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ABSTRACT
Cistus crispus (Cistaceae) is a species adapted to arid and semi-arid conditions, and it has ornamental and medicinal  
uses. In Italy, native populations of C. crispus are threatened by the collection due to the low number of individuals in 
the populations, anthropogenic pressure, and the changing environmental condition that enhance other more aggressive 
and hybridisable Cistus species. Here, we set up the variables for its micropropagation protocols to achieve a high 
number of plants per unit time. Various steps of the micropropagation protocol were modulated, including various 
sodium hypochlorite concentrations (CHCs) and time of sterilisation. The efficiency of the protocol maximised at 25 min 
sterilisation with 2.5% CHC and decreasing explant vitality at increasing time and CHC. Both shoot proliferation and 
root emissions were maximised at 1.78 μM N-6-benzyladenine (BA) in the growing medium, with up to 5.4 explants per 
cycle, with 5.8 roots per explant, and 84 healthy explants. Kinetin stimulated further the axillary root proliferation more 
than dimethylallylamino purine or BA. Lastly, the application of indole acetic acid increased root emissions during the 
acclimation stage more than the application of indole butyric acid, and this occurred irrespective of their concentrations,  
up to 2.0  μg  ⋅  g–1. These results can foster the use of C. crispus as an ornamental species, for xeriscaping or for the  
extraction of its secondary compounds, which have various industrial uses. These results can also have an indirect implication 
for the conservation of the species by reducing the collection for ornamental purposes from its natural population.

Keywords: biotechnology, conservation, Mediterranean maquis, plant hormones, rockrose

Abbreviations:
2iP, dimethylallylamino purine; BA, benzylaminopurine; c.p., coefficient of proliferation; Cgr, concentration of each 
rooting hormones (IAA or IBA); CHC, hypochlorite concentration; GR, growth regulators; h.e., percentage of healthy 
explants; IAA, indole acetic acid; IBA, indole butyric acid; Kin, kinetin; MS, Murashige and Skoog; MW, molecular 
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INTRODUCTION
Mediterranean, arid, and semi-arid areas are important 
centres of biodiversity (Giovino et al., 2016) and can 
host unique plant species with crucial roles in such 
fragile ecosystems (Giovino et al., 2014). However, 

due to a high anthropogenic pressure and climate 
change, the resilience of these ecosystems decreases. 
This also caused by the expansion of alien, often 
aggressive, species (from either plants or animals), 
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which directly or indirectly menace many native taxa, 
especially the endemic ones (Badalamenti, 2016; 
Brundu, 2013; Giovino et al., 2016). Cistus crispus L.  
is a western Mediterranean species typical of the 
thermo-Mediterranean zone. It is a medium-sized, 
evergreen shrub with plant height usually up to 
approximately 100  cm. This species has various 
uses including its application as an ornamental and/
or medicinal plant, whose extract can have strong 
fungicidal/fungistatic effects (Bouyahya et al., 2018), 
or it can be used for xeriscaping and recolonisation 
of fragile environments (Batista et  al., 2017; Gómez-
Zotano et al., 2017), where it also plays an important 
role for feeding bees (Ortiz, 1994). C. crispus has been 
classified as endangered in the Red Data Book of plants 
of Italy (Conti et al., 1992). In Italy, it is presumed to be 
native only in Sicily (Rizzotto, 1979), where it is very 
rare and localised (Bartolo et al., 1994). C. crispus has 
also been reported as a casual xenophyte in Liguria 
(Gentile and Gentile, 1994). It has been shown that 
Cistus species have a polyphyletic genetic structure and 
an insular diversification (Carlier et al., 2008; Guzmán 
and Vargas, 2005). Indeed differences were frequently 
found, in various species, between genotypes from 
Sicily and others from North Africa despite the 
share of similar soils (Barrajõn-Catalán et al., 2011; 
Giovino et al., 2015c; Said et al., 2016). However, in 
the Sicilian area, the environment is subjected to strong 
anthropogenic pressure. Such a condition does not 
allow C. crispus to easily renew and can have drawback 
for repopulating the plant community, especially if 
considering that such a species is also collected for 
ornamental purposes. This calls for a genetic and 
environmental protection of this species through 
adoption of ad hoc conservation practices, especially 
if considering its rarity and that Cistus species 
can undergo hybridisation with non-native species 
from the same genus (Navarro-Cano et al., 2017).  
Such measures of propagation should rely on both 
sexuate and asexuate reproduction methods to conserve 
the intraspecific variability and increase the number of 
individuals available for ornamental purposes and to 
recolonise the native areas. However, orthodox seeds, 
such as those of Cistus (Papafotiou et al., 2000; Scuderi 
et al., 2010), frequently have reproduction strategies, 
including an asynchronous germination, which 
reduces the efficacy of sowing to rapidly recolonise 
native areas. This often occurs for other species whose 
embryo has a maturation stage after seed dispersal 
from the same areas (Giovino et al., 2015b, 2015d). In 
addition, it hampers to address the use of this species 
as ornamental or medicinal plant or for xeriscaping, 
given its aesthetic value, high resistance to stresses, 
and content in secondary compounds with potential 
industrial uses, as showed for other species (Giovino 
et al., 2014; Kubica et al., 2017). In addition, Cistus spp. 
showed own rooting from cuttings (Papafotiou et  al., 
2000), which hampers its uses.

