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Abstract

Data analysis needs suitable methods of curve extrapolation. The proposed method of Hurwitz-Radon 
Matrices (MHR) can be used in extrapolation and interpolation of curves in the plane. For example, quotations 
from the Stock Exchange, the market prices or currency rates form a curve. This paper presents the way 
of data anticipation and extrapolation via the MHR method and decision making: to buy or not, to sell or 
not. The proposed method is based on a family of Hurwitz-Radon (HR) matrices. The matrices are skew-
symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), 
built from these matrices, is described. Two-dimensional data are represented by the set of curve points. It is 
shown how to create the orthogonal and discrete OHR and how to use it in a process of data foreseeing and 
extrapolation. The MHR method interpolates and extrapolates the curve point by point without using any 
formula or function.
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Introduction

A significant problem in data analysis and artificial intelligence1 is that of appropriate data 

representation and extrapolation. Two-dimensional data can be treated as points on the curve. 

Classical polynomial interpolation or extrapolation (Lagrange, Newton, Hermite) is useless 

for data anticipation, because the stock quotations or the market prices represent discrete data 

and they do not preserve a shape of the polynomial. Also Richardson extrapolation has some 

weak sides concerning discrete data. This paper is dealing with the method of value foreseeing 

by using a family of Hurwitz-Radon matrices. The quotations, prices or rate of a currency, 

represented by curve points, consist of information which allows us to extrapolate the next data 

and then to make a decision2.

If the probabilities of possible actions are known, then some criteria are to apply: Laplace, 

Bayes, Wald, Hurwicz, Savage, Hodge-Lehmann3 and others4. But author of this paper considers 

only two possibilities: to do something or not. For example to buy a share or not, to sell a currency 

or not. Proposed method of Hurwitz-Radon Matrices (MHR) is used in data extrapolation and 

then calculations for decision making are described. MHR method uses two-dimensional data 

for knowledge representation5 and computational foundations6. Also medicine7, industry and 

manufacturing are looking for the methods connected with geometry of the curves8. So suitable 

data representation and precise reconstruction or extrapolation9 of the curve is a key factor in 

many applications of artificial intelligence and knowledge representation.

1.  Curve and Data Representation

Data are represented by the set of curve points (xi, yi) ∈ R2 (interpolation nodes) as follows 

in novel MHR method:

1.  nodes (characteristic points) are settled at local extrema (maximum or minimum) of 

one of coordinates and at least one point between two successive local extrema;

2.  nodes (xi, yi) are monotonic in coordinates xi (xi < xi+1 for all i) or yi (yi < yi+1);

3.  one curve is represented by at least five nodes.

Condition 1 is done for the most appropriate description of a curve. The quotations or 

prices are real coordinates of nodes. Condition 2 according to a graph of function means that 

xi represent for example the time. Condition 3 is adequate to interpolation, but in extrapolation 

minimal number of nodes is four.
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Fig. 1. Five nodes of data and the curve

Source: own study.

Data points are treated as interpolation nodes. How can we extrapolate continues values at 

time x = 5.5 for example or discrete data for next day x = 6 (Figure 1)? The anticipation of values 

is possible using the proposed MHR method.

2.  Curve and Data Reconstruction

The following question is important in computer sciences and mathematics: is it possible 

to find a method of curve extrapolation in the plane without building the interpolation and 

extrapolation polynomials or other functions? This paper aims at giving the positive answer to 

this question. When comparing the MHR method with the Bézier curves, the Hermite curves 

and the B-curves (B-splines) or the NURBS one unpleasant feature of these curves must be 

mentioned: any small change of one characteristic point can result in a big change of the whole 

reconstructed curve. Such a feature does not appear in the MHR method. The methods of curve 

interpolation or extrapolation based on classical polynomial interpolations are: the Newton, the 

Lagrange or the Hermite polynomials and the spline curves which are piecewise polynomials10. 

Classical methods are useless to interpolate a function that fails to be differentiable at one 

point. Also, when the graph of interpolated or extrapolated function differs from the shape of 

polynomials considerably, for example f(x) = 1/x, interpolation and extrapolation is very hard 

because of existing local extrema of polynomial. The Lagrange interpolation polynomial for 

the function f(x) = 1/x and nodes (5;0.2), (5/3;0.6), (1;1), (5/7;1.4), (5/9;1.8) has one minimum 

and two roots. the Lagrange interpolation polynomial differs extremely from the shape of the 

function f(x) = 1/x.
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We cannot forget about Runge’s phenomenon: when the interpolation nodes are equidistance, 

then a high-order polynomial oscillates towards the end of the interval, for example close to –1 

and 1 with the function f(x) = 1/(1 + 25x2) and extrapolation is impossible11. The method of 

Hurwitz-Radon Matrices (MHR), described in this paper, is free of these undesirable examples. 

