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abstract

A log-linear analysis is a method providing a comprehensive scheme to describe the association for 
categorical variables in a contingency table. The log-linear model specifies how the expected counts depend 
on the levels of the categorical variables for these cells and provide detailed information on the associations. 
The aim of this paper is to present theoretical, as well as empirical, aspects of ordinal log-linear models 
used for contingency tables with ordinal variables. We introduce log-linear models for ordinal variables: 
linear-by-linear association, row effect model, column effect model and RC Goodman`s model. Algorithm, 
advantages and disadvantages will be discussed in the paper. An empirical analysis will be conducted with 
the use of R. 
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introduction 

There has been a tremendous increase in the publication of research on analyzing 
categorical data measured on an ordinal scale. Since about 1980, there has been an increasing 
emphasis on having data analyses distinguish between an ordered and unordered scale for the 
categories. Many advantages can be gained from treating an ordered categorical variable as 
ordinal rather than nominal. An ordinal analysis can provide a greater variety of models, and 
those models are more parsimonious and have simpler interpretations than the standard models 
for nominal variables. Also, they have greater power for detecting relevant trend or location 
alternatives to the null hypothesis of no effect of an explanatory variable on the response one. 
Ordinal variables can include an interesting model that for standard nominal models are trivial 
or have too many parameters to be tested for goodness of fit (Agresti, 2010). 

In the past years, scientists have become more increasingly familiar with log-linear 
models for nominal categorical variables. For joint distribution of categorical response variables 
in a multi-way table, log-linear models describe the dependence structure. They can analyze 
whether the association between a pair of variables is homogenous across the categories of 
other variables, and if so, whether those variables are conditionally independent. Those models 
examine the relationship among categorical variables by analyzing observed data. For nominal 
log-linear models, no assumptions are made about the order of the measurement of the variables. 
Because nominal models are insensitive to the ranking of these ordinal variables, they ignore 
important information when at least one variable is ordinal. 

Ordinal log-linear models can be treated as an extension of nominal log-linear models. 
When nominal variables X and Y are examined in a log-linear analysis, the saturated model 
includes the interaction term between X and Y. However, this model has no degrees of freedom, 
and is always of little importance since we are interested in testing a more parsimonious 
model. For a two-way table, the next model is an independence model, however, this model 
is unrealistic and the fit of it is usually poor. For nominal variables, there are no other models 
between independence and saturated models. The ordinal approach provides a model between 
these two. With ordinal models we can test a greater variety of substantively important models. 

So far, in the context of classical log-linear models, there are just two options for modeling 
two-way contingency tables: the parsimonious but restrictive model of independence, and the 
saturated model. Association models fill the gap between these two extreme cases by imposing 
a special structure on the association and reducing the number of interaction parameters, 
providing thus intermediate models for independence. For better understanding and also for the 
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purpose of interpretation, it is convenient to think in terms of the local association in the table 
and first to define the models on the local odds ratios. 

The aim of this paper is to present theoretical, as well as empirical, aspects of ordinal log-
linear models used for contingency tables with ordinal variables. We introduce log-linear models 
for ordinal variables: linear-by-linear association, row effect model, column effect model and 
RC Goodman`s model. This study focuses on the methods of analysis of categorical data having 
ordered categories for multi-way tables. This paper discusses some of the specialized models 
which use the information on the ordering, unlike standard methods for the data measured on 
a nominal scale. Several log-linear models for ordinal variables will be presented in the paper 
based on the report Social diagnosis 2013. Conditions and quality of life by Poles with the use 
of R software. 

1. Ordinal log-linear models as association models

Log-linear models are a standard tool to analyze the structures of dependency in multi-
way contingency tables. Standard log-linear models treat all classification variables as nominal, 
unordered factors. The criteria to be analyzed are the expected cell frequencies as a function 
of all the variables measured on a nominal scale. A saturated model for a two-way table I × J 
( 1, 2, ..., , 1, 2, ...,i I j J= = ) includes all the possible effects [Bishop, Fienberg, Holland 1975, 
Knoke, Burke 1980, Ishii-Kuntz 1994, Christensen 1997, Agresti 2002]: 

 ( )log X Y XY
ij i j ij= λ + λ + λ + λ  (1)

where: λ represents an overall effect or a constant, X
iλ and Y

jλ  represent the effect of the row and 
column variable, XY

ijλ  represents the interaction between two variables. 
Log-linear models that use the ordered nature of the factors offer several advantages 