In vitro propagation has important applications for 
both the protection of endangered species and genotype 
conservation (Preil, 2003; Rout and Jain, 2004). 
Micropropagation by direct organogenesis of endangered 
species is a valid method in comparison with traditional 
propagation practices to avoid depletion of natural 
populations, which further implies the disturbance of 
the native sites for seed collection and a high amount  
of nursery/greenhouse/field work for plant establishment.

The aim of this study was thus setting a micropro-
pagation protocol for this species. In particular, we 
tested the response of explant proliferation of various  
protocols of explant sterilisation under micropropagation 
and rooting after and hormone (i.e., growth regulators 
(GR)) treatments at both the micropropagation stage and  
rooting stage.

MATERIALS AND METHODS

Culture initiation
The propagation material was collected from a plant 
from the population of Colle San Rizzo (Messina 
province, Sicily, Italy). Explants used were 4- to 5-mm-
long apical sprout with two verticils and a bud at its base, 
coming from primary and secondary branches (Ruta 
and Morone-Fortunato, 2010) with no evident damages 
or pathogenic attacks. The explants were collected 
from actively growing upper branches during the year 
of collection. The micropropagation procedure was 
performed under horizontal laminar flow after device 
sterilisation under ultraviolet-C radiation at 15  W per 
30 min.

Effect of sodium hypochlorite concentration 
(CHC) and time of sterilisation (TS)
Explants were sterilised by washing in water and then 
in ethanol-water solution (70:30  v/v, Sigma-Aldrich), 
after which sterilisation treatments were sodium 
hypochlorite (5% active chlorine, w/v, Sigma-Aldrich) 
concentration 2.0%, 2.5%, 3.0%, or 3.5% (in water by 
v/v, mixed at 25°C and atmospheric pressure) where 
20 drops  ⋅  l–1 of Tween 20 (Sigma-Aldrich) were added. 
Sterilisation treatments lasted 25 or 35 min. Soon after 
sterilisation, explants were rinsed various times in 
sterile distilled water. The explants described earlier 
were placed in Magenta B-cap jars (Sigma-Aldrich) 
filled with 50  mL of a Murashige and Skoog (MS) 
macronutrient medium (Murashige and Skoog, 1962) 
(Sigma-Aldrich), Nitsch and Nitsch micronutrients 
(Nitsch and Nitsch, 1969), Fe-EDTA (30  mg  ⋅  l–1), 
thiamine (0.4  mg  ⋅  l–1), myoinositol (100  mg  ⋅  l–1), 
agar (Bacteriological Agar, No. 1 Oxoid; 8 g  ⋅  l–1), and 
sucrose (30 g  ⋅  l–1). The experimental unit was a jar with 
20 explants (Figure 1A). Each treatment was replicated 
four times, kept at 24°C ± 1°C under 50 μmol  ⋅  m–2  ⋅  s–1 
light by cool-white fluorescent tubes (Osram), and a 
16 h/8 h day–night photoperiod. The experiment was 
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arranged according to a randomised block design 
(RBD). After 4 weeks, percentage of sterile explants 
and their vitality were computed as number of vital 
explants above the number of sterile explants. An 
explant was considered vital when free of browning  
or necrosis.

