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Abstract

In this paper a new method of estimating the shape parameter of generalized error distribution (GED), called 
‘approximated moment method’, was proposed. The following estimators were considered: the one obtained 
through the maximum likelihood method (MLM), approximated fast estimator (AFE), and approximated 
moment method (AMM). The quality of estimator was evaluated on the basis of the value of the relative 
mean square error. Computer simulations were conducted using random number generators for the following 
shape parameters: s = 0.5, s = 1.0 (Laplace distribution) s = 2.0 (Gaussian distribution) and s = 3.0.
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Introduction

In the paper a distribution which is the generalization of Gaussian distribution or Laplace 

distribution will be considered. The generalized error distribution (GED) includes the specific 

cases of the Laplace distribution and Gaussian distribution. The density function of which 

is given by equation (1) is called the Generalized Error Distribution (GED) or Generalized 

Gaussian Distribution (GGD). Due to a changing value of the shape parameter s (equation 1), 

the distribution enables modeling of various physical and economic variables. GGD has been 

applied in image recognition, signal disturbance modeling and speech modeling1. Furthermore 

it is widely applied in image compression, where it is used for modeling the distribution of the 

discrete cosine transform (DCT) coefficients2. GED is successfully applied in modeling the 

distribution of rates of return for stock indexes and companies3. The distributions with the so 

called “fat tails” have been applied in modeling time-varying conditional variance, among others4 

and, where for the GARCH model estimation, GED was used as a conditional distribution5.

This paper focuses on the problems present in an estimation of the shape parameter s in 

the case of a small sample size.

We assumed the following symbols for GED density:
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where Γ(z) – Euler’s gamma function.

For s = 1, GED turns into the Laplace distribution (biexponential):
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In the case of s = 2, a normal distribution is obtained:
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For simplicity reasons, it is assumed that on the basis of the sample, the estimation of 

parameter µ was determined:
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and consequently, a series of values xk has been centralized by subtracting µ .
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Hence the density of the following form is considered:
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GED characteristics and parameter estimation methods were first mentioned in Subbotin, 

yet the application of the distribution to statistical issues is owed to Box&Tiao6.

1. 	 Selected methods of GED parameters estimation 

1.1. 	 Maximum likelihood method (MLM)

By applying MLM, the logarithm of likelihood function:
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where: ( )( ) lndz z
dz

Ψ = Γ   .

From equation (8) the shape parameter s is derived and from equation (7) – parameter λ .
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1.2. 	 Approximated fast estimator

In Krupiński and Purczyński the method of GED parameter estimation based on absolute 

moments was applied7.

An absolute moment of order m is given by:
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From equations (5) and (9) we obtain:
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Moment estimator Em has a form: 
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Assuming two different values of moment’s m1 and m2 in equation (10) and eliminating 

parameter λ , we obtain: 
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The estimation of the shape parameter s is obtained in the form of an inversion function of 

the function G(s). The following form of the inversion function was proposed:
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Table 1 contains values of coefficients a, b and c for particular sets of moment values. The 

coefficients were derived through computer simulations taking into account the smallest values 

of the error RRMSE (equation 19), i.e. mean square approximation was conducted, hence the 

name of the method ‘approximated fast estimator’ (AFE).
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Table 1. Coefficient values of model (13)

Moment values a b c Estimate ŝ

m1 = 0.1; m2 = 0.5 –0.00925 –0.016040 –1.0153 ŝ0

m1 = 0.5; m2 = 1 –0.04606 –0.074700 –1.0689 ŝ1

m1 = 1; m2 = 2 –0.12496 –0.221715 –1.1374 ŝ2

m1 = 2; m2 = 3 –0.15917 –0.349350 –1.1966 ŝ3

Source: 	author’s own calculations.

An algorithm proposed in Krupiński and Purczyński is the following8. Based on equation 

(13) and Table 1, the value of the shape parameter estimate ŝ2 is determined. Consequently, in 

accordance with dependency (14), the final estimate ŝf is calculated:
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Finally, based on the estimate ŝf, the parameter estimate λ̂  is determined:
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where  m = m1 or m = m2.

1.3. Approximated moment method 

In this paper a modification of the method provided in Krupiński and Purczyński is 

proposed9. The modification is related mainly to the form of the inversion function. By assuming 

in equation (10) m2 = 2 · m1 and eliminating the parameter λ, we obtain:
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The inverse function of the function g (equation 16) takes the following form dependent 

on moment values m2 = 2 · m1:
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The final estimate aŝ  is obtained from the following dependency: 
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Using equation (15) the estimate of parameter λ̂  value is obtained.

In order to differentiate from the previously used method – AFE, the proposed method is 

called ‘approximated moment method’ – AMM.

2. 	 Results of computer simulations

In order to assess the quality of particular estimators, numerical experiments were 

conducted using a random number GED generator for selected values of the shape parameter: 

s = 0.5, s =1 (Laplace distribution) s = 2 (Gaussian distribution) and s = 3. The computer 

simulations consisted in performing K = 2000 iterations, and on their basis determining the 

estimation error RRMSE (Relative Root Mean-Squared Error):
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where: 

kŝ 	– 	estimation of parameter s value for k-simulation,

ds 	– 	exact value of the shape parameter s.

In the paper the error RRMSE was determined (equation 19), since it is directly related to 

the error MSE (Mean-Squared Error):
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The mean-squared error is important as such, since it encompasses both the error of the 

estimator bias and its variance:

	 ( ) ( )2ˆ ˆMSE V s b s= + 	 (21)

where:

V(ŝ)	– 	variance of the estimator,

b(ŝ)	 – 	bias of the estimator.