The curve or function in the MHR method is parameterized for a real number α ∈ [0; 1] in the 

range of two successive interpolation nodes. The MHR in data extrapolation is possible with 

α < 0 or α > 1.

2.1.  The Operator of Hurwitz-Radon

Adolf Hurwitz (1859–1919) and Johann Radon (1887–1956) published the papers about 

a specific class of matrices in 1923 when working on the problem of quadratic forms. Matrices 

Ai, i = 1, 2, …, m satisfying:

 Aj Ak+Ak Aj = 0,  Aj
2 = –I  for  j ≠ k;  j, k = 1, 2, ..., m,

are called a family of Hurwitz-Radon matrices. The family of Hurwitz-Radon (HR) matrices has 

important features12: the HR matrices are skew-symmetric (Ai
T = –Ai) and reverse matrices are 

easy to find (Ai
–1 = –Ai). Only for the dimension N = 2, 4 or 8 the family of HR matrices consists 

of N – 1 matrices. For N = 2 there is one matrix:
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For N = 8 we have seven HR matrices with elements 0, ±1.

So far the HR matrices are applied in electronics13: in Space-Time Block Coding (STBC) 

and orthogonal design14, also in signal processing15 and Hamiltonian Neural Nets16.

If one curve is described by a set of data points {(xi, yi), i = 1, 2, …, n} monotonic in 

coordinates xi (time for example), then the HR matrices combined with the identity matrix IN are 

used to build the orthogonal and discrete Hurwitz-Radon Operator (OHR). For the nodes (x1, y1) 

and (x2, y2), x1 < x2 OHR M of the dimension N = 2 is constructed:
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For the nodes (x1, y1), (x2, y2), (x3, y3) and (x4, y4), monotonic in xi, OHR of the dimension N = 4 

is constructed:
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where

 443322110 yxyxyxyxu +++= ,   344312211 yxyxyxyxu −++−= ,

 241342312 yxyxyxyxu ++−−= ,   142332413 yxyxyxyxu +−+−= .

For the nodes (x1,y1), (x2,y2), …, (x8,y8), monotonic in xi, OHR of the dimension N = 8 is built17 

similarly as (1) and (2):
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where

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

8

7

6

5

4

3

2

1

12345678

21436587

34127856

43218765

56781234

65872143

78563412

87654321

x
x
x
x
x
x
x
x

yyyyyyyy
yyyyyyyy
yyyyyyyy
yyyyyyyy

yyyyyyyy
yyyyyyyy
yyyyyyyy

yyyyyyyy

u   (4)



Dariusz Jakóbczak126

The components of the vector u = (u0, u1, …, u7)T, appearing in the matrix M (3), are 

defined by (4) in the similar way to (1)–(2) but in terms of the coordinates of the above 8 nodes. 

Note that the OHR operators M (1)–(3) satisfy the condition of interpolation:

 M ⋅ x = y  (5)

for x = (x1, x2, …, xN)T ∈ RN, x ≠ 0, y = (y1, y2, …, yN)T ∈ RN, N = 2, 4 or 8.

If one curve is described by a set of nodes {(xi, yi), i = 1, 2, …, n} monotonic in coordinates 

yi, then the HR matrices combined with the identity matrix IN are used to build the orthogonal 

and discrete reverse Hurwitz-Radon Operator (reverse OHR) M–1. If the matrix M in (1)–(3) is 

described as:

 (1
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where the matrix D consists of elements 0 (diagonal) and u1, …, uN–1, then the reverse OHR M–1 

is given by:
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Note that the reverse OHR operator (6) satisfies the condition of interpolation

 M–1 ⋅ y = x  (7)

for x = (x1, x2, …, xN)T ∈ RN, y = (y1, y2, …, yN)T ∈ RN, y ≠ 0, N = 2, 4 or 8.

2.2.  Data Extrapolation and MHR Method

The key question is as follows: how can we compute coordinates of points settled between 

the interpolation nodes18 or beyond the nodes? The answer is connected with the proposed MHR 

method for interpolation19 and extrapolation. On a segment of a line every number “c” situated 

between “a” and “b” is described by the linear (convex) combination c = α ⋅ a + (1 – α) ⋅ b for:

 
α 

ab
cb

−
−

=  ∈ [0; 1]  (8)

If c < a then α > 1: the possible extrapolation of points is situated left of the nodes. If c > b then 

α < 0 and the possible extrapolation of points is situated right of the nodes.

