Growth variability of European beech (Fagus sylvatica L.) natural forests: Dendroclimatic study from Krkonoše National Park

Open access


Long-term temporal development of beech stands in relation to climatic conditions is well documented by dendrochronological analyses. The study aims to identify and describe growth factors affecting natural European beech stands (Fagus sylvatica L.) on permanent research plots in the eastern Krkonoše Mountains, the Czech Republic. The paper focus on radial growth dynamics, frequency and cyclicity, and the effect of climatic factors on diameter increment of beech stands since 1850. The growth development of beech stands was significantly affected by air pollution load in 1977–1989, and increasingly frequent climate extremes in recent years (since 2010). Periodic increment events recurred in approximately 10–18 years’ periods. Stands on research plots responded differently to climatic factors, the main limiting factor being low temperatures during the growing season, frost damages and extreme droughts. The positive influence of temperatures on beech increments was recorded in winter, early spring, and especially in July and August of the current year. Conversely, precipitation in the previous year had higher impact on radial increment, with prevailing negative correlation. The plots were negatively affected by the decrease in sum of precipitation in February and March, but it was the temperature that influenced the beech increment most significantly. Dendrochronological analysis of close-to-nature beech stands provides valuable information on radial forest growth in response to changing climatic conditions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andreassen K. Solberg S. Tveito O. E. Lystad S. L. 2006: Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. Forest Ecology and Management 222:211–221.

  • Biondi F. Waikul K. 2004: DENDROCLIM2002AC++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30:303–311.

  • Bolte A. Hilbrig L. Grundmann B. Kampf F. Brunet J. Roloff A. 2010: Climate change impacts on stand structure and competitive interactions in a southern Swedish spruce-beech forest. European Journal of Forest Research 129:261–276.

  • Bošeľa M. Štefančík I. Petráš R. Vacek S. 2016: The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agricultural and Forest Meteorology 222:21–31.

  • Brázdil R. Trnka M. Miksovský J. Tolasz R. Dobrovolný P. Reznícková L. et al. 2017: Drought events in the Czech Republic: past present future. In: 19th EGU General Assembly proceedings from the conference held 23–28 April 2017 in Vienna Austria 19285 p.

  • Brázdil R. Stucki P. Szabó P. Řezníčková L. Dolák L. Dobrovolný P. et al. 2018: Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agricultural and Forest Meteorology 250:47–63.

  • Bridgman H. A. Davies T. D. Jickells T. Hunova I. Tovey K. Bridges K. et al. 2002: Air pollution in the Krusne Hory region Czech Republic during the 1990s. Atmospheric Environment 36:3375–3389.

  • Bunn A. Korpela M. 2018a: Time Series Analysis in dplR 14 p.

  • Bunn A. Korpela M. 2018b: Chronology Building in dplR 13 p.

  • Bytnerowicz A. Omasa K. Paoletti E. 2007: Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective. Environmental Pollution 147:438–445.

  • Cavin L. Jump A. S. 2017: Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Global Change Biology 23:362–379.

  • Christensen M. Hahn K. Mountford E. P. Ódor P. Standovár T. Rozenberger D. J. et al. 2005: Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecology and Management 210:267–282.

  • Cicák A. Mihál I. Tsakov H. Petkov P. 2006: Actual status of the beech bark necrotic disease in North Western Bulgaria. Journal of Forest Science 52:226–232.

  • Dittmar C. Zech W. Elling W. 2003: Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. Forest Ecology and Management 173:63–78.

  • Drobyshev I. Övergaard R. Saygin I. Niklasson M. Hickler T. Karlsson M. et al. 2010: Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. Forest Ecology and Management 259:2160–2171.

  • Dulamsuren C. Hauck M. Kopp G. Ruff M. Leuschner C. 2017: European beech responds to climate change with growth decline at lower and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees - Structure and Function 31:673–686.

  • Dyderski M. K. Paź S. Frelich L. E. Jagodziński A. M. 2018: How much does climate change threaten European forest tree species distributions? Global Change Biology 24:1150–1163.

  • Filippo A. D. I. Biondi F. Maugeri M. 2012: Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Global Change Biology 18:960–972.

  • Gavin D. G. Peart D. R. 1993: Effects of beech bark disease on the growth of American beech (Fagus grandifolia). Canadian Journal of Forest Research 23:1566–1575.

