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Abstract

Most investors believe that left tails of the stock returns distribution are heavier than the right ones. It is 
a natural consequence of crashes perception as much more turbulent than the booms. Crashes develop in 
shorter time intervals than booms and changes of prices are significantly bigger. This paper focuses on the 
extreme behavior of stock market returns. The differences in the tails thickness of distribution are negligible. 
Its main result is that the differences between tails have been found in the clustering of extremes, especially 
during the crash of 2007–2009.
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Introduction

Many authors documented that financial time series do not follow the Gaussian distribution, 

and have much fatter tails than the latter. The earliest empirical studies come from Mandelbrot1 

and Fama2. Fat tails mean large probability of extreme outcomes represented by profits and 

losses at the most positive or negative part of an asset or portfolio’s returns distribution. From 

intuitive point of view it seems to be clear that the left tail must be heavier than the right one. 

This is due to the fact that growth trends are built over long time horizons and crashes are more 

violent and price changes in absolute value are much larger then. For example, the DJIA index 

on Black Monday fell down by 22.6% and its biggest increase since the early 1970s has been 

merely 11.08%. Even greater disparities in the biggest changes can be seen on the example 

of the Hang Seng Index, where the biggest daily loss in history was 33.33%, compared to 

18.82% for the historical growth. There are studies indicating the presence of heavier left tails 

of distributions (e.g. LeBaron and Ritirupa3; Cotter4). On the other hand, there are many papers 

which have failed to demonstrate such asymmetry between the thickness of the left and right 

tails (e.g. Longin5; Longin6; Jondeau and Rockinger7; Francq and Zakoïan8). If they are right 

and the left and right tail thickness is not distinguishable, there must be some other difference 

between them from the statistical point of view. 

In this paper an attempt is made to verify the fact that the main distinction between tails 

is the higher dependence in extreme returns occurring in the left tail. The violence of crashes is 

then reflected in the clustering of extremes but not in the thickness of tails. The tail behavior of 

returns for twelve stock indices is compared.

The structure of this paper is as follows. In section one an estimator of tail thickness 

is presented, in the second section a brief description of extremal dependence is described. 

In the third section the test data is introduced, and in the final section the empirical results are 

discussed. 

1.	 Fat tails

A random variable X follows a heavy-tailed distribution with the index α if

	 ℙ(𝑋𝑋 > 𝑥𝑥)~𝐿𝐿(𝑥𝑥)𝑥𝑥−𝛼𝛼  ,  as  x → ∞	 (1) 

where L(∙) is a slowly varying function, and ~ means that the ratio of both sides tends to 1, as 

x → ∞. Estimating the tail index α is not an easy task. The most common estimator of α is the 

Hill9 estimator, which is given by
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	 𝛾𝛾 = 1/𝛼̂𝛼 = 1/𝑘𝑘∑ln𝑥𝑥(𝑛𝑛−𝑖𝑖+1) − ln 𝑥𝑥(𝑛𝑛−𝑘𝑘)
𝑘𝑘

𝑖𝑖=1
 	  (2)

where x(i) are the order statistics for the series, x(1) ≤ x(2) ≤ ... ≤ x(n), n – sample size, k – number of 

observations in the tail 2 ≤ k ≤ n. It is well known that if k = k(n) → ∞, k(n)/n → 0 the estimator 

is consistent, and asymptotically normal √𝑘𝑘(𝛼̂𝛼 − 𝛼𝛼) → 𝒩𝒩(0, 𝛼𝛼2) . The asymptotical bias and 

variance of the Hill estimator follow the function of k: 

	 𝔼𝔼(𝛾𝛾(𝑘𝑘)) = 𝛾𝛾 + 𝑘𝑘𝜌𝜌  	 (3)

	 var(𝛾𝛾(𝑘𝑘)) = 𝛾𝛾2

𝑘𝑘   	 (4)

where ρ > 0 is another parameter to estimate10. 

The Hill estimator is very sensitive to the choice of the tail fraction k. This choice is 

a classical trade-off between the bias and variation. Huisman et al.11 have shown a modified 

Hill estimator having improved properties in comparison to a traditional Hill estimator. They 

assumed a specific class of distributions, called the Hall12 class with the parameter ρ = 1. Instead 

of selecting one optimal k to estimate the tail index, they propose to estimate a regression line:

	 𝛾𝛾(𝑘𝑘) = 𝛽𝛽0 + 𝛽𝛽1𝑘𝑘 + 𝜀𝜀(𝑘𝑘)     	 (5)

where 𝛾𝛾(𝑘𝑘) = 𝛽𝛽0 + 𝛽𝛽1𝑘𝑘 + 𝜀𝜀(𝑘𝑘)      is the Hill estimator for different values of k, ε is a mean zero error term. The term 

β1, in the above equation, estimates the bias, and β0 gives a bias the corrected estimate of γ. This 

estimator is referred to as the OLS Hill estimator13.