Propagation
Effect of benzylaminopurine (BA) concentration
Shoot clumps obtained during initiation (4 weeks after 
initiation) from the treatment with the highest percentage 
of vital explants were used to test the proliferation rate 
after increasing concentration of BA (Sigma-Aldrich) 
in the propagation. Explants were placed in jars filled 
with an MS medium as earlier and supplemented 
with 0.88, 1.78, 3.55, 7.45 mM BA or were untreated 
(referred as 0). The medium was solidified with agar 
as earlier. Explants were maintained as in the previous 
experiment. The experimental design was a RBD with 
four replicates. One subculture lasted for 4  weeks. 
After 10 subcultures, proliferation rate, (computed as 
number of shoots per explant), number of adventitious 
roots per explant, and percentage of healthy explants 
(referred as c.p., n.r., and h.e., respectively) were 
computed. An explant was considered healthy when it 
was free of browning or necrosis and leaves appeared 
turgid.

Effect of kind (BA, kinetin (Kin), 
dimethylallylamino purine (2iP)) and 
concentration of cytokinins (CYTs)
Stem explants (15  mm long, two-node sections) 
obtained from in vitro plantlets of Cistus multiplied on 
a MS medium as earlier (Sigma-Aldrich), 1.5 μM indole 
butyric acid (IBA; Sigma-Aldrich), and agar as earlier 
and pH set to 5.7 were used for the experiment. The 
experimental unit was a jar with 20 explants. The stock 

of shoot cultures was increased by sub-culturing every 
4  weeks on a complete MS medium. Experimental 
design was a RBD replicated four times. The effect of 
three CYTs was investigated, BA (molecular weight 
(MW): 225.25), Kin (MW: 215.21), and 2iP (MW: 
203.24) (Sigma-Aldrich), which were used in the 
following concentrations: 0.3, 0.6, and 1.2  μg  ⋅  g–1, 
respectively, and an untreated control referred as 0.0. 
After 5 weeks, the coefficient of shoot proliferation was 
calculated.

Rooting
Effect of auxin
Stem explants (~15-mm-long, two-node sections) were 
obtained from in vitro plantlets of Cistus multiplied 
on a MS medium as earlier, 1.5 mM IBA and agar as 
earlier, and pH set to 5.7 in the present experiment. 
The experimental unit was a jar with 15 stem explants 
~150-mm-long, two-node sections. Treatments were 
as follows: application of rooting hormone (RH; GR): 
indole acetic acid (IAA) or IBA (Sigma-Aldrich) and 
concentration (Cgr) of each of these RHs: 0.5, 1.0, 
and 2.0 mg of compound g–1 medium and an untreated 
control referred as 0.0. After 5 weeks, root number per 
cutting was counted.

Acclimatization
Plantlets were transferred to Jiffy® pots, and plant 
acclimatisation was evaluated after 4 weeks in a heated 
greenhouse according to Lazzara et al. (2017).

Computations and statistical analysis
Before starting the analysis, all data were checked for 
normality by means of the Shapiro–Wilk test (proc. 
Univariate, SAS/STAT 9.2, SAS Institute Inc., Cary, 
NC, USA) since the number of samples was lower than 
2000. All data had a normal distribution, including 

Figure 1. (A) Experimental unit at the beginning of the experiment: apical sprout from primary and secondary branches. 
(B) Experimental unit at the time of establishment in vitro.
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those of ratios or percentages, and thus were analysed 
with no transformation.

Data from each experiment were subjected to 
analysis of variance by means of the GLIMMIX 
procedure in SAS/STAT 9.2 environment, according 
to the experimental design. Differences among mean 
values of treatments with more than two statistical 
levels and interactions were compared by applying 
Tukey’s “t-grouping” at the 5% probability level to the 
LSMEANS estimate. See the supplementary material in 
Saia et al. (2020) for both a description of the procedure 
and the SAS package model applied.

RESULTS
Culture initiation
Percentage of sterile explants (Figure 2) increased by 
32% and 20% when increasing CHC from 2.0% to 2.5% 
and 2.5% to 3.0%, respectively, with no differences 
between 3.0% and 3.5%. Similarly, increasing TS 
raised the sterile explants by 14%, with no CHC × TS 
interaction.

Percentage of vital explants (Figure 2) decreased by 
38%, on average, when TS increased from 25 to 35 min, 
and such a difference mostly occurred at CHC higher 

Figure 2. Percentage of sterile (left panel) and vital explants (right panel) of Cistus crispus at increasing sodium 
hypochlorite concentration (CHC) and time of sterilisation (TS). Data are values of mean ± standard error. For 
sterile explants, CHC: F = 31.2, p < 0.001; TS: F = 423.6, p < 0.001; and CHC × TS: F = 2.5, p = 0.088. For vital 
explants, CHC: F = 135.2, p < 0.001; TS: F = 276.7, p < 0.001; and CHC × TS: F = 4.0, p = 0.022. When CHC × TS 
was significant, treatments were separated by t-grouping of the LSMEANS estimate. Treatments with a letter in 
common are not different at t0.05-grouping.

