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Abstract 

In the theory of economics most models describing economic growth make use of differential 
equations. The examples are Solow's and Haavelmo's models. However, when they are used by 
econometricians many questions arise. Firstly, economic data are presented in discrete form, which 
implies the use of difference equations. Secondly, the mode transition from continuous form to the 
discrete one in order to estimate its parameters is still controversial. It has been observed for some 
time that standard (classical) discretization methods of differential equations often produce difference 
equations that do not share their dynamics (for example produce chaotic behavior). 
The essence of above-mentioned problems and proposal of solving them will be presented on the basis 
of Haavelmo model. 
 

Keywords: Computer simulation, Haavelmo Growth Cycle model, Kahan’s discretization 
method. 
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Introduction 

 

Systems of ordinary differential equations (ODEs) appear in various applications. Few 

ODEs can be solved explicitly. We often have to visualize the solutions by using 

discretization methods and computer programming. After applying a discretization (or 

numerical) method to system of ODEs, it results in a system of difference equations, or 

discrete time system. 

It has been observed for some time that the standard (classical) discretization methods 

of differential equations often produce difference equations that do not share their dynamics. 

An illustrative example is the logistic difference equation: 

 xx
dt

dx
 1      00 xx  . 

Euler’s discretization scheme produces the logistic difference equation: 

 nnnn xhxxx  11 ,   00 xx  ,  ...2,1,0n , 

which possesses a remarkably different dynamics such as period-doubling bifurcation route to 

chaos1. In difference equation, a steady state (fixed point) solutions are defined by the value 

that satisfies the relation nn xx 1 . In ODEs, a steady state solution satisfies 0dt/dx . Fixed 

points of the differential equations are kept by the newly formed difference equation. 

Therefore, both equations have the same fixed points, 0 and 1. This simple example shows 

how use of the Euler method changes dynamic behavior of the model. 

Because in the economics the problem of discretization of continuous models is 

frequent, particularly in economic data, it is crucial to look for a discretization method that 

preserves dynamic properties of the model. Studies show that the most fruitful discretization 

methods are those of Mickens2 and Kahan3. The article is aimed at application of one of the 

above-mentioned methods (Kahan's method) to Haavelmo model. 

 

1. Haavelmo Model 

 
In 1954 Haavelmo4 proposed the growth cycle model: 

 
Y

L

L

L  



, 0 , , (1) 

 aKLY  , 0K , 10  a , (2) 

where L and Y are functions of time ad the dot denotes a time derivative. 
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Equation (2) has real output Y produced with a constant output elasticity a  under 

decreasing returns by the labour force L. In equation (1) N can be seen to grow autonomously 

at the proportional rate , minus rate that depends inversely on per capita output. Therefore, 

the growth increases with per capita output and is bounded above by . 

By joining equations (1) and (2) we obtain the following differential equation:  

 aL
K

LL  2 , (3) 

which describes dynamics of expenses of labour force. 

 

It is easy to show that it has two stationary solutions (using Bernoulli substitution): 

non-stable 01 
*L  and asymptotically stable 
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Thanks to the knowledge of stable, stationary solution we can write general solution 

described by the following time path: 
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The dynamics are quite simple. 

If the initial condition  
aK
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, then both L and Y will decrease monotonously 
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, then both L and Y will increase monotonously) approaching their unique 

steady state values 
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 respectively. 

 

2. Discretization 

 

2.1. Haavelmo -Stutzer Model 

 

In 1980 Stutzer5 considered non-linear model of growth cycle presented earlier for 

constant time by Haavelmo6. 
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In his work, Stutzer replaced differential operator in Haavelmo model by finite 

difference (he replaced L  by tt LL 1 ), (Euler discretization with h = 1) obtaining non-linear 

difference equation of the first order describing behaviour of employment in time: 

   a
ttt L

K
LL 

  2
1 1

  (6) 

Performing dynamic analysis for the equation (6) will allow to obtain the optimal 

employment level. However, it is inconvenient for the above-mentioned form, therefore by 

means of transformation: 
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, (7) 

we can write equation (6) as: 

    a
ttt xxx 

  1
1 11  , (8) 

where 
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The equation (8) is still a non-linear difference equation of the first order and its form 

enables further dynamic analysis. 

In order to find equilibrium state and intervals, for which there is convergence to the 

state of equilibrium, we will use properties of local bifurcations. We will use  as a decision 

parameter. 

Let 
      axxx  111  , (9) 

we solve equation:   xx  , or     xxx a  111  . As a result, we obtain two equilibrium 

points: 
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or, after transformation with the use of (7): 

 01 
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In further considerations we omit the trivial solution. Next, we analyse the 

convergence of the equation (8) to the equilibrium point *L2 . 
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According to the definition of local bifurcations, the following condition must be 

satisfied:   11 c' , from which it results that *L2  is a stable equilibrium point, if 
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,

a 1

2

1

1 , the convergence to *c1  is oscillatory. 

Let the parameter 20. , 1K/  while an initial value 600 .L  . 

Along with the above-mentioned considerations, the stable equilibrium point of 

equation (7) is   8

10

*L , for the parameter  5.2,0 . For the  25.1,0  convergence to 

the equilibrium level is monotonous and for the  5.2,25.1  – oscillatory. 

The necessary condition for reaching the equilibrium level was 52.  at a fixed 

level of the remaining parameters. We can ask the question: what happens if the parameter  

exceeds this value? The obtained results show that if the parameter rises on, the value of 

function moves between two levels cyclically. The more the parameter increases, the faster 

the duplications follow. The model’s behaviour becomes chaotic. Therefore it can be showed 

that for the values of parameters accepted earlier, the model behaves chaotically in the sense 

of Li-York theorem7 for the decision parameter  37352 .;.  . 