2.	 Extremal dependence

The dependence effect in the short range behavior of extremes is measured by the extremal 

index θ. It is a key concept of the extreme value theory for stationary processes14. Let (Xn)n∈N 

be a strictly stationary sequence of random variables with a marginal distribution function F. It 

can be assumed that this sequence has an extremal index θ ∈ (0,1], that is, for each τ > 0 there 

exists a sequence of thresholds (un(τ))n∈N such as n → ∞

	 n(1 – F(un(τ))) → τ	  (6)

and
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	 ℙ(𝑀𝑀𝑛𝑛 ≤ 𝑢𝑢𝑛𝑛) → exp(−𝜃𝜃𝜏𝜏) 	  (7)

where Mn = max{X1, ..., Xn}. The case of θ = 1 is true for both the independent and dependent 

process but the level of dependence is negligible at asymptotically high levels15. The extremal 

index measures propensity of the process to cluster at extreme levels. In this paper we focus on 

the block maxima model. It consists in dividing the n observations into non overlapping k blocks 

of a certain length m. In each block, the number of exceedances over a certain high threshold are 

counted, and the block estimator is then defined as 

	 𝜃𝜃 = 1
𝑚𝑚
ln(1 − 𝑀𝑀/𝑘𝑘)
ln(1 − 𝑁𝑁/𝑛𝑛)  	  (8)

where N – number of exceedances of threshold un, M – number of blocks with at least one 

exceedance of un16.

3.	 The data

Our research is performed for daily closing prices of twelve equity market indices obtained 

for the period between 2007 and 2013. The following region leading indices are chosen: S&P500, 

Bovespa, Buenos, Nikkei225, Hang Seng, DAX, CAC40, FTSE100, SMI, EOE, BUX and 

WIG20. The calculations are based on the percentage logarithmic returns rt = 100 · ln(pt/pt–1). 

The Table 1 presents some relevant summary statistics. 

Table 1. Descriptive statistics of the return series

Index Nobs Min Max Mean Median St.dev. Skewness Kurtosis

SP500 1760 –9.47 10.96 0.02 0.08 1.48 –0.302 8.492
BOVESPA 1729 –12.10 13.68 0.01 0.08 1.91 –0.017 6.362
BUENOS 1713 –12.95 10.43 0.05 0.10 2.01 –0.569 4.946
NIKKEI 1713 –12.11 13.23 0.00 0.05 1.74 –0.571 7.643
HANGSENG 1725 –13.58 13.41 0.01 0.06 1.83 0.067 7.294
DAX 1780 –7.90 10.80 0.02 0.08 1.55 0.070 6.114
CAC40 1792 –9.47 10.59 –0.01 0.02 1.63 0.098 5.531
FTSE100 1774 –9.27 9.38 0.00 0.03 1.38 –0.115 6.737
SMI 1758 –8.11 10.79 0.00 0.04 1.28 0.043 7.081
EOE 1792 –9.59 10.03 –0.01 0.04 1.54 –0.143 7.578
BUX 1746 –12.65 13.18 –0.02 0.01 1.80 –0.027 6.766
WIG20 1751 –8.44 8.15 –0.02 0.02 1.65 –0.241 2.911

Source: own calculations.



Krzysztof Echaust26

The difference between the absolute minimum and the maximum is very small. The 

smallest spreads between maxima and minima are observed for S&P500 and the European 

indices excluding BUX. Likewise, standard deviations are the lowest for those indices indicating 

their relative stability. In all cases excess kurtosis shows too many realizations clustering at 

the tails of distributions relative to normal distribution. It is confirmed by the Jarque-Bera test 

which rejected normality for all indices. The lowest spread and kurtosis is obtained for Polish 

WIG20. Surprisingly, it is the index listed on the market which is classified as an emerging 

market and thus characterized by a high extreme risk.

4.	 Empirical results

Fat tails of empirical distributions are the result of the occurrence of extreme returns. 

Many empirical studies on a financial time series indicate that the tail index is greater than two, 

confirming the existence of variance, and very seldom it exceeds five17. Note that the smaller the 

value of α, the fatter the tail of the distribution. In the first point the characteristics of distribution 

tails will be compared for the entire period of 7 years. However, in the second point the results 

will be presented separately for the financial crisis of 2007–2009 and for the economic boom 

that followed later.