Figure 3. Coefficient of proliferation (c.p.), number of root (n.r.), and percentage of healthy explants (h.e.) of Cistus 
crispus cuttings at increasing benzylaminopurine (BA) concentration. Data are values of mean ± standard error. c.p.: 
F = 652.3, p < 0.001; n.r.: F = 15.1, p < 0.001; and h.e.: F = 314.3, p < 0.001. Within each variable, treatments with a letter 
in common are not different at p > 0.05 according to the Tukey’s test applied to the LSMEANS estimates’ differences.
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Figure 4. Coefficient of axillary shoot proliferation of Cistus crispus microcuttings at increasing concentration (CCYT) 
of cytokinins (CYTs): benzylaminopurine (BA), kinetin (Kin), or dimethylallylamino purine (2iP). Data are values 
of mean ± standard error. CYT: F = 67.3, p < 0.001; CCYT: F = 75.2, p < 0.001; and CCYT (CYT): F = 20.6, p < 0.001. 
DFnum and DFden of CCYT (CYT) were 4 and 27, respectively. Treatments with a letter in common are not different at 
p > 0.05 according to the Tukey’s test applied to the LSMEANS estimates’ differences.

than 2.0%, although with a scarce interaction. Varying 
CHC resulted in a variation of the percentage of vital 
explants, with a boost from 2.0% to 2.5% and then  
a constant decrease while further increasing CHC  
to values close to 0.

Propagation
Effect of BA concentration
Coefficient of proliferation (c.p.), number of roots 
(n.r.), and percentage of healthy explants (h.e.) peaked 
at 1.78  mM BA concentration and decreased at higher 
BA concentrations (Figures 3 and 1B, respectively). 
In particular, h.e. variation was particularly evident 
at increasing BA from 0.88 to 1.78  μM, whereas they 
were scarce when adding 0.88 μM BA compared to 
the untreated control. The decrease in these variables 
was almost constant when increasing BA from 1.78 to 
7.45 μM.

Effect of kind (BA, Kin, 2iP) and concentration  
of CYTs
Application of GR increased by 5.1% to 192.3% axillary 
shoot proliferation. When applying to 0.3 μg  ⋅  g–1 of 2iP 
and Kin, axillary shoot proliferation increased compared 
to the untreated control, whereas no differences were 
found for BA (Figure 4).

A further increase from 0.3 to 0.6  μg  ⋅  g–1 GR 
increased axillary shoot proliferation of C. crispus in 
BA and Kin, but not in 2iP. An additional increase in the 
GR concentration from 0.6 to 1.2 μg ⋅ g–1 did not affect 
axillary shoot proliferation in 2iP and BA and decreased 
it in Kin, which showed similar coefficients compared 
to the other GR.

Rooting
Effect of auxin
Application of IBA promoted root emission 26.5% 
less than IAA (Figure 5) and resulted in no promotion 
at 2.0  μg  ⋅  g–1. RH increased root number especially 
at 0.5  μg  ⋅  g–1 (+100% and +50% in IAA and IBA, 
respectively, compared to the untreated control).

Acclimatisation in the greenhouse during 4  weeks 
was complete (100%) irrespective of the treatments 
applied in Experiment 2. Data were thus not statistically 
processed.