  • Geßler A. Keitel C. Matyssek R. Seiler W. Rennenberg H. 2007: Potential risks for European beech (Fagus sylvatica L.) in a changing climate Potential risks for European beech (Fagus sylvatica L.). Trees 21:1–11.

  • Granier A. Reichstein M. Bréda N. Janssens I. A. Falge E. Ciais P. 2007: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology 143:123–145.

  • Hartl-Meier C. Zang C. Büntgen U. Esper J. Rothe A. Göttlein A. et al. 2018: Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiology 35:4–15.

  • Hauck M. Zimmermann J. Jacob M. Dulamsuren C. Bade C. Ahrends B. et al. 2012: Rapid recovery of stem increment in Norway spruce at reduced SO2 levels in the Harz Mountains Germany. Environmental Pollution 164:132–141.

  • Holuša J. Lubojacký J. Čurn V. Tonka T. Lukášová K. Horák J. 2018: Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. Forest Ecology and Management 427:434–455.

  • Hůnová I. Schreiberová M. 2012: Ambient ozone phytotoxic potential over the Czech forests as assessed by AOT40. iForest-Biogeosciences and Forestry 5:153.

  • IFER 2017: Field-Map Software & Hardware Catalogue – IFER – Monitoring and Mapping Solutions Ltd. Jílové u Prahy 51 p.

  • Janík D. Král K. Adam D. Hort L. Samonil P. Unar P. et al. 2016: Tree spatial patterns of Fagus sylvatica expansion over 37years. Forest Ecology and Management 375:134–145.

  • Ježík M. Blaženec M. Kučera J. Střelcová K. Ditmarová L. 2016: The response of intra-annual stem circumference increase of young European beech provenances to 2012–2014 weather variability. IForest 9:960–969.

  • Jump A. S. Hunt J. M. Penuelas J. 2006: Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology 12:2163–2174.

  • Kasson M. T. Livingston W. H. 2009: Spatial distribution of Neonectria species associated with beech bark disease in northern Maine. Mycologia 101:190–195.

  • Kasson M. T. Livingston W. H. 2012: Relationships among beech bark disease climate radial growth response and mortality of American beech in northern Maine USA. Forest Pathology 42:199–212.

  • Kolář T. Čermák P. Oulehle F. Trnka M. Štěpánek P. Cudlín P. et al. 2015: Pollution control enhanced spruce growth in the “Black Triangle” near the Czech–Polish border. Science of the Total Environment 538:703–711.

  • Kooijman A. M. Emmer I. M. Fanta J. Sevink J. 2000: Natural regeneration potential of the degraded Krkonoše forests. Land Degradation and Development 11:459–473.

  • Köse N. Güner H. T. 2012: The effect of temperature and precipitation on the intra-annual radial growth of Fagus orientalis Lipsky in Artvin Turkey. Turkish Journal of Agriculture and Forestry 36:501–509.

  • Král J. Vacek S. Vacek Z. Putalová T. Bulušek D. Štefančík I. 2015: Structure development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979–2014. Lesnícky časopis - Forestry Journal 61:175–187.

  • Králíček I. Vacek Z. Vacek S. Remeš J. Bulušek D. Král J. et al. 2017: Dynamics and structure of mountain autochthonous spruce-beech forests: Impact of hilltop phenomenon air pollutants and climate. Dendrobiology 77:119–137.

  • Kramer K. Degen B. Buschbom J. Hickler T. Thuiller W. Sykes M. T. et al. 2010: Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change–range abundance genetic diversity and adaptive response. Forest Ecology and Management 259:2213–2222.

  • Kroupová M. 2002: Dendroecological study of spruce growth in regions under long-term air pollution load. Journal of Forest Science 48:536–548.

  • Lindner M. Maroschek M. Netherer S. Kremer A. Barbati A. Garcia-Gonzalo J. et al. 2010: Climate change impacts adaptive capacity and vulnerability of European forest ecosystems. Forest Ecology and Management 259:698–709.

  • Ling K. A. Power S. A. Ashmore M. R. 1993: A survey of the health of Fagus sylvatica in southern Britain. Journal of Applied Ecology 30:295–306.

  • Lokvenc T. 1978: Toulky krkonošskou minulostí. Kruh Hradec Králové 267 p.