(Brzezińska, 2015). Because they are more focused, the tests that use the ordinal structure 
of the table variables are more powerful when the association varies systematically with the 
ordered values of a factor. Because they consume fewer degrees of freedom, we can fit an 
unsaturated model where the corresponding model for nominal factors would be saturated. In 
a two-way table, for example, a variety of models for ordinal factors may be proposed that are 
intermediate between the independence model and the saturated model. Another advantage is 
that the parameter estimates from these models are fewer in numbers, are easier to interpret, and 
quantify the nature of effects better than the corresponding quantities in the model for nominal 
factors. Estimating fewer parameters typically gives smaller standard errors. 
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Ordinal log-linear models are used when one or more variables are ordinally measured, 
that is, if one of the variables is ordinal, a nonsaturated model can be used to measure the 
association. In an ordinal log-linear analysis, we can distinguish a row effect model, column 
effect model, uniform association model and RC Goodman’s model. The association parameters 
in log-linear models describe the ordinal characteristics of the data. The descriptive statement 
made with these methods is always more informative than the one with nominal. There is also 
greater potential for detecting certain forms, and the greater variety of ways of describing the 
association. 

Another type of an association model for ordinal variables is a row effects model and 
a column effect model. When for a two-way table one variable is treated as ordinal and the other 
as nominal, we have a row effects model or a column effect model. In a row effects model, a row 
variable is nominal and a column variable is ordinal. We can construct this model by replacing 

XY
ijλ  in (1) with the association term ( )h jv vτ −  (Ishii-Kuntz, 1994): 

 log( ) ( )X Y
ij i j h jm v v= λ + λ + λ + τ −  (2)

where the hτ s are row effects parameters and the jv  ( 1 2 ... Jv v v< < < ) are scores assigned 
to the columns in the contingency table, and ( )h jv vτ −  is an association parameter in which 

jv v−  is the ordinal of categories, replacing interaction parameter XY
ijλ  in (1). In addition, the 

zero-sum constraints 
1 1 1

0
I J I

X Y
i j i

i j i= = =

λ = λ = τ =∑ ∑ ∑  are imposed in order to identify the model`s 

parameters. Model (2) has ( 1)( 1)I J− −  degrees of freedom. The row effects model (2) is more 
parsimonious than the saturated model (1). For the arbitrary pair of rows h  and i , and the 
adjacent columns j and j + 1, the log odds ratio is: 
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= τ − + τ − = τ − τ

 (3)

because ( )1 1j jv v +− = −  and ( )1 1j jv v+ − = . Thus, the odds ratio is: i heτ −τθ = . A column effect 
model is a simple variation of the row effects model, with the difference that the row variable is 
ordinal, and the column variable is nominal. 
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A uniform association model treats the levels of both a row and column variable 
as ordinal. We use a set of integer scores for both a row and column variable to reflect the 
ordering of these variables: { }iu  for a row variable ( 1 2 ... Iu u u< < < ) and { }jv  for a column 
variable ( 1 2 ... Jv v v< < < ). The choice of scores will reflect the assumed distances between 
the midpoints of categories for an underlying interval scale. Equally spaced scores result in the 
simplest interpretation for the model. In practice, the integer scores { }iu i=  and { }jv j=  are 
most commonly used, and this approach will be explained in the empirical part of the paper.

The goal is to pose a model more complex than the independence model, but not saturated. 
This is done by including an association term reflecting the relationship between two ordinal 
variables (Ishii-Kuntz, 1994):

 log( ) ( )( )X Y
ij i j i jm u u v v= λ + λ + λ +β − −  (4)

To identify this model, the zero-sum constraint is imposed and 
1 1

0
I J

X Y
i j

i j= =

λ = λ =∑ ∑  and 

the transformation of scores by ( )( )i ju u v v− −  corresponds to the order ( 1,0,1)− . Since { }iu  
and { }jv  are fixed, the uniform association model has only one more parameter (β ) than the 
independence model. Thus, there are [1 ( 1) ( 1)] 1IJ I J− + − + − −  degrees of freedom for the 
uniform association model. The log odds ratio is given as:
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= µ + λ + λ +β − − +µ + λ + λ +β − − −    

 
− µ + λ + λ +β − − +µ + λ + λ +β − − =  

= β − − +β − − −  
− β − − +β − − =  

= β + −β + = β − −

 (5)