When the nodes are monotonic in the coordinates xi, the average OHR operator M2 of the 

dimension N = 2, 4 or 8 is constructed as follows:

 M2 = α · M0 + (1 – α) · M1  (9)
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with the operator M0 built (1)–(3) by the “odd” nodes (x1= a, y1), (x3, y3), …, (x2N–1, y2N–1) and 

M1 built (1)–(3) by the “even” nodes (x2 = b, y2), (x4, y4), …, (x2N, y2N). Having the operator M2 
for the coordinates xi < xi+1 it is possible to reconstruct the second coordinates of points (x, y) in 

terms of the vector C defined with:

 ci = α ⋅ x2i–1
 + (1 – α) ⋅ x2i,  i = 1, 2, …, N  (10)

as C = [c1, c2, …, cN]T. The required formula is similar to (5):

 CMCY ⋅= 2)(   (11)

in which components of the vector Y(C) give the second coordinate of the points (x, y) 

corresponding to the first coordinate, given in terms of components of the vector C.

On the other hand, having the operator M2
–1 for the coordinates yi < yi+1 it is possible to 

reconstruct the first coordinates of points (x, y):

 M2
–1 = α · M0

–1 + (1 – α) · M1
–1,  ci = α · y2i–1 + (1 – α) · y2i,

 X(c) = M2
–1c  (12)

Calculation of unknown coordinates for curve points using (8)–(12) is called by author 

the method of Hurwitz-Radon Matrices (MHR)20. Here are the applications of the MHR method 

for the functions f(x) = 1/(1 + 25x2) with five nodes equidistance in the first coordinate: xi = –1, 

–0.5, 0, 0.5, 1.
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-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 2.  26 interpolated points of functions f(x) = 1/(1 + 25x2) using the MHR method with 5 
nodes

Source:  own study.
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The MHR interpolation of the function f(x) = 1/(1 + 25x2) gives a better result than the 

Lagrange interpolation. The same can be said about the function f(x) = 1/x21.

The MHR extrapolation is valid for α < 0 or α > 1. In the case of the continuous data, the 

parameter α is a real number. For example, there are four nodes: (1; 2), (1.3; 5), (2; 3), (2.5; 6). 

The MHR extrapolation with α = –0.01 gives the point (2.505; 6.034) and with α = –0.1: (2.55; 

6.348). But the rate of a currency or the quotations are discrete data. If we assume that the rate 

of a currency is represented by equidistance nodes (day by day – fixed step of the time h = 1 

for the coordinate x), the next data or the rate on the next day is extrapolated (anticipated) with 

α = –1.

2.3. Complexity of the MHR calculations

The MHR interpolation of a curve consists of L points: if we have n interpolation nodes, 

then there is K = L – n points to find by means of the MHR method. Now let us consider the 

complexity of the MHR calculations.

Lemma 1. Let n = 5, 9 or 17 be the number of interpolation nodes, let the MHR method 
is done for the reconstruction of the curve consisting of L points. Then the MHR method is 
connected with the computational cost of rank O(L).
Proof. Using the MHR method we have to reconstruct K = L – n points of an unknown curve. 

Counting the number of multiplications and divisions D we obtain the following results:

1) D = 4L + 7     for n = 5   and L = 2i + 5;

2) D = 6L + 21   for n = 9   and L = 4i + 9;

3) D = 10L + 73 for n = 17 and L = 8i + 17;   i = 2, 3, 4...

The lowest computational cost appears in the MHR method with five nodes and the OHR 

operators of the dimension N = 2.

3.  Data Analysis and Decision Making

Example 1
The MHR calculations are done for true rates of euro at the National Bank of Poland 

(NBP) from January 24th to February 14th, 2011. If the last four rates are considered: (1; 3.8993), 

(2; 3.9248), (3; 3.9370) and (4; 3.9337), the MHR extrapolation with matrices of the dimension 

N = 2 gives the result of (5; 3.9158). So, the anticipated rate of euro on the day February 15th is 

3.9158 (Figure 3).
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Fig. 3.  The extrapolated rate for the day 5 (February 15th) using the MHR method with 
4 nodes

Source:  own study.

