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Abstract: This article guides the reader through the seemingly simple issues of the assessment, protec-

tion and transfer of the potentials of an object’s functionality through its internal and external buffers, 

by employing Cartesian multiplication and signatures. The change in the potentials of buffers and the 

functionality of objects is the focus of this research, guaranteeing the correct use of potentials in rela-

tion to the whole “shell” of the object. In order to avoid any collision in the transport of functional po-

tentials, each proper buffer is, by definition, connected to one and only one object. On the probability 

scale  [0..1], the potential of the object’s functionality is expressed as the system sum [0..1] of all the 

potentials of its proper buffer components. A practical and important part of the article contains two 

methodologically important examples of tabular construction and analysis: an example of the dynamics 

of the potentials of an object with two buffers, together with a table of the potentials of a two-buffer ob-

ject; and an example of the Cartesian product of graphs with lost determinism together with the table 

of potentials of a two-buffer object with an extensive option structure. 

Keywords: proper buffer, dynamics of object potentials; ergodic potential of functionality, Cartesian 

product, system sum, complexity of calculations. 
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1 Introduction 

 

The design of a system can be understood as a set 

of objects connected to each other by means of buff-

ers that remain inside the objects and, externally, 

connected between the objects for the processes 

of maintaining memory buffers that operate in such 

a way that they can also communicate in a unified 

way, both transmitting between the buffers and pro-

tecting the functional potentials. 

These high-level connections require the definition 

and acceptance of a complementary group of con-

straints, such that compliance with the constraints 

ensures the balance, openness and uniformity of 

cooperation of the objects. This is achieved, first, 

with the help of Cartesian graph multiplication tools 

and their signatures, and, second, by using the high-

complexity characterization theories
1
. 

                                                           
1
 The paradigm of Gorbatov’s characterization theory is a set 

of functional-structural relationships for which there are so-

called prohibited graph figures, whose liquidation by splitting 

the minimum number of nodes leads to a structure free 

of ambiguity errors. 

 

System objects can have both internal and external 

buffers of functional potentials. The functional po-

tentials of an object are determined on the basis 

of the probability of potential changes in the buffers 

of the whole object, as well as on the basis of the 

probability of the current functional potentials 

of each buffer, in order to maintain the balance of the 

probabilities of the current functionality of the entire 

facility. This setup is illustrated by means of Carte-

sian calculus, using the products of the graphs de-

scribing the sequences of probabilities of the states 

of the whole object. 

The functionality of the external buffers of the object 

can be extended to other objects, which, in practice, 

means that the current probabilities of the potentials 

of a given functionality are shared with other objects, 

cached by buffers. The potentials of useful function-

ality can be collected and used by objects in a per-

centage range of 1% to 100%. 

For the processing of the functional potentials within 

the limits of the available potential of the object, 

only the internal buffer potentials of the object can 

be considered. The potentials of the external buffers 

are assumed, a priori, to be involved in the coordina-
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tion of external objects and treated as unavailable 

directly for internal purposes. 

 

2 Dynamics of buffer potentials and  

n-buffer objects 

 

For our analyses, the changes of discrete functional 

potentials from Bj buffer repositories and n-channel 

Oi objects are focused upon. In order to avoid any 

misunderstandings, each buffer is connected to one 

and only one object, externally or internally, by 

means of an abstract channel represented uniquely 

by the buffer and its identifier. The mathematical 

apparatus of the Cartesian product of graphs and the 

concept of the signature of a graph in Cartesian 

product operations are employed for the analyses. 

For the graphic illustration of the dynamics of the 

potentials of Oi objects and the Bj buffers connected 

to them, circles are used, with the necessary symbol-

ism of their position in relation to objects. The poten-

tial of the functionality assigned to a buffer is ex-

pressed on the probability scale [0..1]. Similarly, 

on the probability scale [0..1], the potential of the 

functionality of the object is expressed as the sum 

of all the potentials of its proper buffers in the sys-

tem. The procedure for calculating the system total 

will be illustrated later in the article. 

