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Abstract

This paper presents evidence that Ordinary Least Squares estimators of beta coefficients of major firms and 
portfolios are highly sensitive to observations of extremes in market index returns. This sensitivity is rooted 
in the inconsistency of the quadratic loss function in financial theory. By introducing considerations of risk 
aversion into the estimation procedure using alternative estimators measures of variability we can overcome 
this lack of robustness and improve the reliability of the results. 
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Introduction

The valuation of risky assets is one of the major research tasks in financial economics that 

has led to the development of several Capital Asset Pricing Models, the most popular of which 

is the Sharpe-Lintner-Black mean-variance CAPM. In this model, the typical measure of asset 

riskiness is the beta, i.e., the covariance between the asset return and the market portfolio 

return. The basic tenet of CAPM lies in the separation of estimating beta risk from its pricing. 

Indeed CAPM assumes that one can define and measure systematic risk irrespective of risk 

aversion, which affects only the equilibrium pricing of individual assets. As is well known, this 

separation is valid only under the restrictive assumption of two-factor separating distributions 

or alternatively, if the utility function is quadratic.

Empirical asset-pricing models attract massive attention in finance, their goal being 

to assert or refute whether CAPM holds true. The traditional technique used to estimate the 

risk-expected return relation consists of two stages. In the first pass, betas are estimated from 

a time-series. In the second pass, the relationship between mean returns and betas is tested 

across firms or portfolios. Since its inception in finance, beta has been used mainly for two 

purposes. The first involves the ranking of assets and portfolios with respect to systematic risk 

by practitioners. The second deals with testing CAPM and mean-variance efficiency. In this 

paper we question whether the standard procedure for estimating systematic risk is compatible 

with financial theory and show how the regression technique used to estimate systematic risk 

is not robust with respect to wide market fluctuations. The sensitivity of beta to the presence of 

extreme observations can give rise to data mining and lead the way to peculiar relationships.

The goal of this paper is to present selected robust methods for the CAPM model estimation. 

The proposed approach has been applied to a selected part of Polish financial markets.

The paper is organized as follows. Section 1 presents the OLS estimator for beta as 

a weighted average of the change in asset return conditional on the change in market returns. 

The weights used in averaging depend solely on the distribution of market returns. As the 

weights are sensitive to extreme market fluctuations, the OLS estimation procedure attaches 

greater weights to extreme market changes, a characteristic that may contradict financial 

theory. In Section 2, we show chosen robust linear regression model as LTS and QR model. 

In Section 3 we discus how to deal with outliers in multivariate regression analysis, and how it 

can influence the results of analysis. In Section 4, we offer selected robust methods for market 

model estimation, alternative estimators for describing the riskiness of an asset such as LTS and 

QR model and investigate their properties. These estimators attach lower weights than the OLS 
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estimators to upward market movements, thus making the estimator both more appropriate from 

the theoretical point of view, and at the same time more robust than the OLS estimator. Closing 

section concludes the paper.

1.  Estimation of financial market equilibrium model

Estimator of model slope beta determined with the use of LS is a weighted mean of slopes 

obtained from two nearest-neighbour observations across security characteristic curve. This 

renders impossible verifying what weights are assigned to extreme values of rate of return in 

the sample1. Let us consider a market model where the rate of return on investment is random 

and continuous described by density function f(Rk, M), where Rk is return on equity k and M is 

market portfolio. Let fM, FM, μM, and σ2
M be margin density, margin distribution, expected value 

and variance M respectively. We assume that the first and second moment exist and we define 

Rk(m) = E(Rk| M = m) as conditional market rate of return k assuming that market rate of return 

M = m. The value Rk(m) determines security characteristic curve2. With the aim of estimating 

beta of a stock, we determine the following relationship referred to as CAMP model:

 Rk = αk + βkM + εk  (1)

Additional assumption being that random component εk is independent, identically 

distributed, of expected value equal zero and constant variance, the LS estimator is given by3:

 
MM
MRk

LS ,cov
,cov

  (2)

When estimating linear model parameters, as well as in risk estimation defined as beta 

it is important to correctly assume the error distribution. Should error distribution have the 

Gaussian distribution, then the LS estimator of the model parameter has minimum variance in 

unbiased estimator class4. By using Jensen’s inequality and assuming normal distribution, the 

optimisation procedure for the LS estimators can be employed for any convex loss function. 