4.1.	 Entire period of 2007–2013

In Table 2 we present the OLS estimates of the left and right tail indices. The results 

are consistent with the above mentioned ones. The values of the tail index lie in the interval 

(2, 4). When we compare the tail thickness between left and right tails it is difficult to find any 

differences. 

Table 2. Tail indices and standard errors in parentheses

Index Left Right
1 2 3

SP500 2.625 (0.015) 2.620 (0.015)
BOVESPA 2.917 (0.013) 2.898 (0.006)
BUENOS 2.781 (0.016) 3.221 (0.022)
NIKKEI 2.674 (0.006) 3.363 (0.009)
HANGSENG 3.104 (0.026) 2.885 (0.006)
DAX 3.006 (0.033) 2.931 (0.010)
CAC40 3.068 (0.021) 2.935 (0.007)
FTSE100 2.826 (0.015) 2.818 (0.007)
SMI 2.931 (0.020) 2.772 (0.006)
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1 2 3

EOE 2.697 (0.013) 2.755 (0.007)
BUX 2.919 (0.007) 2.927 (0.014)
WIG20 3.049 (0.019) 3.443 (0.029)

Source: 	own calculations.

The biggest differences in tail thickness are noticeable in the case of Buenos and Nikkei, 

where the left tail is thicker than the right one. However, in general, we cannot state that negative 

extreme returns are more frequent than the positive ones, but their behaviour is very similar. 

As an example see Figure 1 for S&P500 index where asymmetry in the tails is not visible. 

The key analysis concerns the issue of dependence in extreme returns. We verify 

a hypothesis that the perception of left tails being heavier than the right ones could be due to 

more intense clustering of events in the left tail. Such hypothesis was negatively verified by 

Jondeau and Rockinger18 who stated that clustering of news cannot be the reason why investors 

consider left tails to be heavier than right tails.

 

Fig. 1. 	QQ plot for S&P500 Composite Index
Source: 	own calculations.

Similarly to their work, in this analysis, one week blocks of returns to calculate extremal 

index are assumed. As it is known the strength of dependence decreases as we move into the tail 

regions of distribution, even if the returns are highly dependent in the center of the distribution19. 

For that purpose we estimate an extremal index for various levels of the threshold given as 

quantiles of the empirical distribution. The results are presented in Table 3. By the bold type 
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those cases were marked where extremal index calculated for the left tail is higher than for 

the right one. It means that extremes in the right tail cluster more than in the left one. Such 

contingency occurs only for Nikkei and twice for BUX index. In all the other considered cases 

extremal dependence is higher in the left tail of distribution. Such property can be recognized 

as typical.

Table 3. Extremal index for various threshold levels

Quantile un SP500 BOVESPA BUENOS NIKKEI
0.95 0.86 0.93 0.81 0.96 0.83 0.91 0.86 0.83
0.96 0.84 0.89 0.80 0.98 0.82 0.91 0.83 0.82
0.97 0.77 0.92 0.79 0.97 0.84 0.93 0.82 0.78
0.98 0.77 0.86 0.82 0.96 0.79 0.93 0.85 0.82
0.99 0.79 0.91 0.88 0.93 0.83 0.98 0.88 0.78
0.995 0.90 0.90 0.86 0.94 0.84 1.00 0.84 0.76

Quantile un HANGSENG DAX CAC FTSE100
0.95 0.78 0.82 0.87 0.95 0.88 0.96 0.80 0.92
0.96 0.75 0.83 0.88 0.96 0.82 1.00 0.84 0.94
0.97 0.76 0.83 0.90 0.92 0.77 0.97 0.84 0.89
0.98 0.76 0.92 0.89 0.89 0.82 0.93 0.83 0.86
0.99 0.73 0.91 0.90 1.00 0.87 0.97 0.83 0.83
0.995 0.67 0.78 0.78 1.00 0.83 1.00 0.78 0.86

Auantile un SMI EOE BUX WIG20
0.95 0.81 0.89 0.84 0.96 0.87 0.90 0.86 0.94
0.96 0.81 0.84 0.81 0.95 0.84 0.86 0.83 0.96
0.97 0.75 0.83 0.77 0.95 0.88 0.84 0.82 1.00
0.98 0.71 0.77 0.79 0.93 0.98 0.83 0.86 1.00
0.99 0.73 0.78 0.81 0.92 0.91 0.91 0.91 1.00
0.995 0.76 0.76 0.83 1.00 0.91 0.91 0.91 1.00

Source: 	own calculations.