It is assumed that an object has a limited number 

of internal potentials, determined by the probability 

of its use and depending only on the ergodic invari-

ance of the level of buffer potentials of this object. 

An ergodic process is a stationary process for which 

the values of the statistical parameters for the set 

of realizations (i.e. the average value, variance and 

autocorrelation function) are equal to the values 

of these parameters from its arbitrary implementa-

tion. 

N-buffer objects (in the special two-buffer case) can 

be combined into chains or loops, as illustrated 

in Figs. 1 and 2. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chain of two objects and a loop of three two-buffer objects, where the buffers B2, B3, B4, B5 and B6  

are the proper buffers for the objects O1, O2, O4, O3 and O5  

(Source: Authors own research) 

 

 

 

 

 

 

 

Figure 2. An O1/1 object with one input buffer B1 and one output buffer B2 

(Source: Authors own research) 
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The O1/1 object presented in Fig. 2 is characterized 

by one input buffer, with functional potentials p 

and q, and one proper buffer with functional poten-

tials x, y. 

Buffers B1 = {p, q} and B2 = {x, y} are carriers 

of functional potentials with ergodic probabilities 

of their maintenance. The capacities of the buffers B1 

and B2 can multiply the complexity of the functional 

potential calculations. If we increase the buffer ca-

pacity of the object under consideration by only a 

factor of 4, it will generate approximately 40,000 

combinations of 8-character potential identifiers 

for each of the two-object buffers, which can lead 

to an avalanche-like increase in the number of com-

binations of potential identifiers. 

In the present article, the further analysis of the func-

tional potential space will be limited to a small num-

ber of proper (initial) buffers and to two or three 

distinguishable buffer functionalities. These limita-

tions may prove to be an obstacle to the application 

of the concept of signature on a larger scale in Carte-

sian product operations on stochastic sets of func-

tional potentials. 

The modeling and detailed analysis of the potential 

changes on the two buffers of the O1/1 object present-

ed in Fig. 2 is the starting point for the identification 

and assessment of the operation of objects with buff-

ers of type B1–B2, where the buffer symbol B1–B2 

represents sets of permissible functional potentials 

on the proper buffers, causing and simultaneously 

caused by changes in the value of the probabilities 

of potentials available in the proper buffers.  

The symbols of the potentials of the functionalities p, 

q, ..., x, y of the buffers (as well as the objects) are 

assigned, as their actual value, the estimated proba-

bility of their current maintenance. 

 

3 Dynamics of object potentials with two 

buffers 

 

The dynamics of the potentials in two external buff-

ers B1, B2 will be illustrated by the graphs G1, G2 

shown in Fig. 3, where ГV1 and ГV2 are the signa-

tures of the vertices V1 and V2 of the graphs G1 and 

G2, respectively, with potential volatility and signa-

tures presented in the formulas (1, 2). 

ГV1 = {Гp, Гq} = {{p, q}, {p}}  

ГV2 = {Гx, Гy} = {{x, y}, {x}} (1) 

which we interpret as follows: 

Гp = {p, q};  Гq = {p}  

Гx = {x, y};  Гy = {x} (2)

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Potential dynamics of a two-buffer object represented by the vertices V1 and V2 of the graphs G1 and G2, 

written in the form of a Cartesian product G1 × G2, where the symbol × written in bold type indicates the Cartesian 

product of the two reproduced sets G1 and G2 (Source: Authors own research) 

 

Fig. 3 presents the graph G with the set of vertices 

V= V1 × V2 and the sets of edges ГV = ГV1 × ГV2, 

which are the Cartesian products of the vertices and 

the edges of the graphs G1 and G2. The graph G and 

its characteristics are used to study the behavior 

of the dynamic potentials of the two-buffer object 

B1–B2 that is being considered. 
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The fully formulated four-potential graph G is shown 

in Fig. 4. The G graph was constructed as a Cartesian 

product of the tops of G1 × G2 graphs and as a Carte-

sian product of the edge forms of the potentials 

of both these graphs. 