If the last eight rates are considered: (1; 3.9173), (2; 3.9075), (3; 3.8684), (4; 3.8742), 

(5; 3.8993), (6; 3.9248), (7; 3.9370) and (8; 3.9337), the MHR extrapolation with matrices of 

the dimension N = 4 gives the result of (9; 4.0767).  The anticipated rate of euro on February 

15th is 4.0767 (Figure 4).
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Fig. 4.  The extrapolated rate for the day 9 (February 15th) using MHR method with 8 nodes
Source:  own study.

There are two extrapolated values for the next day. This example gives us two anticipated 

rates for tomorrow: 3.9158 and 4.0767, which differs considerably. How these extrapolated 
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values can be used in the process of making a decision if to buy euro or not, to sell euro or not? 

The proposal final anticipated rate of euro for February 15th (Figure 5) based on the weighted 

mean value:

 9694.3
3

0767.49158.32
=

+⋅   (13)

because the rate 3.9158 is calculated for N = 2, whereas 4.0767 is extrapolated for N = 4. 

Formula (13) takes one fact into account: the dimension N = 4 is two times bigger than the 

dimension N = 2 and the result 3.9158 has to be strengthened by multiplying it by two.
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Fig. 5.  The extrapolated rate for the day 9 (February 15th) using the MHR method with 8 nodes 
and the weighted mean value (13)

Source:  own study.

If the last sixteen rates are taken into consideration, the MHR extrapolation with matrices 

of the dimension N = 8 has to be used. Here are the rates: (1; 3.8765), (2; 3.8777), (3; 3.8777), 

(4; 3.9009), (5; 3.9111), (6; 3.9345), (7; 3.9129), (8; 3.9019), (9; 3.9173), (10; 3.9075), 

(11; 3.8684), (12; 3.8742), (13; 3.8993), (14; 3.9248), (15; 3.9370) and (16; 3.9337). The average 

OHR operator M2 and the MHR calculations look as follows:

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−
−−−−−

−−−−−
−−−

−−−
−−−

−−−
−

=

3226.00154.00286.00462.0062.00444.00924.00461.0
0154.03226.00462.00286.00444.0062.00461.00924.0

0286.00462.03226.00154.00924.00461.0062.00444.0
0462.00286.00154.03226.00461.00924.00444.0062.0
062.00444.00924.00461.03226.00154.00286.00462.0
0444.0062.00461.00924.00154.03226.00462.00286.0

0924.00461.0062.00444.00286.00462.03226.00154.0
0461.00924.00444.0062.00462.00286.00154.03226.0

2M , 



Curve Extrapolation and Data Analysis Using the Method of Hurwitz-Radon Matrices 131

 

9882.3
9825.3
8834.3
8653.3
8278.3
8704.3
8072.3
7252.3

17
15
13
11
9
7
5
3

2M .

The MHR extrapolation gives the result of (17; 3.9882). The anticipated rate of euro for 

February 15th is 3.9882 (Figure 6).
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Fig. 6.  The extrapolated rate for the day 17 (February 15th) using the MHR method with 16 
nodes

Source:  own study.

The MHR extrapolation has been done three times (N = 2, 4 or 8) and the anticipated 

values are 3.9158, 4.0767 and 3.9882 respectively. The proposed final anticipated rate of euro 

for February 15th (Figure 7) based on weighted mean value is:

 9721.3
7

9882.30767.429158.34
=

+⋅+⋅   (14)

because the rate of 3.9158 is calculated with the last four data points, 4.0767 is extrapolated for 

the last eight data points and 3.9882 is computed for the last sixteen data points. Formula (14) 

takes one fact into account: the number of sixteen points is four times bigger than four and two 
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times bigger than eight. The result of 3.9158 has to be strengthened by multiplying it by four and 

the rate of 4.0767 has to be strengthened by multiplying it by two.
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Fig. 7.  The extrapolated rate for the day 17 (February 15th) using the MHR method with 16 
nodes and the weighted mean value (14)

Source:  own study.

The true rate of euro for February 15th is 3.9398 (Figure 8).
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Fig. 8.  The true rate of euro for the day 17 (February 15th)
Source:  own study.

In the author’s opinion, values extrapolated for the next day of 3.9694 (13) and 3.9721 

(14) are good enough to be one of the factors for making a decision of buying or selling the 

currency.
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Example 2
The MHR calculations are done for true rates of US dollar at the National Bank of Poland 

(NBP) from June 16th to July 8th, 2011 (Friday). If the last four rates are considered: (1; 2.7266), 

(2; 2.7531), (3; 2.7597) and (4; 2.7505), the MHR extrapolation with matrices of the dimension 

N = 2 gives the result of (5; 2.7239):
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So the anticipated rate of US dollar on July 11th (Monday) is 2.7239.