Should error distribution could not be approximated by the Gaussian distribution using LS 

then we get the best unbiased estimator of linear model only once we concentrate on parameters 

being linear function of the dependent variable. In many cases that set could be unnecessarily 

restrictive.

By deploying statistical modelling, fat-tailed distribution could be modelled as 

a combination of normal distributions. For instance analysed data can be generate from standard 
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normal distribution, but could be disturbed by observations from normal distributions with 

higher variance. Such distribution would have fatter tails than normal distribution5.

Financial literature shows early research provides observation that daily rates of return 

have fat-tailed distribution. Fama6 applied stable Pareto distribution to daily observations and 

concluded that characteristic exponent of distribution was less than 2. Another paper discussed 

the student’s t distribution7. Kon formulated rate of return for Dow Jones Industrial Average 

using two up till four normal distributions8. Summarising results of those empirical research 

it is concluded that residual distribution does not resemble normal distribution and is fat-tailed.

Roll put forward an economic model which used rates of return with mixture distribution9. 

In essence, he assumed rates of return are intermittent with extreme values related to latest 

news, yet increase kurtosis of rate of return distribution. 

Robust statistical methods present different approach to LS, however, they are slow to 

penetrate the world of finance. Determined estimators allocated less weight to outliers, for 

instance by minimising the sum of absolute deviations (Minimum Absolute Deviation MAD 

method) instead of using sum of squared deviations. Sharpe, Cornell and Dietrich employed 

MAD at beta risk estimation10. They concentrated their effort on rates of return for biggest 

companies and investment funds. Their findings showed that differences between the two 

methods (LS and MAD) are inconsiderable and do not prove any particular method to be ahead 

of the other.

2.  Robust linear regression model 

Linear regression11 was first defined in the 80’s of last century. The very first most 

renowned regression was given by:

 
2

min bxymedian ii
ib

−  (3)

and is referred to as least median of squares – LMS. 

Justification for residual squares is an observation where n is even, then median centre is 

selected. That is a very robust regression which does not require parameter of scale estimation. 

Since it covers 1/ 3 n  of data at most, it is very inefficient. 

Ruppert and Carroll suggest regression of the trimmed least squares – LTS12. 

 ∑ −
i iii

b
bxy 2

)(min  (4)
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This method is far more efficient, but separates only extreme observations13. Recommended 

sum of residual squares should not exceed q = [(n + p + 1)/2]. 

That approach was then replaced by S-estimators, for which regression equation coefficients 

are solved for solution to the problem

 
n

i o

ii pn
sc

bxy
1

)(  (5)

with least s scale parameter. In the last equation the χ function is usually assumed as integrable 

Tukey’s biweight function.

 
1,1

1,33
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246

u

uuuu
u   (6)

Values c0 = 1.548 and β = 0.5 are selected for goodness of fit, should error distribution be normal 

distribution. That yields efficiency of 28.7% for normal distribution, which is low but still better 

that LS and LTS.

In least square method estimators are solved for through minimising sum of residual 

squares. Below-proposed estimator for minimisation uses the following criterion: 

 
T

t
tu

1
)(  (7)

for tt uu )( ,  if  0tu   or  tt uu )1()(   if  0tu , 

where 10 ,  mttt rru ,  Tt ...,,1 . 

Since minimad (MAD) is the sum of absolute deviations of residuals, observations are 

considered differently to the sum of residual squares14. In general, high (low) value of “weight” 

θ yields high observation penalty with substantial negative (positive) residual. Each regression 

line fitted (corresponding to values different than θ) intersects at least two points from the pool 

of data, with highest T number θ of observations from sample beneath fitted line, and at least 

(T – 2)θ observations above that line15. Considering values θ from interval <0, 1> we get a set 

of regression quantile estimators )(ˆ , resembling sampling quantile distribution for sampling 

quantile distribution16.