 

 

 

 

 

 

 

 

 

 

Figure 4. The resulting form of the stochastic graph G of the potentials, written in the form of the Cartesian product 

of the G1 × G2 potential graphs (Source: Authors own research) 

 

Fig. 3 is accompanied by Fig. 4, which shows the 

probability values of the changes in these potentials 

(interpreted as potential “a” changes to potential “b” 

with probability = 0.5) respectively with values:  

 for the G1 graph 

p  p = 0.2  p  q = 0.8  q  p = 1.0  

x  x = 0.4  x  y = 0.6  y  x = 1.0 

 for the G2 graph 

x  x = 0.4  x  y = 0.6  y  x = 1.0  

x  x = 0.4  x  y = 0.6  y  x = 1.0. 

The vertices of the graph G are formed as the prod-

uct of the Cartesian vertices of graphs G1 and G2 

in the following manner: 

V = V1 x V2 = {p, q} x {x, y}  

 = {px, py, qx, qy} (3) 

The edges of the graph G are created using the signa-

ture vertices ГV of the graph G: 

ГV = {Гpx, Гpy, Гqx, Гqy } (4) 

where: 

Гpx = Гp x Гx = {p, q} x {x, y} = {px, py, qx, qy} 

Гpy = Гp x Гy = {p, q} x {x} ={px, qx,} 

Гqx = Гq x Гx = {p} x {x, y} = {px, py} 

Гqy = Гq x Гy = {p} x {x} ={px}  

 

 

4 Table of potentials of a two-buffer object 

 

The set of observation tables presented below from 

the ГV signature are used to build the potential graph 

of the object, modeled using the Cartesian product of 

G1 x G2 graphs with the probability values shown in 

Fig. 4. The method of constructing a stochastic state 

graph is universal, illustrated successively with the 

help of Tables 1 to 4. The number of tables neces-

sary to carry out the entire calculation is equal to the 

number of potential “graph” summits constructed as 

a result of multiplying all the graphs of the potentials 

of objects occurring in the entire modeled object. 

The events initiating the potentials px, py, qx, qy - as 

the available potentials of the G1 × G2 object - are 

obtained using the expression (3). The total value of 

1.00 is a control value used to check the correctness 

of the results of the event observations of the indi-

vidual potentials, and at the same time is a compo-

nent of the system sum of all four buffer potentials of 

the analyzed dynamics of the object modeled by the 

product G1 × G2. 

The graph G of the states of the two-buffer object, 

presented as an object in Fig. 2 and as a graph of 

states in Fig. 4, is the result of the Cartesian product 

of stochastic components - vertices and edges of G1 

× G2 state graphs. 
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Table 1. Observation of events px 

Initializing events Observation of secondary events Probability P on the scale [0..1] 

px 

px  px = 0.2 × 0.4 0.08 

px  py = 0.2 × 0.6 0.12 

px  qx = 0.8 × 0.4 0.32 

px  qy = 0.2 × 0.4 0.48 

  =1.00 

 

 

Table 3. Observation of events qx 

Initializing events Observation of secondary events Probability P on the scale [0..1] 

qx 
qx  px = 1.0 × 0.4 0.40 

qx  py = 1.0 × 0.6 0.60 

  =1.00 

 

 

The proposed procedure can be used to build graphs 

that describe the dynamics of states of single or mul-

tiple objects with distinguished proper buffers, which 

aid in the analysis of the structure of a functioning 

object on the basis of Cartesian products of variabil-

ity of states occurring on its external input and out-

put buffers. 

Two examples of Cartesian graphs are presented 

below: 

 with lost capacity of determinism to indicate, 

unambiguously, decisions on the GX graph result-

ing from the Cartesian product of G1 × G2 (Ex-

ample 1), 

 with lost semantics – destiny (Example 2). 

 

5 Cartesian products of graph states with lost 

capacity (determinism): Example 1 

 

The Cartesian products of graph states, or, more 

precisely, graph operating models, can be used effec-

tively to detect errors, either a priori (resulting from 

imprecisely defined structural assumptions) or a 

posteriori (resulting from wrong decisions or even 

procedural errors), arising in the initial phase of the 

multiplication of graph models of functioning. 

