/jordan3.pdf
[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[17] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[20] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[21] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[23] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[24] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[25] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[28] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Received January 4, 2006

[^0]: ${ }^{1}$ http://markun.cs.shinshu-u.ac.jp/kiso/staff/nakamura/index-e.html ynakamur@cs.shinshu-u.ac.jp