 

Fig.1. Haavelmo-Stutzer Model chaotic behaviour for the parameter  = 3.5 
Source: own study. 
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2.2. The Euler’s Method 

 

There are numerous discretization schemes in the Numerical Analysis literature. The 

simplest numerical scheme is the forward Euler in which 
dt

dx
 is replaced by 

h

xx tht  , where 

h  is the step-size of numerical method. Making this replacement in equation (3), and letting 

nht  , nnht LLL  , yields the difference system: 

 a
tttt Lh

K
LhLL 

  2
1

 . (10) 

Using Theorem 1, of Roeger8 we can establish the dynamic consistency of equation (10). In 

this paper also the following Theorem 1 was proven.  

 

Theorem 1. Let 0p  be a fixed point of the system of differential equations (3). Then after we 

apply the Euler’s method, the stability of 0p  will become 

(i) unstable, if 0p  was unstable, 

(ii) stable, if 0p  was stable and all of the eigenvalues of Jacobian matrix  0pDf  are 

located inside the disk hhz /1/1  , 

(iii) unstable, if 0p  was stable and some of eigenvalues of the Jacobian matrix  0pDf  

are located outside the disk hhz /1/1  . 

Moreover, if 0p  is stable, we can always preserve the stability of 0p  by choosing the step-

size h  small enough such that all of eigenvalues of Jacobian matrix  0pDf  are located 

inside the disc hhz /1/1  . 

By Theorem 1 we know that in order to preserve the local stability of the fixed point 
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If we choose the step-size h  to be  a
h
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2
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
, (for 20.a  , 6.00 L  and 53.  
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Fig.2. Applying Euler’s method to the Haavelmo model (3), we can see that when we choose 
714.08.0 h , the fixed points *L2  become unstable. The solution oscillates between 

two different values 
Source: own study. 

 

 

Fig.3. When applying Euler’s method to Haavelmo model (3), we can see that when we 
choose 714.07.0 h , the fixed point *L2  is stable 

Source: own study. 
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Fig.4. When applying Euler’s method to Haavelmo model (3), we can see that when we 
choose 1.0h , (small step-size), the fixed point *L2  is stable, and the coherence takes 
place fast 

Source: own study. 

 

2.3. The Kahan’s Method 

 

As the alternative to the Euler method, this article proposes Kahan's method9. If 

system of autonomous differential equations can be written as: 

  xx
f

dt

d
 , (11) 

then we can write Kahan’s method as: 

    xxx fDf
h

h 





 

1

2
1X , (12) 

where: 

 Tnxxx ,..., 21x , 

 xDf  – the Jacobian matrix of  xf  evaluated at x , 

1 txX  – the new system of difference equations following the Kahan discretization for 

the variable       Ttntt xxx ,..., 21tx . 

 

By applying Kahan’s method to Haavelmo model (3) we get the following numerical 

scheme: 
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Using Theorem 2 of Roeger10 we can establish the dynamic consistency of the equation (13). 

In this paper also the following Theorem 2 was proven. 

 

Theorem 2. Let 0p  be a fixed point of the differential equations (3) and h  is small enough 

such that   hpDf /20  . Then the fixed point 0p  of the differential equations (3) is locally 

asymptotically stable (unstable) if and only if the fixed point 0p  of the difference equations 

(13) is locally asymptotically stable (unstable). 
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Fig. 5. When applying Kahan’s method to the Haavelmo model (3), we can see that when we 
choose 714.07.0 h  , the fixed point *L2  is stable. The solution approaches *L2  
much faster then the Euler’s method 

Source: own study. 
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As we can see in the Figure 4 Kahan discretization results, even for 714.07.0 h , 

in a very fast convergence to the equilibrium point. When h exceeds 714.0  the convergence 

rate is increasingly slower and, as a result, when 9.0h  a complete lack of convergence 

takes place (a part of iteration takes complex values). 

 

Conclusions 

 

In this paper two discretization methods were used for the Haavelmo growth cycle 

model: Euler's (case: with h=1 – Stutzer Model, and with 1h ) and Kahan's ones. It was 

shown that even at small step h, the stable fixed point *L2  for the initial differential equation is 

unstable for the difference equation created as a result of the Euler method. The second 

discretization method – Kahan’s method preserves dynamic properties of the model. 

 

 

 

 

Notes 
1 Mickens (1994). 
2 Ibidem. 
3 Kahan (1993). 
4 Haavelmo (1954). 
5 Stutzer (1980). 
6 Haavelmo (1954). 
7 Elaydi (2007), p.96. 
8 Roeger (2006). 
9 Kahan (1993). 
10 Roeger (2006). 

 

 

 

References 

 

Elaydi, S. (2007). Discrete Chaos, 2e. Boca Raton: Chapman & Hall/CRC. 

Haavelmo, T. (1954). A Study in the Theory of Economic Evolution. Amsterdam: North-

Holland. 



 Non-Standard Method of Discretization on the Example of Haavelmo Growth Cycle Model 55 

Kahan, W. (1993). Unconventional Numerical Methods for Trajectory Calculations. 

Unpublished lecture notes. Berkeley: University of California Berkley. 

Mickens, R. E. (1994). Nonstandard Finite Difference Methods of Differential Equations. 

Singapore: World Scientific. 

Roeger Lih-Ing, W. (2006). Local Stability of Euler’s and Kahan’s Methods. Journal of 

Difference Equations and Applications. Vol. 10, No. 6, 601-614. 

Stutzer, M.J. (1980). Chaotic Dynamics and Bifurcations in a Macro-Model. Journal of 

Economic Dynamics and Control. 2, 353-376. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