To illustrate the possibilities of Cartesian products, 

we will use a simple example of the graph synthesis 

of the states of an object, for which we know only 

the graph states that characterize the buffers of the 

synthesized object. Many experiments indicate that 

Table 2. Observation of events py 

Initializing events Observation of secondary events Probability P on the scale [0..1] 

py 
py  px = 0.2 × 1.0 0.20 

py  qx = 0.8 × 1.0 0.80 

  =1.00 

Table 4. Observation of events qy 

Initializing events Observation of secondary events Probability P on the scale [0..1] 

qy qy  px = 1.0 × 1.0 1.00 

  =1.00 
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carelessness with the Cartesian product may lead to 

the synthesis of the machine in the style of a “one-

armed bandit” rather than to the synthesis of a 

properly functioning deterministic automaton with 

memory. 

In the first example, the task is to synthesize the GX 

= G1 × G2 graph generated as a result of the multipli-

cation of the graphs shown in Figs 5a, 5b, and 5c. 

In this example, we will unwittingly synthesize a 

falsely functioning graph state of an object with am-

biguous mappings. 

In the second example (Section 6), our carelessness 

will cause oscillatory behavior of the object with 

three buffers and a tendency toward unexpected re-

laxation on three objects A, B and C simulating or 

connected to object X with unstable functioning. 

Returning to Example 1, the Cartesian product of the 

graphs G1 and G2 will be saved in the form of a sig-

nature model: 

G1 = < V1, V1 >, G2 = <V2, V2 >, GX = G1 × G2 

where: 

V1 = {a, b, c}, V2 = {p, q}are the sets of the vertices 

of graphs G1 and G2, 

1 = {a, b, c}, 2 = {p, q} are the signatures 

of the following graphs of the form: 

a = {a, b}, b = {b, c}, c = {a, c}, p = {p, q} and 

q = {q}. 

The G1, G2 and Gx graphs are shown in Fig. 5a, 5b 

and Fig. 5c, respectively. 

 

 

 

 

 

 

 

 

 

Figure 5a. State graph G1    Figure 5b. State graph G2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5c. State graph Gx (Source: Authors own research) 
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The carrier of the analyzed graph GX is a set of six 

vertices obtained as the product of: 

Vx = V1 x V2  

with identifiers {ap, bp, cp, aq, bq, cq}. 

The signature of the vertices of the edge of the graph 

GX is a set of six vertices of the graph: 

{ap, bp, cp, aq, bq, cq}  

forming edge bundles and loops. 

 

ap =  a x p = {a, b} x {p, q} =  {(a,p), (a,q), (b,p), (b,q)} 

aq =  a x q =  {a, b} x {q}  =  {(a,q), (b,q)} 

bp =  b x p = {b, c} x {p, q}  =  {( b,p), (b,q), (c,p), (c,q)} 

bq  =  b x q =  {b, c} x {q} =  {(b,q), (c,q) }  

cp  =  c x p = {a, c} x {p, q} =  {(a,p), (a,q), (c,p), (c,q)} 

cq  = c x q  =  {a, c} x {q}  =  {(a,q), (c,q)} 

 

The signatures of the above-mentioned vertices spec-

ify all the edges of the resulting graph GX shown 

in Fig. 5c. 

The graph GX (Figs 5a, 5b and 5c) created as the 

Cartesian product of graphs G1 and G2 introduces an 

unexpected effect of uncertainty in the potential 

changes on the GX graph. The indeterminacy effect is 

indicated by a dashed line of arcs connecting the 

pairs of alternative states and appears in the case 

of three states ap, bp and cp contained in the GX col-

umn in Table 5. In Fig. 5c, we have three pairs show-

ing nondeterministic behavior, marked in yellow, 

and this is presented in more detail in Table 5. 