That very specific effect or positive or negative outlier will determine quantile regression 

corresponding to extreme (either high or low) value of θ. One should remember, however, that 

no observations are removed during processing of statistics. Furthermore, volatility of rate of 

return determines changing of quantile regression for different θ values. From this perspective 
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using β as estimator corresponding to one θ value, with the MAD estimation method, could 

loss some useful information from sample17. Behaviour of estimators determined through MAD 

could be expanded by introducing an estimator based on bundle of quantile regression. Statistics 

related literature puts emphasis on producing robust estimator of mean population as linear 

combination of sample quantiles – trimmed means. 

3.  Outliers in multivariate regression analysis

In multivariate regression analysis outliers have no typical values of Y (yi) variable for 

corresponding variables X (xi) (vertical shift), and consequently produce high residuals (ei). 

Outliers could also have inconsiderable residuals, but no typical values of explanatory variable. 

Those observations alter estimators thus results of multivariate regression analysis.

In simple regression (one explanatory variable) an observation with high yi value for given 

xi have high discrepancy, whereas observation with typical value of yi variable for no typical 

value of xi has high leverage and small residual (ei). Observation with high leverage could 

have a small residual, but not necessarily. Observations with high leverage draw regression 

line towards yi value. Consequently, influence of given observation of regression coefficient 

is expressed as function of discrepancy and leverage18. Diagnostics of observation’s impact on 

multivariate regression analysis focus to outlier analysis or direct assessment of observation’s 

influence on coefficients and fitting of determined regression model. 

An observation is considered influential, should it considerably change model parameters 

due to inconsiderable change in its value or removal from sample. Residuals for typical 

observations are not high. Characteristic for outliers are high residuals i.e. difference between 

empirical value and theoretical value produced by estimated regression model19. 

An outlier is an observation considerably different to other. Normally it is caused by 

atypical factors. In the least square method, such single observation is capable of substantially 

changing estimated regression equation. In case of simple regression outlier could be detected 

by employing graphical analysis. Characteristics for outliers are high residuals. Hence it could 

become a whistle-blower detecting outliers, however, it shows certain shortcomings:

‒ residual are denominated quantities, whereas a good measure should be nominal – 

universal for all variables,

‒ no possibility of comparing residuals with independent template and thus difficulties 

with unambiguously ascertaining whether a residual is high or not.
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Hence standardization of residuals is proposed. In literature concerning regression 

diagnostics, we encounter three methods for determining standardised residuals20:

1) ie~  = s
ei

 where ees T=2  / (n – k – 1) is a classic estimator σ2;

2)  *
ie  = ihs

ei

−1 ;

3) *
)(ie  = ihs

e
i

i

−1)(  

 where s(i) is estimation of standard deviation of random component σ after removal of 

i-th observation, hi is element of diagonal projections matrix21. 

Expression from denominator of second standardised residual *
ie  is an estimator of 

standard deviation of normal residual ie . Similarly interpreted is denominator of third residual
*

)(ie , whose premise involves removal of individual observations. Bear in mind, however, that 

standardised residual are not stochastically independent. Nevertheless residuals standardised 

through third method have student’s t distribution with n – 2 – k degrees of freedom. This is 

a key fact in multivariate regression analysis, since it allows statistical testing at predetermined 

significance level α. Hence they *
)(ie  are referred to as studentized residual typically employed 

to detect outliers, which are the measure of observation’s discrepancy.

Because of possible stochastic dependency between residuals, there are no reasons to 

discard i-th observation at significance level α, for 2
*

kni te −−>  (α), it can be hold the boundary 

value of 2* =ie  or both approaches can be combined.

