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Abstract

A basic assumption in proportional intensity models is the proportionality, that each covariate has 
a multiplicative effect on the intensity. The proportionality assumption is a strong assumption which is not 
always necessarily reasonable and thus needs to be checked. The survival analysis often employs graphic 
methods to study hazard proportionality. In this paper a geometrical method for determining the value of the 
hazard function on the basis of the continuous survival function was proposed. This method can be used to 
compare the intensity of the event for objects belonging to two subgroups of the analysed population. If we 
have graphs of survival function, then an analysis of the tangents at a specific time and their roots enables us 
to find the intensity and to study the relationship between them for different subgroups. This method can also 
be useful when studying the proportionality of hazard. It is a condition for the use of the Cox proportional 
hazards model. The above method was used to evaluate the effect of unemployment benefit and gender on 
unemployment and on the intensity of finding a job.
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Introduction

Methods of event history analysis are increasingly popular in the modelling of socio-
economic phenomena. The survival analysis, depending on the area of application also called 
the duration or reliability analysis is one of the most important ones. The survival analysis is 
concerned with studying the time between entry to a study and a subsequent event, such as 
lifetime (the time from birth to death), the job seeking time or the time of a machine’s operation 
until its breakdown. Subjects are observed from the moment when a given process starts to its 
termination. The advantage of these methods is that we can include in the observation those 
subjects that, for various reasons, have dropped out from the study. They form a group of 
censored observations. These methods can also be used when we do not know the distribution 
of the random variable T – either discontinuous or continuous – of the time to event.

In this article I propose a geometric method to determine the value of the intensity function 
on the basis of the behaviour of a survival function when we do not know the distribution of 
the phenomenon duration.1 The method can be used to compare the event intensity for subjects 
belonging to two subgroups of a population of interest. In this article I intend to apply the 
proposed method to evaluating the probability of failed job search and of employment intensity 
by the unemployed individuals registered by the Poviat Labour Office in Szczecin over 2012 
and 2013.

1.	 The survival function and the hazard function

A primary function in a survival analysis is the survival function. It is defined as:

	 ( ) ( )( ) 1S t P T t F t= > = −      for t ≥ 0	 (1)

where F(t) is a distribution function of the random variable T which denotes the time to event. 
Depending on the definition of the distribution function, the survival function is also described 
as ( ) ( )S t P T t= ≥  (Collett, 2003; Selvin, 2008). Thus, the survival function denotes the 
probability of an event that the subject will survive longer than t, i.e. that the event will not 
happen sooner than t. The survival function is non-increasing and meets the conditions: S(0) = 1 
and ( )lim 0

t
S t

→+∞
= . Because ( ) ( )

0

t

F t f u du= ∫ , where f(t) is the probability density function, we 
have (Klein, Moeschberger, 2003):

1  See more on the analytic form of the survival function and the intensity for the known survival time distributions in: 
Huzurbazar (2005).
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	 ( ) ( )
t

S t f u du
+∞

= ∫       for t ≥ 0	 (2)

	 ( ) ( )dS t
f t

dt
= −          for t ≥ 0	 (3)

The second very important function in the survival analysis is the hazard function, 
sometimes called the intensity function. Here it is assumed that in a given interval of time 

( ,t t t+ ∆  the subject experienced a given event, under the condition that it did not happen until 
the time t. The probability of such an event to happen equals ( )P t T t t T t< ≤ + ∆ > . In case 
when 0t∆ →  the hazard function h(t) is defined as (Aalen et al., 2008: 6):

	 ( ) ( )
0

lim
t

P t T t t T t
h t

t∆ →

< ≤ + ∆ >
=

∆
        for t ≥ 0	 (4)

Formula (4) can be also written:

	 ( ) ( ) ( )
( )0

1lim
t

S t S t t
h t

t S t∆ →

− + ∆
=

∆
       for t ≥ 0	 (5)

therefore:

	 ( )
( )

( )

dS t
dth t

S t
= −        for t ≥ 0	 (6)

Since the first function derivative is interpreted as velocity, the formula (5) expresses 
relative velocity taking the reversed sign. The hazard function is a conditional density function 
of the event to happen at the time t given that the event did not take place until this time. Because 
the survival function is non-increasing, its derivative is non-positive. Therefore the hazard h(t) 
is a non-negative function meeting the conditions (Kalbfleisch, Prentice, 2002: 7):

	 ( )
0

t

h u du < +∞∫         for t ≥ 0	 (7)

	 ( )
0

h u du
+∞

= +∞∫ 	 (8)