 

Table 5. Nondeterministic reactions of the Gx graph 

Current Gx potential New potential at entering the G1 graph Alternative Gx potentials 

ap a 
ap 

aq 

ap b 
bp 

bq 

bp b 
bp 

bq 

bp c 
cp 

cq 

cp a 
ap 

aq 

cp c 
cp 

cq 

 

 

6 Tables of dynamics of two-buffer objects 

with an extensive structure of options 

 

The series of event observation tables presented be-

low is obtained from the ГV signature of the graph 

shown in Figure 5c. The method for obtaining a sto-

chastic state graph is analogous to the procedure 

described in Section 2. Black dots on the edges of 

the graphs indicate the right probability value as-

signed to the edge. The graphs G1 and G2, and the 

resulting graph GX – taking into account the stable 

probability values – are presented in Figs 6a, 6b, and 

Fig. 6c. 
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Figure 6a. State graph G1   Figure 6b. State graph G2 

 (Source: Authors own research)  (Source: Authors own research) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6c. State graph GX = G1 x G2 (Source: Authors own research) 

 

In the first example (Fig. 6a) we have synthesized 

an erroneously functioning graph state of the object 

with ambiguous mappings (marked in yellow). In the 

second example (Fig. 7a), our carelessness causes 

oscillatory behavior of the object with three buffers 

and a tendency toward the unexpected relaxation 

of the three objects A, B and C assigned to the object 

X with a similar functionality and unstable function-

ing. 

The procedure leading to a stochastic graph GX with 

the loss of unambiguity is analogous to the procedure 

for the dynamics tables of the two-buffer object, 

presented in Section 2. The results of the calculations 

are recorded in Tables 6 to 11. 
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In the procedure, establishing the set of vertices VX 

obtained from the ГVX signature is the beginning: 

ГVX  =  ГV1 x ГV2 = {a, b, c} x {p, q} 

 =  {ap, aq, bp, bq, cp, cq} 

For each of signatures: Гap, Гbp, and Гcq, the initiating 

event, the collections of secondary events and their 

statistical characteristics are set out in Tables 6 to 11. 

 

 

Гap  =  Гa x Гp =  {a, b} x {p, q}  =  {ap, aq, bp, bq} 

Гaq  =  Гa x Гq =  {a, b} x {q}  = {aq, bq,} 

Гbp =  Гb x Гp = {b, c} x {p, q} = {bp, bq, cp, cq} 

Гbq = Гb x Гq = {b, c} x {q} = {bq, cq} 

Гcp = Гc x Гp = {c, a} x {p, q} = {cp, cq, ap, aq} 

Гcq  = Гc x Гq = {c, a} x {q} = {cq, aq} 

 

Table 6. Observation of event ap 

Initializing event Observation of secondary events Probability P on the scale [0..1] 

ap 

apap = 0.3 x 0.8 0.24 

apaq = 0.3 x 0.2 0.06 

apbp = 0.7 x 0.8 0.56 

apbq = 0.7 x 0.2 0.14 

   =1.00 

 

Table 7. Observation of event aq 

Initializing event Observation of secondary events Probability P on the scale [0..1] 

aq 
aqaq = 0.3 x 1.0 0.30 

aqbq = 0.7 x 1.0 0.70 

   =1.00  

 
Table 8. Observation of event bp 

Initializing event Observation of secondary events Probability P on the scale [0..1] 

bp 

bpbp = 0.4 x 0.8 0.32 

bpbq = 0.4 x 0.2 0.08 

bpcp = 0.6 x 0.8 0.48 

bpcq = 0.6 x 0.2 0.12 

  =1.00 

 
Table 9. Observation of event bq 

Initializing event Observation of secondary events Probability P on the scale [0..1] 

bq 
bqbq = 0.4 x 1.0 0.40 

bqcq = 0.6 x 1.0 0.60 

   =1.00 
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Table 10. Observation of event cp 

Initializing event Observation of secondary events Probability P on the scale [0..1] 

cp 

cpcp = 0.3 x 0.8 0.24 

cpcq = 0.3 x 0.2 0.06 

cpap = 0.7 x 0.8 0.56 

cpaq = 0.7 x 0.2 0.14 

   =1.00 

 
Table 11. Observation of event cq 

Initializing event Observation of secondary events Probability P on the scale [0..1] 

cq 
cqcq = 0.3 x 1.0 0.30 

cqaq = 0.7 x 1.0 0.70 

   =1.00 

 