Especially evident asymmetry in clustering can be noticed for the CAC40, EOE and 

WIG20 indices. Because the left tail of CAC40 distribution is not heavier than the right tail, 

it cannot be concluded that higher dependence in the left tail is connected with a higher tail 

thickness. In further part of this work we try to answer as well whether the tail behaviour differs 

during crashes and booms on stock markets.

4.2.	 Crash and boom period 

In the entire period of seven years, two sub-periods have been distinguished. First, it is 

a credit crunch period: 19 July 2007 – 9 March 2009. The initial date is the day when S&P500 

reached its maximum after the four-year-period of permanent growths. The final date is the index 
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minimum, half a year after the bankruptcy of Lehman Brothers. The other sub-period covers 

the dates of 10 March 2009 – 25 October 2010. It was the time of growths on financial markets 

which was followed the crash period. The final date of that sub-period has been especially 

chosen so that the periods of crisis and boom can be equally long. Those two sub-periods at 

S&P500 are presented in Figure 2. 

 
19.07.2007–25.10.2010

Fig. 2.	 S&P500 Composite Index in the period of crisis and boom
Source: 	Stooq.pl (10.02.2014).

In most cases the decrease of indices in the time of crisis was much deeper than the 

increase during a boom. The situation at S&P500 index is presented in Figure 2. The scale of 

growths and drops of individual indices in both sub-periods is shown in Table 4. 

Table 4. Log-returns in times of crisis and boom (%)

Index Crash Boom

SP500 –83 56
BOVESPA –46 64
BUENOS –88 112
NIKKEI –94 28
HANGSENG –71 73
DAX –77 59
CAC40 –88 43
FTSE100 –63 48
SMI –76 41
EOE –103 54
BUX –110 85
WIG20 –98 60

Source: 	own calculations.
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The difference in the dynamics of growths and drops in both periods translates into the tail 

thickness of the return rate distribution. The tail indices in the crisis time are lower than in the 

time of boom so the returns distributions in the time of crisis have thicker tails than in the time 

of growth (see Table 5). However, when the values of left and right tail indices are compared 

in individual periods, it is hard to notice any differences. The biggest difference between the 

indices of left and right tail is noticeable in case of Hang Seng index in the time of crisis. 

Interestingly, the right tail of distribution is then thicker than the left one, which, additionally, 

is hard to explain. From the statistical point of view it is not possible to prove that left tails are 

heavier than right ones.

Table 5. Tail indices and standard errors (in parentheses) during the crash and boom

Crash Boom

Index left right left right
SP500 2.825 (0.037) 2.552 (0.049) 3.384 (0.069) 3.143 (0.038)
BOVESPA 3.349 (0.040) 2.591 (0.016) 3.598 (0.104) 3.162 (0.027)
BUENOS 2.667 (0.045) 2.373 (0.013) 3.162 (0.027) 3.004 (0.021)
NIKKEI 2.690 (0.039) 2.824 (0.021) 4.843 (0.139) 3.812 (0.047)
HANGSENG 4.006 (0.043) 2.753 (0.023) 4.107 (0.085) 3.466 (0.034)
DAX 2.705 (0.057) 2.242 (0.010) 3.425 (0.059) 4.062 (0.057)
CAC40 2.858 (0.032) 2.455 (0.018) 3.376 (0.069) 3.793 (0.030)
FTSE100 2.730 (0.026) 2.630 (0.017) 3.649 (0.124) 3.225 (0.027)
SMI 2.998 (0.026) 2.379 (0.014) 3.755 (0.104) 3.626 (0.025)
EOE 2.663 (0.036) 2.224 (0.020) 3.420 (0.070) 3.694 (0.023)
BUX 2.405 (0.016) 2.317 (0.016) 4.192 (0.078) 3.720 (0.051)
WIG20 3.107 (0.057) 3.587 (0.058) 3.856 (0.070) 3.286 (0.034)

Source: 	own calculations.