  • Matějka K. Vacek S. Podrázský V. 2010: Development of forest soils in the Giant Mts. in the period 1980–2009. Journal of Forest Science 56:485–504.

  • Materna J. 1989: Air pollution and forestry in Czechoslovakia. Environmental Monitoring and Assessment 12:227–239.

  • Mausolf K. Wilm P. Härdtle W. Jansen K. Schuldt B. Sturm K. et al. 2018: Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests. Science of the Total Environment 642:1201–1208.

  • Meyer F. D. Bräker O. U. 2001: Climate response in dominant and suppressed spruce trees Picea abies (L.) Karst. on a subalpine and lower montane site in Switzerland. Ecoscience 8:105–114.

  • Mihál I. Cicák A. Tsakov H. 2014: Selected biotic vectors transmitting beech bark necrotic disease in Central and South-Eastern Europe. Folia Oecologica 41:62–74.

  • Ministry of Agriculture 2017: Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2016. Praha 132 p.

  • Motta E. Annesi T. Pane A. Cooke D. E. L. Cacciola S. O. 2003: A new Phytophthora sp. causing a basal canker on beech in Italy. Plant Disease 87:1005–1005.

  • Nožička J. 1961: Vývoj krkonošských lesů na Vrchlabsku a Maršovsku. Práce VÜLHM 18:161–228.

  • Nussbaumer A. Waldner P. Apuhtin V. Aytar F. Benham S. Bussotti F. et al. 2018: Impact of weather cues and resource dynamics on mast occurrence in the main forest tree species in Europe. Forest Ecology and Management 429:336–350.

  • Opała-Owczarek M. Błaś M. Owczarek P. Sobik M. Godek M. 2019: A dendroclimatological study of east- and west-facing slopes in mountainousareas subjected to strong air pollution (the Sudetes Central Europe) Physical Geography 40:186–208.

  • Övergaard R. 2010: Seed Production and Natural Regeneration of Beech (Fagus sylvatica L.) in Southern Sweden. Swedish University of Agricultural Sciences 74 p.

  • Peters R. 1997: Beech Forests. Kluwer Academic Publishers Dordrecht The Netherlands p. 39–40.

  • Paoletti E. Schaub M. Matyssek R. Wieser G. Augustaitis A. Bastrup-Birk A. M. et al. 2010: Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environmental Pollution 158:1986–1989.

  • Penuelas J. Ogaya R. Boada M. S. Jump A. 2007: Migration invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–837.

  • Power S. A. Ashmore M. R. 1996: Nutrient relations and root mycorrhizal status of healthy and declining beech (Fagus sylvatica L.) in southern Britain. Water Air and Soil Pollution 86:317–333.

  • Remeš J. Bílek L. Novák J. Vacek Z. Vacek S. Putalová T. Koubek L. 2015: Diameter increment of beech in relation to social position of trees climate characteristics and thinning intensity. Journal of Forest Science 61:456–464.

  • Rohner B. Weber P. Thürig E. 2016: Bridging tree rings and forest inventories: How climate effects on spruce and beech growth aggregate over time. Forest Ecology and Management 360:159–169.

  • Ruosteenoja K. Markkanen T. Venäläinen A. Räisänen P. Peltola H. 2018: Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics 50:1177–1192.

  • Rydval M. Wilson R. 2012: The impact of industrial SO2 pollution on north Bohemia conifers. Water Air & Soil Pollution 223:5727–5744.

  • Samec P. Vránová V. 2005: Bioindication of soil sorption properties in the substitute tree stands at submontane conditions. In: Šimková P.: MendelNet 2005 Contemporary state and development trends of forest in cultural landscape. Brno Mendelova univerzita v Brně p. 113–119.

  • Schütz J. P. 2001: Der Plenterwald. Parey Buch- verlag Berlin 207 p.

  • Skomarkova M. V. Vaganov E. A. Mund M. Knohl A. Linke P. Boerner A. et al. 2006: Inter-annual and seasonal variability of radial growth wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20:571–586.

  • Slanař J. Vacek Z. Vacek S. Bulušek D. Cukor J. Štefančík I. et al. 2017: Long-term transformation of submontane spruce-beech forests in the Jizerské hory Mts.: Dynamics of natural regeneration. Central European Forestry Journal 63:212–224.

  • Sykes M. T. Prentice I. C. 1996: Climate change tree species distributions and forest dynamics: a case study in the mixed conifer/northern hardwoods zone of northern Europe. Climatic Change 34:161–177.