7 Cartesian product of graphs with lost se-

mantics: Example 2 

 

The task is to synthesize the graph GX that is created 

as the Cartesian product of the graphs presented in 

Fig. 7a and saved in the form of the signature: 

G1 = < V1 , 1 >, G2 = <V2 , 2 >, G3 = <V3 , 3 > 

where: 

V1 = {a, b}, V2 = {c, d}, V3 = {e, f} are the sets of 

vertices of graphs G1, G2 and G3, 

1, 2 and 3 are the signatures of the following 

graphs of the form: 

1 = {a, b },   2 = {c, d},   3 = {e, f}, 

a = (b),   b = (a),   c = (c,d),    

d = (c),   e = (f),    f = (e). 

The starting form of the graph is shown in Fig. 7a, 

and the resulting form in Fig. 7b. 

 

 

 

 

 

 

 

 

 

Figure 7a. The graph before attempting to synthesize the target form of the Cartesian product Ox 

(Source: Authors own research) 

 

The carrier of the graph GX is the set of vertices: 

Vx = V1 x V2 x V3 = {a, b} x {c, d} x {e, f} 

(a,d,e), (a,c,e), (b,d,e), (b,c,e), (a,d,f), (a,c,f), (b,d,f), 

(b,c,f). 

Below the Ox’s graph signature (Fig. 7b) is deter-

mined by the relationship “˅” alternative (ambigu-

ous) links the edge of the graph in four highlighted 

gray background vertices of the graph: ace, bce, acf 

and bcf. 
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ade = (b,c,f) 

ace = (b,d,f) ˅ (b,c,f) 

bde = (a,c,f)  

bce = (a,d,f) ˅ (a,c,f) 

adf = (b,c,e) 

acf = (b,d,e) ˅ (b,c,e) 

bdf = (a,c,e) 

bcf = (a,d,e) ˅ (a,c,e) 

 

 

Figure 7b. A graph illustrating the Cartesian product Ox (Source: Authors own research) 

 

In the OX graph in Fig. 7b, it is not difficult to identi-

fy two intersecting graphical figures referred to as 

“wolf pits”, which have the troublesome feature 

of the impossibility of leaving the graphical figure; 

we were inadvertently “caught up” in these in the 

modeling process: 

 wolf pit No. 1: bde & acf & bce & adf, 

and 

 wolf pit No. 2: ade & bcf & ace & bdf. 

A similar difficulty, caused by the lack of semantic 

analysis of the adopted assumptions, was encoun-

tered in the graph presented in Fig. 5b. 

 

8 Summary and continuation using  

technology 

 

The dominant concepts considered in this material 

are the mathematical signatures and the Cartesian 

products of graphs. The purpose of the signature of 

a graph is to specify, for each vertex of the graph: 

 a set of edges of the graph with a common vertex 

and the creation of a set of vertices from the end-

points of each edge having a common vertex, 

 it is possible that the signatures of different verti-

ces of the graph will have common edge corners. 

The Cartesian product of graphs is created in two 

phases: 

 in the first phase, the Cartesian product of all 

possible vertex pairs, one from each of the sets, is 

found; in this way, the vertices of the new graph are 

created, 

 in the second phase, for each new graph and its 

vertices, the signature is determined, that is, the final 

vertices and the edges leading to them. 

The advantage of Cartesian products of graphs is that 

the vertices are merged simultaneously with the edg-

es of the graph. This operation, even though it seems 

simple, can, however, quickly exhaust the available 

memory even with a small number of sets with a 

small number of elements in each of them. This hin-

ders interpretation, which was also visible in our 

simple examples. We can see that there is an oppor-

ade 

ace 

acf bdf 

bde 

bce adf 

bcf 

Ox 
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tunity to use intelligent programming languages like 

Python or Java, as well as the work of those people 

of science who can overcome all these obstacles and 

achieve the goals. 
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