If the last eight rates are considered: (1; 2.7877), (2; 2.7517), (3; 2.7273), (4; 2.7156), 

(5; 2.7266), (6; 2.7531), (7; 2.7597) and (8; 2.7505), the MHR extrapolation with matrices of 

the dimension N = 4 gives the result of (9; 2.8471):
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The anticipated rate of US dollar on July 11th is 2.8471. There are two extrapolated values 

for the next day. Example 2 gives us two anticipated rates for tomorrow: 2.7239 and 2.8471. 

How these extrapolated values can be used in the process of making a decision if to buy dollar 
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Fig. 9.  The extrapolated rate for the day 9 (July 11th) using the MHR method with 8 nodes and 
the weighted mean value (15)

Source:  own study.
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or not, to sell dollar or not? The proposed final anticipated rate of US dollar (Figure 9) on July 

11th based on weighted mean value is:

 7650.2
3

8471.27239.22
=

+⋅   (15)

because the rate 2.7239 is calculated for N = 2, whereas 2.8471 is extrapolated for N = 4.

If the last sixteen rates are considered, the MHR extrapolation with matrices of the dimension 

N = 8 has to be used. Here are the rates: (1; 2.8069), (2; 2.8077), (3; 2.8058), (4;2.7776), 

(5; 2.7661), (6; 2.7914), (7; 2.8201), (8; 2.8055), (9; 2.7877), (10; 2.7517), (11; 2.7273), 

(12; 2.7156), (13; 2.7266), (14; 2.7531), (15; 2.7597) and (16; 2.7505). The MHR extrapolation 

gives the result of (17; 2.7808). The anticipated rate of US dollar on July 11th is 2.7808.

The MHR extrapolation has been done three times (N = 2, 4 or 8) and the anticipated 

values are 2.7239, 2.8471 and 2.7808, respectively. The proposed final anticipated rate of US 

dollar (Figure 10) on July 11th based on the weighted mean value is:

 7672.2
7

7808.28471.227239.24
=

+⋅+⋅   (16)

because the rate of 2.7239 is calculated with the last four data points, 2.8471 is extrapolated for 

the last eight data points and 2.7808 is computed for the last sixteen data points.
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Fig. 10.  The extrapolated rate for the day 17 (July 11th) using the MHR method with 16 nodes 
and the weighted mean value (16)

Source:  own study.

The true rate of US dollar on July 11th is 2.8123 (Figure 11).
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Fig. 11. The true rate of US dollar for the day 17 (July 11th)
Source:  own study.

In the author’s opinion, the extrapolated values of 2.7650 (15) and 2.7672 (16) and the 

extrapolated rates in example 1 preserve the increasing trend and they are good enough to be one 

of the factors for making a decision of buying or selling the currency. The anticipated values, 

calculated by the MHR method, are applied in the process of decision making: to follow the 

action or not, to do one thing or another. The extrapolated values can be used to make a decision 

in many branches of science and economics.

Conclusions

The method of Hurwitz-Radon Matrices leads to curve interpolation and value 

extrapolation depending on the number and location of data points. No characteristic features 

of a curve are important in the MHR method: failing to be differentiable at any point, the 

Runge’s phenomenon or differences from the shape of polynomials. These features are very 

significant for classical polynomial interpolations and extrapolations. The MHR method gives 

the possibility of reconstructing a curve and anticipating the data points. The only condition is 

to have a set of nodes according to assumptions in the MHR method. Data representation and 

curve extrapolation by means of the MHR method is connected with possibility of changing 

the nodes coordinates and the reconstruction of new data or curve for a new set of nodes. The 

same MHR interpolation and extrapolation is valid for discrete and continuous data. Main 

features of the MHR method are: the accuracy of data reconstruction depending on the number 

of nodes; interpolation or extrapolation of a curve consisting of L points is connected with the 
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computational cost of rank O(L); the MHR method is dealing with local operators: the average 

OHR operators are built by successive 4, 8 or 16 data points, what is connected with smaller 

computational costs than using all nodes; the MHR is not an affine interpolation22.

Future works are connected with: the possibility to apply the MHR method to three-

dimensional curves (3D data), computing the extrapolation error, object recognition23 and the 

MHR version for equidistance nodes.

Notes
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