The independence model is a special case of (3) when 0β = . 
As the backward elimination procedure is to be used in selecting the most representative 

model by utilizing the natural ordering of the variables, we start the model fitting procedure 
by taking the selected standard model into account. Ordinal log-linear models can be used for 
two- and multi-way contingency tables. The overall goodness-of-fit of a model is assessed 
by comparing the expected frequencies to the observed cell frequencies for each model. It is 
necessary to assess the goodness-of-fit of the model. The following hypothesis are used: H0: the 
model represents association well enough vs. H1: the model does not represent association well 
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enough. The goodness-of-fit of a log-linear model is usually tested using either the Pearson chi-
square statistic test or the likelihood ratio (Knoke, Burke, 1980; Christensen, 1997): 

 2

1 1
2 log

I J
ij

ij
i j ij

n
G n

m= =

 
=   

 
∑∑  (6)

Therefore, the larger 2G  values indicate that the model does not fit the data well, and 
thus the model should be rejected. This strategy is the opposite of the usual chi-square test 
of independence, where we seek to reject the null hypothesis of no association. However, in 
trying to find the best fitting log-linear model to describe a cross-table, we hope to accept the 
hypothesized model, hence we want to find a low 2G  value relative to df (Knoke, Burke, 1980). 
The likelihood ratio can also be used to compare an overall model within a smaller, nested model 
(i.e. a saturated model with one interaction or main effect dropped to assess the importance of 
that term). The equation is 2 2 2

2 1G G G∆ = −  with: 2 1df df df∆ = − , where 2 is a nested model, 1 
is the higher parameterized model, 1df  and 2df  are degrees of freedom for model 1 and 2. 
Also, information criteria can be used to test the goodness-of-fit: AIC (Akaike, 1973) and 
BIC (Raftery, 1986). Akaike information criterion (Akaike, 1973) refers to the information 
contained in a statistical model according to equation:

 2 2AIC G df= −  (7)

The model that minimizes AIC  will be chosen. 

2. application in r

First, ordinal log-linear models will be presented with the use of the row effects model 
based on the data on influenza in 2013 from the National Institute on Public Health. The sample 
size was 213,906. A two-way table was build for the nominal and ordinal variables: voivodeship 
(16 provinces of Poland) and age (0–4, 5–14, 15–64 and 65+). As age is measured ordinally, 
a new variable is included in the row effects model: c.age with scores (1, 2, 3, 4), which is the 
main effect confounded with age. Thus, its coefficient is not estimable. 

To obtain the row effects model in R, we use function: glm(formula=count~Age
+Voivodeship*c.Age,family=poisson). The goodness-of-fit of the independence 
model and of the row effects model is summarized in Table 1. 
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Table 1. Goodness-of-fit statistics for saturated, independence and row effects model

Model G2 df ∆G2 ∆df AIC

[VA] 0   0 1,201.6 0 731.42
Row effects model 1,201.6 30 1,005.2 5 1,873.1
[V][A] 2,206.8 45 --- --- 2,848.2

Source: own calculations in R.

The saturated model [VA] fits the data perfectly with 0 degrees of freedom. The likelihood 
ratio statistic for the row effects model is 1,201.6 with 30 degrees of freedom, and the AIC 
criterion is 1,873.1. The independence model [V][A] has likelihood ratio statistic 2,206.8 with 
45 degrees of freedom, and the AIC criterion is 2,848.2. The ∆G2 tests whether the corresponding 
model results in a significant reduction in the residual G2 compared to the independence model. 
We can see, that the best fit occurs for the row effects model. For this model also the minimum 
value of AIC criterion is obtained (except the saturated model). We obtain the row effects model 
with the use of coef function, and the expected cell frequencies which are fitted values with 
the use of fitted function. 

A uniform association model was built on the data from Social Diagnosis 2013 – “Objective 
and Subjective Quality of Life in Poland.” The sample size was 26,307 respondents by age 
(0–24, 25–34, 35–44, 45–59, 60–64 and 65+) and time spent on watching TV (0–1, 1–3 and 3+ 
hours). The independence, saturated and uniform association model was built. 

The model including the row and column scores is defined as: glm(count~Age*Time+c.
Age*c.Time,data=data,family=poisson). The goodness-of-fit statistics for the 
independence model and the uniform association model are summarized in Table 2. 