4.  Selected robust methods for market model estimation 

Empirical analysis of Sharpe model was attempted for companies listed under WIG20 

stock market index. It was focused on biggest companies and observation period was from 

13.07.2011 to 8.08.2012. Preliminary analysis of daily rates of returns on analysed assets 

showed presence of outliers (Figure 1) and extreme observations for all companies over the 

observation period. To further calibrate models of market rate of return selected were four 

companies (ticker) BOGDANKA (LWB), PGNIG (PGN), TAURONPE (TPE) and TPSA 

(TPS). They were chosen based on lowest value of coefficient of determination R2 i.e. weakest 

match of linear models estimated by the least square method (Figure 2). For completeness of 

statistical analysis, Shapiro-Wilk test of normality of chosen variables were carried out, which 

confirmed they do not come from normal distribution (Table 1).
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Fig. 1.  Analysis of rate of return on stocks between 13.07.2011 and 8.08.2012
Source:  own study.

Table 1. Results of Shapiro-Wilk test of normality 

Asset BOGDANKA (LWB) PGNIG (PGN) TAURONPE (TPE) TPSA (TPS)

S-W test value 0.99016 0.98792 0.970330 0.96236
p-value 0.06066 0.02115 0.000002 0.00000

Source:  own study.
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Fig. 2. Analysis of correlation and LS of companies (ticker) BOGDANKA (LWB), PGNIG 
(PGN), TAURONPE (TPE) and TPSA (TPS)

Source:  own study.

Subsequently parameters for three chosen models were estimated. Classic LS model was 

compared with least trimmed squares methods LTS. Since the market model was by definition 

linear, and outliers analysis (Figure 3) did not confirm that assumption, additionally quantile 

regression was determined which corresponds the way of modelling which is different to asset 

pricing model. Tables 2–5 presents estimates of parameters for LS linear model, least trimmed 

squares LTS (residual analysis was used) and quantile regression model QR22 for selected 

quantile level 0.01 (VaR0,01) for the group of analysed companies. Diagnostics of influential 

observations executed for LTS model estimation provides information enabling reduction in 

number of observations and requires probing reliability of produced conclusions – key for further 

analysis of stock pricing model – which could be drawn based on fitted regression function. This 

also applies to influential observations distant from others, what gives basis to determine range 

of variable values the model can yield, for which conclusions should not be generalised.

WIG20 : LWB
July 2011– August 2012

WIG20 : PGN
July 2011– August 2012

WIG20 : TPE
July 2011– August 2012

WIG20 : TPS
July 2011– August 2012
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Fig. 3.  LMS maps showing outliers for companies (ticker) BOGDANKA (LWB), PGNIG 
(PGN), TAURONPE (TPE) and TPSA (TPS)

Source:  own study.

Table 2. Results of market model estimation for Bogdanka company

LS Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.358 0.107 0.089   1.202 0.231 –0.068 0.281
β̂ N = 275 0.676 0.055 12.345 0.000   0.568 0.784

LTS Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.377 0.010 0.081   0.127 0.899 –0.149 0.169
β̂ N = 267 0.632 0.050 12.663 0.000   0.534 0.730

QR0.01 Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.704 –1.046 0.128 –8.181 0.000 –1.298 –0.794
β̂ N = 274   0.606 0.024 25.431 0.000   0.559   0.653

Source:  own study.

WIG20 : LWB
July 2011– August 2012

WIG20 : PGN
July 2011– August 2012

WIG20 : TPE
July 2011– August 2012

WIG20 : TPS
July 2011– August 2012

LWB
Median
Outliers

PGN
Median
Outliers

TPE
Median
Outliers

TPS
Median
Outliers
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Table 3. Results of market model estimation for PGNIG company

LS Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.221 0.044 0.096 0.461 0.645 –0.144 0.233
β̂ N = 275 0.521 0.059 8.809 0.000   0.405 0.638

LTS Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.264 0.065 0.080 0.809 0.419 –0.093 0.222
β̂ N = 257 0.483 0.051 9.562 0.000   0.384 0.583

QR0.01 Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.386 –3.042 0.127 –24.007 0.000 –3.291 –2.793
β̂ N = 274   0.309 0.024   13.076 0.000   0.262   0.355

Source:  own study.