It is different in the case of the dependencies of extremal returns. The values of extremal 

index for times of crash and boom are presented in Tables 6 and 7. In the crisis period these values 

are significantly lower than in the boom time. This implies that the clustering of extremes in the 

time of crisis is much more intense than in the time of stock exchange growths. In the time of 

growth the values of the extremal index are close to 1, so the extremes appear as approximately 

independent, without the clustering effect. Meanwhile, in the crisis period the clustering of 

extremes is clearly noticeable. Due to the expectations, the intensity of clustering in the left tails 

is higher than in the right one then. These results prove that the extremal drops occur in runs, so 

the investors’ losses are accumulated. Therefore in investors’ conscience a belief is created that 

left tails must be thicker than the right ones, though the actual difference is only in the extremal 

returns clustering.
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Table 6. Extremal index during the crash for various threshold levels 

Quantile un SP500 BOVESPA BUENOS NIKKEI
0.95 0.70 0.91 0.83 0.88 0.71 0.83 0.81 0.81
0.96 0.73 0.91 0.89 0.89 0.75 0.82 0.80 0.87
0.97 0.77 0.93 0.81 0.98 0.89 0.89 0.78 0.78
0.98 0.85 0.85 0.80 0.93 0.80 0.93 0.64 0.77
0.99 0.88 0.88 1.00 1.00 0.82 1.00 0.76 0.76
0.995 1.00 0.82 1.00 1.00 0.67 1.00 1.00 1.00

Quantile un HANGSENG DAX CAC FTSE100
0.95 0.75 0.95 0.82 0.98 0.86 0.98 0.79 1.00
0.96 0.89 0.89 0.81 0.99 0.85 0.99 0.83 0.97
0.97 0.90 0.81 0.72 1.00 0.79 0.94 0.83 0.91
0.98 0.80 0.80 0.69 1.00 0.69 0.88 0.83 0.83
0.99 0.82 0.82 0.77 1.00 0.64 0.91 0.85 1.00
0.995 0.67 0.67 0.88 1.00 0.68 1.00 0.76 1.00

Quantile un SMI EOE BUX WIG20
0.95 0.69 0.89 0.75 0.93 0.88 0.83 0.72 0.93
0.96 0.66 0.88 0.67 0.87 0.89 0.82 0.81 0.87
0.97 0.82 0.82 0.70 0.94 0.81 0.81 0.87 0.87
0.98 0.89 0.89 0.75 1.00 0.80 0.68 0.97 0.88
0.99 0.93 0.80 0.77 1.00 0.82 0.82 0.91 0.91
0.995 0.88 0.88 0.68 1.00 1.00 0.67 0.85 1.00

Source: 	own calculations.

Table 7. Extremal index during the boom for various threshold levels 

Quantile un SP500 BOVESPA BUENOS NIKKEI
0.95 1.00 0.91 0.92 0.97 0.87 0.93 0.93 0.77
0.96 1.00 0.91 1.00 0.98 0.87 1.00 1.00 0.75
0.97 1.00 0.93 1.00 1.00 0.97 0.97 1.00 0.73
0.98 1.00 0.85 1.00 0.96 0.91 1.00 0.97 0.69
0.99 1.00 0.88 1.00 1.00 1.00 1.00 0.91 0.77
0.995 1.00 0.82 1.00 1.00 1.00 1.00 1.00 0.68

Quantile un HANGSENG DAX CAC FTSE100
0.95 1.00 0.73 1.00 1.00 0.93 0.98 1.01 0.95
0.96 0.97 0.71 1.00 1.00 0.99 0.99 0.97 0.90
0.97 0.91 0.75 1.00 1.00 1.00 0.94 0.99 0.83
0.98 0.94 0.94 1.00 0.96 1.00 0.88 0.94 0.83
0.99 1.0 1.0 1.00 0.88 1.00 0.77 0.85 0.85
0.995 1.0 1.0 1.00 1.00 1.00 0.85 1.00 0.76

Quantile un SMI EOE BUX WIG20
0.95 0.91 0.91 0.93 1.00 1.00 0.86 0.98 0.93
0.96 0.91 0.91 0.93 0.99 0.98 0.91 0.99 0.93
0.97 0.93 1.00 0.94 0.94 1.00 0.85 0.94 1.00
0.98 0.96 0.96 0.97 0.97 1.00 0.96 1.00 1.00
0.99 0.88 0.88 1.00 1.00 1.00 0.88 1.00 1.00
0.995 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00

Source: 	own calculations.
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Conclusions

Statistical properties of the returns distributions are investigated due to investors’ 

perception which leads to the assumption that left tails are heavier than the right ones. From 

the statistical point of view, such an argument is not acceptable. The fact which tail of the 

distribution is heavier depends on the considered market. Besides, differences in the thickness 

of both tails are usually negligible. Even if we compare the tails of distribution in the crash 

and boom period the differences are not visible although during the crash both tails are heavier 

than during the boom. Differences in the tail behaviour are rather the result of the clustering 

of extremes. Such phenomena are found in almost all stock market returns considered in this 

paper. The dependence between the extreme returns increases during crashes and weakens 

during booms. 
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