Contrary to the survival function, the hazard function does not have to be monotonic 
(Kleinbaum, Klein, 2005: 12–13).
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2.	 Geometric method of determining the intensity of events

A statistical test for checking the proportionality assumption has been considered by 
a number of authors (Cox, 1972; Schoenfeld, 1982; Wei, 1984; O’Quigley, Pessione, 1989; Lin 
et al., 1993; Grambsch, Thernau, 1994; Scheike, Martinussen, 2004; Kvaløy, Neef, 2004; Kraus, 
2007). The survival analysis often employs graphic methods to study hazard proportionality 
(Andersen et al., 1993). It is one of the elementary conditions when using the Cox proportional 
hazard model for modelling the intensity of events. The most common method consists in testing 
if the transformed survival curves (determined by means of, for instance, the Kaplan-Meier 
estimator) for individual categories of the variable in question are parallel (Kleinbaum, Klein, 
2005: 137–145). To examine the ‘parallelism’ we transform the survival function values S(t, X) 
into –ln(–lnS(t, X) (or ln(–lnS(t, X)). The transformation was first proposed by Kalbfleisch and 
Prentice (2002).

In case of a continuous survival function we can assess the hazard value looking at the 
survival function diagram. Figure 1 shows the curve (a continuous line) of an optional function 
y = S(t). A broken line represents the tangent to this curve at the point t. We know that the slope 
of this tangent is equal to the derivative of the function at the tangency point, thus:

	
( )

tan
dS t

dt
α = 	 (9)

Let the angle β complement the angle ∝ to straight angle. Then, according to reduction 
formulas, we have a relationship:

	 tanβ = tan(180° – α) = –tanα	 (10)

therefore:

	 ( )
tan

dS t
dt

β = − 	 (11)

Let x = t1 – t, where t1 is a point where the tangent intersects with the x-axis. According to 
the triangle properties, we have the equality:

	 ( )
tan

S t
x

= α 	 (12)

or, comparing formulas (11) and (12):

	
( )
( ) ( )

1S t
x

dS t h t
dt

= − = 	 (13)
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Thus, the gap between the analysed moment in time and the tangent zero point equals 
the reversed hazard calculated at this moment. Therefore, the larger the value x, the smaller the 
value of hazard h(t). The faster the rate of the survival function decrease, the larger the value of 
the event intensity.

Fig. 1. The relation between the survival curve and the hazard
Source: own study.

3. Geometric method for a comparison of the intensity of events

Formula (13) can be used for comparing the hazard in two groups of the observed 
population at the time t when we have just the diagrams of the survival function. Figure 2 
presents the diagrams of two continuous survival functions ( )1y S t=  and ( )2y S t= . The 
tangents to both curves at the time t intersect the x-axis at the points t01 and t02, respectively. 
When analysing the values t01 – t and t02 – t which, according to Formula (13), corresponds to 
the values 

( )1

1
h t

 and 
( )2

1
h t

, we can conclude that ( ) ( )1 2h t h t< .

The values of the hazard function change over the time of observation. In a specifi c case it 
may happen that t01 = t02, or t01 – t = t02 – t. Thus ( ) ( )1 2h t h t= . It means that the event intensities 
in both subgroups at the time t become equal. Such a situation is presented in Figure 3.



Geometric Method of Determining Hazard for the Continuous Survival Function 27

Fig. 2. The relation between the survival curves and the hazards in the two subgroups of the 
observed population

Source: own study.

Fig. 3. The analysis of tangents to the survival curves when the hazards in the two subgroups 
are equal

Source: own study.

This method can be useful when studying hazard proportionality. It is a necessary preliminary 
element when we want to use the Cox proportional hazard model (Hosmer, Lemeshow, 1999; 
Machin et al., 2006; O’Quigley, 2008). Figure 4 presents the situation where at the time t1 we 
have h1(t) > h2(t), while at the time t2 we have h1(t) < h2(t). In this case the survival curves are 
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intersecting. Due the fact that there is a point where these curves intersect we know that the 
relation between the event intensities in both subgroups has changed. Remember, however, that 
the hazards have not become equal at the very point of intersection because we have S1(t) = S2(t), 
but the tangents to the survival curves at the point of intersection are inclined with respect to the 

x-axis at different angles, so 
( ) ( )1 2d dS t S t

dt dt
≠ , therefore ( ) ( )1 2h t h t≠ . Generally, the hazards 

will become equal at these points of time where 

( )

( )

( )

( )

1 2

1 2

d dS t S t
dt dt

S t S t
− = − . It will happen when the 

survival curves coincide in a certain interval. Then the function values and their derivatives will 
be equal. However, it is possible that the equality will be satisfied for other points of the survival 
curves as well – see Figure 4. Both survival functions are continuous, so the slopes of tangents 
drawn at subsequent points of these curves change in a continuous manner as well. It can be 
concluded that the changes in the hazard function value are also continuous. If h1(t) > h2(t) 
changes into h1(t) < h2(t), there is a point t0 at which h1(t0) = h2(t0) and it is not the point where 
the given survival curves intersect.