Table 4. Results of market model estimation for TAURONPE company

LS Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.433 –0.012 0.086 –0.143 0.886 –0.181 0.156

β̂ N = 275   0.764 0.053 14.439 0.000   0.660 0.868

LTS Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.509 –0.082 0.075 –1.100 0.272 –0.229 0.065
β̂ N = 266   0.776 0.047 16.542 0.000   0.683 0.868

QR0.01 Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.713 1.281 0.287   4.468 0.000 0.717 1.846
β̂ N = 274 1.390 0.053 26.024 0.000 1.285 1.496

Source:  own study.

Table 5. Results of market model estimation for TPSA company

LS Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.172 0.070 0.086 0.818 0.414 –0.099 0.239
β̂ N = 275 0.399 0.053 7.535 0.000   0.295 0.503

LTS Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.213 0.057 0.082 0.690 0.491 –0.105 0.219
β̂ N = 270 0.441 0.052 8.523 0.000   0.339 0.543

QR0.01 Coefficients Standard error t Stat p-value Bottom 95% Upper 95%

α̂ R2 = 0.794 1.791 0.190   9.450 0.000 1.418 2.164
β̂ N = 274 1.144 0.035 32.396 0.000 1.074 1.213

Source:  own study.
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In the Tables we present estimated parameters for three regression models calibrated for 

analysed time intervals. Standard error was also given. Statistical inference for determined 

models includes drawing conclusions on significance of parameters β̂ and α̂ using student’s 

t-test with known significance level applied for the test. Also provided were expected parameter 

estimates for all models at confidence level 0.95. Coefficients of classic LS regression should 

be interpreted together with test results given in Table 1. Quantile regression was formulated 

for substantially low quantile, because such value is taken, when for description of market 

behaviour we use additionally VaR (Value-at-Risk), then results of model’s goodness of fit are 

best. In our four companies for two of them: Bogdanka and PGING all models give very similar 

results in estimating value of parameters and standards error of this estimation. But for next two: 

TAURONE and TPSA we observe that quantile regression gave differ results cause by value of 

outliers. We can forecast in advance this results by analysing LMS map (Figure 3).

Conclusions

The focus in this paper has been on what appears to be an unappreciated problem in 

empirical study, namely, a situation in which the distribution of regression residuals is not 

normal with fat tails. In this circumstance we clearly have ominous implications for least-squares 

estimation. The “corrective” proposed in this study has been the use of quantile regression (QR) 

which is an increasingly used robust regression procedure that corresponds to estimation by 

minimizing the sum of absolute errors at particular quantiles on the distribution of a model’s 

residuals. The second appropriate method has been occurs trimmed least squares regression 

(LTS). This method is far more efficient than OLS, but separates only extreme not all type 

of outliers observations. Chosen procedures have been applied to estimation of Sharpe model 

which was focused on biggest companies and its benchmark from Warsaw stock exchange. 

The estimated regression coefficients and t-values was used for comparing all estimated models. 

To use in this circumstance estimation that is more robust than least squares seems mandatory.

Notes

1 Trzpiot (2008).
2 Sharpe (1971).
3 Where k index was skipped.
4 Rao (1973).
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5 Trzpiot, Majewska (2009; 2010).
6 Fama (1965).
7 Pratez (1972).
8 Kon (1984).
9 Roll (1988).

10 Sharpe (1971); Cornell, Dietrich (1978).
11 Robust regression.
12 Ruppert, Carroll (1980). 
13 Welsh (1987).
14 Koenker, Bassett (1978); Koenker (1982).
15 For instance, for θ = 1/2 then median of residuals from fitted model is zero: half of values from sample above the line, 

and half from beneath the line.
16 For continuous random variable Z with distribution function F, it is the θ order quantile, ξθ is a value producing 

F(ξθ) = θ.
17 Trzpiot (2011).
18 Fox (1991).
19 Maddala (2006), p. 125.
20 Rousseeuw, Leroy (2003).
21 H = X(XTX)–1XT. 
22 Trzpiot (2007; 2008).
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