DISCUSSION
Micropropagation for conservation purposes of other 
endangered Cistus species has been proposed with 
contrasting results (Aregui et al., 1997; Gatti et al., 
2004; López-Orenes et al., 2013; M’Kada et al., 1991). 
In the present experiment, we obtained a coefficient 
of proliferation of 1.3–2.0 when no GR were applied, 
which is similar or higher than the values found in 
Cistus heterophyllus (López-Orenes et al., 2013). Such 
a rate increased by 2.9–4.2 fold when the most suitable 
concentration of GR was applied. These results were 
better than those observed in C. × purpureus (M’Kada 
et al., 1991), Cistus clusii (Ruta and Morone-Fortunato, 
2010), or Cistus ladanifer (Boukili et al., 2017) and 
similar to those found in Cistus salvifolius (Louro et al., 
2017), where higher hypochlorite concentration was 
used than that in the present study, but lower than that 
in other Cistus species obtained by micropropagated 
plantlets from callus (Madesis et al., 2011) or seeds 
(Zygomala et al., 2003). Zygomala et al. (2003) also 
found a higher percentage of vital explants than the 
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present study. Differences in our results compared to 
those of Madesis et al. (2011) and Zygomala et al. (2003) 
can be due to both the different genotypes tested and 
ability of the treatment to sterilise the explant without 
harming its vitality. In particular, the explant vitality 
may also depend on the explant antioxidant response 
to the treatments applied and kind of pathogens in the 
explant (Ortuño et al., 2018), age of the starting material 
or position in the mother plant, relative response to 
nutrients and light (Martínez-Estrada et al., 2016; Mills, 
2009; Yoo and Lee, 2017), and higher amount of Na+ 
used in Zygomala et al. (2003) compared to the present 
study. Na+ concentration could have affected the K+/Na+ 
and Ca2+/Na+ on the plant tissues and thus increased 
their antioxidant capacity. This latter trait can determine 
the outcome of the micropropagation (López-Orenes 
et al., 2013). Application of sodium hypochlorite to the 
explant resulted in a higher percentage of vital explants 
at the 2.5% concentration and at the time of exposure 
of 25 min compared to 35 min. Interestingly, a longer 
time (35 min) of exposure with the same concentration 
did not consist of an increase in the percentage of vital 
explants. This implies that sterilisation of the explants 
also damaged some explant or bud traits. Coefficient 
of propagation was relatively high even when no CYTs 
or auxin was applied; thus, these changes could be due 
to the hormones’ ratios in the explant, as suggested by 
the low differences in root numbers at increasing BA 
or coefficient of proliferation at increasing BA or 2ip, 
whose activity compared to Kin reported to be lower 
(Ortuño et al., 2018). In this work, the application of 
low concentration of CYT regulators increased the 
root number less than auxin (1.26-fold and 2.00-fold, 

respectively). This implies that concentration of auxin 
was likely impairing the micropropagation process in 
these explants. The present results agree with those 
found in C. clusii (Ruta and Morone-Fortunato, 2010), 
which also found a complete acclimatisation with 
two substrates when no mist was applied. Similarly, 
Pela et  al. (2000) found that RHs reduced explant 
proliferation. Nonetheless, the present results could 
have also depended on the age of the mother plants 
and culture age, as shown in other species (Öncel and 
Erişen, 2017; Park et al., 2017) and on the specific 
response to any of the auxin used (Öncel and Erişen, 
2017). For example, it was found that IBA can induce 
more roots than IAA or other plant hormones depending 
on the species (Jana et al., 2017; Ou et al., 2015) and 
that differences between IBA and IAA can depend on 
the substrate (Sedlák and Paprštein, 2011). Lastly, it 
was shown that genotypic response to IBA and other 
hormones can vary even within species and depending 
on the micropropagation conditions (Jamwal et al., 2016; 
Venkatasalam et al., 2015).

The increase in the number of roots found in the 
present work has implication for both the production of 
Cistus as an ornamental species and for conservation in 
the native site, if considering that C. crispus has a root 
system less expanded than other Cistus species and a 
lower growth rate (Silva et al., 2003; Silva et al., 2002; 
Latorre et al., 2007).

CONCLUSIONS
The study of the propagation of endangered plants is 
oriented toward methods, such as micropropagation, 

Figure 5. Root number of Cistus crispus microcuttings at increasing concentration (CAUX) of auxin (AUX): indole 
acetic acid (IAA) or indole butyric acid (IBA). Data are values of mean ± standard error. AUX: F = 11.4, p = 0.003; 
CAUX: F = 8.6, p = 0.002; CAUX (AUX): F = 0.007, p = 0.935. DFnum and DFden of CAUX (AUX) were 2 and 18, 
respectively.
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that can limit further impoverishment of rare plant 
material (Fay, 1992; Giovino et al., 2015a; Manokari 
and Shekhawat, 2018). In conclusion, the protocol 
used here showed very high performance in number 
of plants obtained per unit time and could be used for 
various aims, including its mass production with low 
costs or the increase in the presence of C. crispus in 
the natural environment. This could also reduce the 
genetic introgression from other similar species that can 
hybridise with C. crispus. This is particularly important 
when considering that diversification in Cistus depends 
on the geographical isolation between the species 
(Fernández-Mazuecos and Vargas, 2011; Navarro-Cano 
et al., 2017).
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