Table 2. Goodness-of-fit statistics for saturated, independence and uniform association model

Model G2 df ∆G2 ∆df AIC

[VA] 0 0 0 0 196.93
Uniform association model 0 0 1,606.6 10 196.93
[V][A] 1,606.6 10 --- --- 1,783.5

Source: own calculations in R.

The analysis of Table 2 shows that the uniform association model fits the data very well 
with 10 degrees of freedom. In comparison to nominal models (the saturated and complete 
independence model), the uniform association model is chosen as the best fitting. 
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The analysis of the ordinal log-linear models proves that there is a large variety of models 
that can be used to analyze ordinal categorical data with the use of model-based methods. These 
methods are always more informative than those based on non-model based methods that ignore 
the ordinal nature of the variables. 

Another dataset presented in this paper is based on the report Social diagnosis 2013. 
Conditions and quality of life by Poles on time spent on watching television. The sample size 
was 26,307 adult respondents. The survey was based on two questions: time spent on watching 
TV (0–1, 1–3, 3 and more hours) and age (18–24, 25–34, 35–44, 45–59, 60–64, and 65 and 
more). First of all, a correspondence analysis was applied to measure the association between 
the variables (treated as nominal variables). The value of total inertia is 0.0614λ =  which 
means that there is very a week association between the variables. The first dimension is 
explained by 91.3% of the total inertia, and the two dimensions explain 100% of the total inertia. 
The independence between the variables can be also seen on the perception map (Figure 1). 

Figure 1. Perception map in a correspondence analysis
Source: own calculations in R. 
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To check whether the independence appears also in a log-linear model, we built a uniform 
association model, row effects model, and column effects log-linear model. 

Table 3. Akaike Information Criteria (AIC) for ordinal log-linear models

Model G2 df AIC

Saturated 0 0 196.93
Uniform association 190.10 9 369.03
Row effects 182.64 8 363.58
Column effects 85.52 5 272.46
Independence 1,606.60 10 1,783.50
RC Goodmans` 79.15 0 79.15

Source: own calculations in R.

From all the models analyzed we can see that the model that fits best is the column effects 
model defined with the equation log( ) ( )T A

ij i j i jm v v= λ + λ + λ + τ −  with the likelihood ratio 
value 85.52 and the degrees of freedom equal to 5. Also, the information criteria for this model 
indicate the best fit and the smallest value. From the detailed analysis of the parameters values 
we can see that the parameters for the interaction of age, and the ranges connected with the 
column variable are increasing (0.0595, 0.1763, 0.4348, 0.8631, 0.9656). The parameters with 
a positive sign for the column analyzed mean that more observations appear in the columns with 
the higher values of the ordinal variable, and less in the columns with the smaller values of the 
variable compared to independence. 

Here, with the use of ordinal log-linear models, we can obtain a more detailed analysis of 
association compared to the classical methods of association. It means that log-linear models 
provide unique information on the path of association that can be rarely found with the use of 
other methods. However, log-linear models are not free of disadvantages; the choice of scores 
may highly depend on the data and the context of the problem that is analyzed. Therefore, there 
are other ways of using and modeling ordinality, e.g. cumlative logit models.

Conclusions

Log-linear models are a powerful statistical tool for analyzing cross tables with nominal 
and ordinal variables. There are many advantages in using ordinal instead of nominal log-linear 
models. The main advantage of ordinal log-linear models is that they have structured association 
and interaction terms that contain fewer parameters and retain more residual degrees of freedom 
than the nominal models. In comparison to nominal models, we can only choose between 
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a saturated model and model of independence. Ordinal models provide a greater variety of 
models, including the ones that exist between a saturated and independence model. We can test 
several models that exist between an independence and saturated model, which is impossible 
with the use of the well known methods of association. 

The main objective of the paper was to discuss the advantages of using orderings of 
ordinal categorical variables. The models for ordinal variables provide easier quantification 
of association in terms of odds ratios, and have more power to detect interactions when 
compared to the models for nominal variables. Log-linear models are a powerful statistical tool 
for analyzing cross tables with nominal and ordinal variables. There are many advantages in 
using ordinal instead of nominal log-linear models. First, where nominal models are saturated, 
there are unsaturated ordinal log-linear models. Ordinal models have structured association and 
interaction terms that contain fewer parameters and retain more residual degrees of freedom 
than nominal models.
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