  • Špulák O. Souček J. 2010: The Sibyla model and development of beech forests affected by air pollution. Central European Journal of Biology 5:317–383.

  • Team R Core 2018: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna Austria.

  • Tegel W. Seim A. Hakelberg D. Hoffmann S. Panev M. Westphal T. Büntgen U. 2014: A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research 133:61–71.

  • Tesař V. Balcar V. Lochman V. Nehyba J. 2011. Přestavba lesa zasaženého imisemi na Trutnovsku. Brno Mendelova univerzita v Brně 177 p.

  • Tolazs R. 2007: Atlas podnebí Česka. Praha a Olomouc 256 p.

  • Trnka M. Brázdil R. Možný M. Štěpánek P. Dobrovolný P. Zahradníček P. et al. 2015: Soil moisture trends in the Czech Republic between 1961 and 2012. International Journal of Climatology 35:3733–3747.

  • Vacek S. 1988: Dynamics of the defoliation of beech forest stands under the influence of air pollution. In: 3. IUFRO Buchensymposium. Zvolen 3. 6. – 6. 6. 1988. Zvolen VŠLD p. 377–388.

  • Vacek S. Matějka K. Simon J. Malík V. Schwarz O. Podrázský V. et al. 2007: Zdravotní stav a dynamika lesních ekosystémů Krkonoš pod stresem vyvolaným znečištěním ovzduší. Folia forestalia Bohemica Kostelec nad Černými lesy Lesnická práce 4:216 p.

  • Vacek S. Nosková I. Bílek L. Vacek Z. Schwarz O. 2010: Regeneration of forest stands on permanent research plots in the Krkonoše Mts. Journal of Forest Science 56:541–554.

  • Vacek S. Hejcman M. 2012: Natural layering foliation fertility and plant species composition of a Fagus sylvatica stand above the alpine timberline in the Giant (Krkonoše) Mts. Czech Republic. European Journal of Forest Research 131:799–810.

  • Vacek S. Bílek L. Schwarz O. Hejcmanová P. Mikeska M. 2013: Effect of Air Pollution on the Health Status of Spruce Stands Effect of Air Pollution on the Health Status of Spruce Stands. Mountain Research and Development 33:40–50.

  • Vacek S. Hůnová I. Vacek Z. Hejcmanová P. Podrázský V. Král J. 2015a: Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic) 1979–2014. European Journal of Forest Research 134:1127–1142.

  • Vacek S. Černý T. Vacek Z. Podrázský V. Mikeska M. Králíček I. 2017: Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. Forest Ecology and Management 398:75–90.

  • Vacek Z. Vacek S. Bílek L. Remeš J. Štefančík I. 2015b: Changes in horizontal structure of natural beech forests on an altitudinal gradient in the Sudetes. Dendrobiology 73:33–45.

  • Vacek Z. Vacek S. Podrázský V. Bílek L. Štefančík I. Moser W. K. et al. 2015c: Effect of tree layer and microsite on the variability of natural regeneration in autochthonous beech forests. Polish Journal of Ecology 63:233–246.

  • Viewegh J. Kusbach A. Mikeska M. 2003: Czech forest ecosystem classification. Journal of Forest Science 49:85–93.

  • Wainhouse D. Gate I. M. Lonsdale D. 1988: Beech Resistance to the Beech Scale: A Variety of Defenses. In: Mattson V. J. Levieux J. Bernard-Dagan C. (eds.): Mechanisms of Woody Plant Defenses against Insects. Springer New York NY p. 277–293.

  • Urban J. 2000: Beech gall midge (Mikiola fagi Htg.) and its natural enemies. Journal of Forest Science 46:543–568.

  • Zang C. Hartl-Meier C. Dittmar C. Rothe A. Menzel A. 2014: Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Global Change Biology 20:3767–3779.

  • Zang C. Rothe A. Weis W. Pretzsch H. 2011: Zur baumarteneignung bei klimawandel: Ableitung der trockenstress- anfälligkeit wichtiger waldbaumarten aus jahrringbreiten. Allgemeine Forst- und Jagdzeitung 182:98–112.

Journal information
Impact Factor

CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.18
Source Normalized Impact per Paper (SNIP) 2018: 0.399

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 186 9
PDF Downloads 118 118 18