Fig. 4. The analysis of tangents to the survival curves when the relation between the hazards in 
the two subgroups has changed

Source: own study.
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4.	 Unemployment benefit and gender as determinants of unemployment leaving intensity

The research was based on the individual data of 21, 398 jobseekers registered by the 
Poviat Labour Office in Szczecin in 2012 and observed by the end of 2013. The data pertain to 
the seventh most populated city in Poland (approximately 400 thousand in 2013). Due to varying 
characteristics of the regions, the findings of this study cannot be discussed in a broader context. 
From the social policy point of view, however, this kind of research is highly recommendable. 
The author determined the dates of the unemployed person’s registration. The observation 
was considered to be complete if it ended with the termination of unemployment. If the de-
registration had not taken place before the end of 2013 or if it had taken place before the end of 
2013 due to a reason other than finding a job, the data were regarded as censored. Additionally, 
the author looked at the impact of unemployment benefit on the spell of unemployment duration 
and employment intensity. Figure 5 shows the curves of survival in unemployment, while Figure 
6 – the graphs of hazards in two groups of the observed cohorts of the unemployed: those with 
and without unemployment benefits. The survival curves are intersecting, which is analogous 
to the situation presented in Figure 4. Before the 11th month the probability of not finding a job 
by the jobseekers who were granted unemployment benefit was higher than in the case of the 
ones without the benefit. In the 11th month their employment odds levelled off, which was 
then followed by a reversal of the trend. The change in the employment intensity had taken 
place earlier. The jobseekers not entitled to employment benefit were finding jobs with higher 
intensity by the second month, when the trend was reversed. Therefore, we can conclude that in 
this particular situation the proportionality of hazards does not take place.
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Fig. 5. The curves of survival in unemployment depending on unemployment benefit
Source: own study based on the data from the Poviat Labour Office Szczecin.
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Fig. 6. Intensity of finding employment by unemployment benefit
Source: own study based on the data from the Poviat Labour of Szczecin.

The author also examined the effect of gender on the survival in unemployment and job 
finding intensity. In the period of observation women were more successful in job seeking than 
men. The absence of points where the survival curves intersected means that the above relation 
continued throughout the observation time (Figure 7). The hazard functions determined for 
both gender groups were declining and parallel. This proves that the hazard is proportional 
(Figure 8). Women’s job seeking efforts were more intense than men’s and the hazard coefficient 
(women/men) over the period of 24 months was approximately 1.12. 
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Fig. 7. The curves of survival in unemployment depending on gender
Source: own study based on data from the Poviat Labour of Szczecin.
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Fig. 8. Intensity of finding employment by gender
Source: own study based on data from the Poviat Labour of Szczecin.

Conclusions

In the survival analysis we can study the hazard proportionality by means of a graphic 
method where the curves of the observed subgroups’ survival are transformed into –ln(–lnS(t)). 
If the curves that have been transformed in this manner are parallel, we can use the Cox 
proportional hazard model to model the intensity of events. In this case the parallelism of 
the curves means that the distances calculated along the y-axis are the same. In practice it is 
sufficient for these curves to be close to each other. Then, we assume that the hazard quotients 
of both subgroups are constant throughout the time of the event. The graphic method mentioned 
above allows to assess the hazard rate and to examine the relation between hazards in the two 
subgroups of the observed population. Also, it is possible to assess the proportionality while 
not having to take a double logarithm of the survival function. In the case when there is no 
proportionality, we can preliminarily estimate these moments of time when the intensities have 
got equal, which may help us choose a proper form of the Cox non-proportional hazard model. 
Additionally, the analysis of the length of job seeking spells shows that in the observed period 
the jobseekers not entitled to unemployment benefit found jobs sooner (by the 11th month of 
registration) and with higher intensity (by the 2nd month of registration). As far as the gender 
perspective is concerned, women were leaving unemployment faster and with higher intensity 
(by 12%) than men.
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