When presenting the results of computer simulations, the label rmse was used in place of 

RRMSE.
In order to solve equation (8) the bisection method was applied.

The calculations were conducted for a changing sample size (number of observations) 

N = 31, 41, …, 101. During the calculations it was noted that the shape parameter error is 

influenced by the way of determining the mean value, which is subtracted in the process of 

centralizing. It was especially noticeable in the case of the AFE method, for which the subtracting 

of the mean value (equation 4) yielded the error rmse several times larger than in the case when 

the median was subtracted. Therefore in subsequent figures the values of rmse for the samples 

centralized by means of the median were presented. 
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Figure 1 depicts values of error for the generator with the shape parameter s = 0.5. 

It should be noticed that the sample with N = 31 elements has a very large relative error – for 

ML and AFE the error equals several hundred percent. For other values of N AFE method has 

the error of 100%.

 

30 40 50 60 70 80 90 1000

0.5

1

1.5

2

2.5

3

rmseMLi

rmseFi

rmseAi

Ni

.

Dotted line with x rmseML presents the values obtained by MLM. Dashed line with circles rmsF corresponds to AFE 
method (equations 13, 14). Solid line with rectangles rmseA marks the values of error obtained through AMM method 
(equations 17, 18).

Fig. 1. 	Values rmse obtained for GED generator with the shape parameter s = 0.5 
Source: 	author’s own calculations.

Figures 2 (Laplace distribution) and 3 (Gaussian distribution) show considerable similarity: 

ML method yields the largest error, and the smallest error – AMM method. Yet the larger the 

number of N elements, the more similar the errors of particular methods. Figures 1, 2, 3 show 

the large error of ML for the number of elements N = 31. Figure N must be substantially large 

to reveal the advantages of ML method leading to efficient and unbiased estimators. This issue 

was discussed in Meigen, Meigen10. 
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The symbols used in this figure are the same as in Figure 1.

Fig. 2. 	Values rmse obtained for GED generator with the shape parameter s = 1 (Laplace 
distribution)

Source: 	author’s own calculations.
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The symbols used in this figure are the same as in Figure 1.

Fig. 3. 	Values rmse obtained for GED generator with the shape parameter s = 2 (Gaussian 
distribution)

Source: 	author`s own calculations.
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The symbols used in this figure are the same as in Figure 1.

Fig. 4. 	Values rmse obtained for GED generator with the shape parameter s = 3 
Source: 	author’s own calculations.

In the case of s = 0.5 and s = 3 the largest error can be observed for AFE results.  

The reason for it lies in the form of the function described by equation (13) since it may lead to 

a complex number, in which case it is advisable to take into account the real part of the derived 

value. For the generator with s = 0.5 the complex number appeared in one-fourth of results. 

 

30 40 50 60 70 80 90 1000.7

0.8
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1
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.

The following curves refer to: MLM-qML (dotted line with x); AFE-qF (dashed line with circles); AMM-qA (solid line 
with rectangles).

Fig. 5. 	Ratio of the value of error rmse yielded by centralizing with the median to the value of 
rmse for the subtracted mean value – Laplace distribution generator

Source: 	author’s own calculations.
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Figure 5 presents the values of the rmse error obtained by centralizing with the median, 

divided by the rmse value for the subtracted mean value – Laplace generator. The values smaller 

than one prove that subtracting the median yields a smaller value of error than subtracting the 

arithmetic mean. It is particularly visible for the AMM. Coefficient qML for s = 2 obtains the 

value 0.96 and for s = 3 qML = 0.9. It means that when using ML method, centralizing should 

be done by subtracting the median. The situation is different for coefficient qA, which for s = 2 

slightly exceeds 1 and for s = 3 is about 1.2. This means that when using the AMM method, 

the method of centralizing depends on the value of s. For s < 1.5 it is advisable to subtract the 

median and for s >1.5 the arithmetic mean should be used.

Conclusions

In this paper a new method of estimating the shape parameter s of GED distribution – 

approximated moment method – was proposed. The quality of the proposed estimator was 

compared with the quality of the estimator obtained through the maximum likelihood method 

(MLM) and approximated fast estimator (AFE). The quality of estimator was evaluated on the 

basis of the value of the relative mean square error determined using GED random number 

generator with the following shape parameters: s = 0.5, s = 1 (Laplace distribution) s = 2 

(Gaussian distribution) and s = 3.

The method with the smallest error is the one proposed in this paper – the approximated 

moment method – AMM. As far as other two methods are concerned, for s = 1 and s = 2 smaller 

values of rmse are provided by AFE method. Nevertheless, for s = 0.5 and s = 3 MLM is the 

most accurate. 

Attention has been drawn to the fact that the final result depends on whether centralizing 

is conducted using the arithmetic mean or the median. In the case of MLM, it is advisable 

to subtract the median. And for AMM, the estimated value of shape parameter ŝ should be 

additionally taken into account. It stems from the fact that for the Laplace distribution, the 

median is the more efficient estimator than the arithmetic mean estimator. For the normal 

distribution the situation is reverse and the arithmetic mean estimator is more efficient.

The proposed method is particularly useful for a small sample size 100≤N . For a large 

sample size, the smallest error is yielded by the estimator obtained by MLM.
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Notes

1	 Kokkinakis, Nandi (2005), pp. 1825–1858.
2	 Krupiński, Purczyński (2007), pp. 435–441.
3	 Weron, Weron (1998), pp. 284–285.
4	 Hsieh (1989), pp. 339–368.
5	 Nelson (1991), p. 368.
6	 Subbotin (1923); Box, Tiao (1962).
7	 Krupiński, Purczyński (2006). 
8	 Ibidem.
9	 Ibidem.

10	 Meigen, Meigen (2006).
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